organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1655-o1656

1,5-Di­meth­­oxy­naphthalene

aDepartment of Chemistry, University of Cape Coast, Cape Coast, Ghana, and bChemical Crystallography, Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: emmanuel_jp@yahoo.com

(Received 19 September 2013; accepted 28 September 2013; online 19 October 2013)

The title compound, C12H12O2, lies across an inversion centre. The mol­ecular structure suggests that the meth­oxy groups in the 1- and 5-positions of the naphthalene moiety do not significantly distort the planar conformation of the ring system, which has a maximum deviation of 0.0025 (9) Å. In the crystal, mol­ecules pack in a herringbone arrangement in layers parallel to (100) and with chains propagating along [101] formed by very weak C—H⋯O inter­actions.

Related literature

For details of the uses of 1,5-di­meth­oxy­naphthalene, see: Ashton et al. (1991[Ashton, P. R., Brown, C. L., Chrystal, E. J. T., Goodnow, T. T., Kaifer, A. E., Parry, K. P., Phili, D., Slawin, A. M. Z., Spencer, N., Stoddart, J. F. & Williams, D. J. (1991). J. Chem. Soc. Chem. Commun. pp. 634-639.]); Amabilino & Veciana (2003[Amabilino, D. B. & Veciana, J. (2003). In Magnetism, Molecules to Materials II, edited by J. S. Miller & M. Drillon. New York: John Wiley & Sons, Inc.]); Kim et al. (2008[Kim, Y. K., Jeonmin-dong, Y., Daejeon, L., Hyun, S., Eoeun-dong, Y., Daejeon, R., Mun, C., Jeonmin-dong, Y., Daejeon, C., Yong, S., Banseok-dong, Y., Daejeon, S., Gyu, Y. & Galma-dong, S. (2008). Patent Number WO 2008/18645 A1.]); Kato et al. (2003[Kato, S., Suzuki, D. & Yoshiko, Y. S. (2003). US Patent No. US 6,656,328 B2, 2nd December.]); Rawson et al. (2006[Rawson, J. M., Alberola, A. & Whalley, A. (2006). J. Mater. Chem. 16, 2560-2575.]). For related compounds, see: Allen & Kirby (1984[Allen, F. H. & Kirby, A. J. (1984). J. Am. Chem. Soc. 106, 6197-6200.]); Beintema (1965[Beintema, J. (1965). Acta Cryst. 18, 647-654.]); Belskii et al. (1990[Belskii, V. K., Kharchenko, E. V., Sobolev, A. N., Zavodnik, V. E., Kolomiets, N. A., Prober, G. S. & Oleksenko, L. P. (1990). Zh. Strukt. Khim. 31, 116-121.]); Bolte & Bauch (1998[Bolte, M. & Bauch, C. (1998). Acta Cryst. C54, 1862-1863.]); Cosmo et al. (1990[Cosmo, R., Hambley, T. W. & Sternhell, S. (1990). Acta Cryst. B46, 557-562.]); Cruickshank (1957[Cruickshank, D. W. J. (1957). Acta Cryst. 10, 504-508.]); Gaultier & Hauw (1967[Gaultier, J. & Hauw, C. (1967). Acta Cryst. 23, 1016-1024.]); Pawley & Yeats (1969[Pawley, G. S. & Yeats, E. A. (1969). Acta Cryst. B25, 2009-2013.]); Rozycka-Sokolowska & Marciniak (2009[Rozycka-Sokolowska, E. & Marciniak, B. (2009). Acta Cryst. C65, o565-o568.]); Rozycka-Sokolowska et al. (2004[Rozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2004). Acta Cryst. E60, o884-o885.], 2005[Rozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2005). Acta Cryst. E61, o114-o115.]); Wiedenfeld et al. (1999[Wiedenfeld, D., Xiao, W. & Gravelle, P. W. (1999). J. Chem. Crystallogr. 29, 955-959.]); Wilson et al. (1996[Wilson, C. C., Shankland, N. & Florence, A. J. (1996). Chem. Phys. Lett. 253, 103-107.]); Wilson (1997[Wilson, C. C. (1997). Chem Commun. pp. 1281-1282.]). For details of the low-temperature device used, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For details of the H-atom treatment, see: Cooper et al. (2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). For Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12O2

  • Mr = 188.23

  • Monoclinic, P 21 /c

  • a = 7.0412 (3) Å

  • b = 10.1058 (4) Å

  • c = 6.5773 (2) Å

  • β = 95.509 (3)°

  • V = 465.86 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 150 K

  • 0.18 × 0.08 × 0.01 mm

Data collection
  • Oxford Diffraction SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.59, Tmax = 1.00

  • 7624 measured reflections

  • 975 independent reflections

  • 890 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.00

  • 971 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H73⋯O6i 0.98 2.70 3.495 (1) 139
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SUPERNOVA (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

1,5-Dimethoxynaphthalene has numerous industrial applications and uses. It is employed in the synthesis of pesticides (Kim et al., 2008) for the agriculture industry, involved in the preparation of polyhydric alcohols (Kato et al., 2003), as well as a component in molecular magnetic devices (Ashton et al., 1991) for the electronics industry. It is also involved in the synthesis of more complex paramagnetic supramolecular architectures including rotaxanes and catenanes (Amabilino & Veciana, 2003, Rawson et al., 2006). Despite this, reports discussing single-crystal studies of naphthalene (Pawley et al., 1969; Wilson et al., 1996; Wilson et al., 1997) and its analogues including naphthol (Rozycka-Sokolowska, et al., 2004; Rozycka-Sokolowska et al., 2009; CSD (Allen, 2002) refcode NAPHOLO1), 1,4- and 1,5-dihydroxynaphthalene (Gaultier, et al., 1967; CSD refcode NPHHQU10), Belskii et al., 1990; CSD refcode VOGRUE) and 1,4-dimethoxynaphthalene (Wiedenfeld, et al., 1999; CSD refcode ALUJIA; Cosmo et al., 1990; CSD refcode MATFES) confirm that the crystal structure of 1,5-dimethoxynaphthalene (I) is not known.

The colorless single-crystal of 1,5-dimethoxynaphthalene was crystallized while attemping to crystallize the rac-1,1'-bi-2-naphthol/1,5-dimethoxynaphalene complex from a blend of methanol/ethylacetate solvents. It crystallizes in the monoclinic space group P21/c with the molecule located on an inversion centre. The refined molecule and the labeling scheme are given in Fig. 1. It exhibits a herringbone packing motif and the molecules are arranged in layers parallel to the lattice plane (100) as shown in Fig. 2. All bond distances and angles fall within expected ranges.

In 1,5-dimethylnaphthalene (Gaultier, et al., 1967; Belskii et al., 1990; Beintema, 1965) as well as those in 1,4-dimethoxynaphthalene (Wiedenfeld, et al., 1999), 1,8-dimethoxynaphthalene (Cosmo et al., 1990), the steric interactions of the methyl groups cause a deviation from planarity in the naphthalene moiety. However, the ten-membered aromatic ring formed by atoms C1–C10 in (I) is planar; the steric interactions of the methoxy and H atoms do not cause any significant deviation from planarity. The exterior C4—C5—C4' angle (122.13 (9)°; symmetry operator indicated by a prime is -x + 1, -y + 1, -z + 2) in the naphathalene moiety shows no evidence of distortion in the naphthalene core associated with 1,5-disubstitutions. This suggests that the methoxy group seems to be restrained in the packing structure as a result of steric interaction between methoxy group and hydrogen atoms that reduce the propensity of the methoxy group to freely rotate in the crystal structure.

The methoxy substituents point away from the centre of the naphthalene moiety and each one forms a weak hydrogen bonded dimer with the neighbouring molecule. Since the molecule sits on an inversion centre, this leads to the formation of chains in the [101] direction (Fig. 3) via the weak intermolecular C—H···O hydrogen bonds involving the methoxy groups (with a C···O distance of 3.495 (1) Å).

In conclusion, the structure suggests that the methoxy groups in 1 and 5 positions around the naphthalene moiety do not significantly distort the planar conformation of the naphthalene, and the size of the groups and their positions are not influenced by steric interactions with the naphthalene moiety.

Related literature top

For details of the uses of 1,5-dimethoxynaphthalene, see: Ashton et al. (1991); Amabilino & Veciana (2003); Kim et al. (2008); Kato et al. (2003); Rawson et al. (2006); For related compounds, see: Allen & Kirby (1984); Beintema (1965); Belskii et al. (1990); Bolte & Bauch (1998); Cosmo et al. (1990); Cruickshank (1957); Gaultier & Hauw (1967); Pawley & Yeats (1969); Rozycka-Sokolowska & Marciniak (2009); Rozycka-Sokolowska et al. (2004); Rozycka-Sokolowska et al. (2005); Wiedenfeld et al. (1999); Wilson et al. (1996); Wilson (1997); For details of the low-temperature device used, see: Cosier & Glazer (1986); For details of the H-atom treatment, see: Cooper et al. (2010). For Cambridge Structural Database, see: Allen (2002).

Experimental top

The crystal of 1,5-dimethoxynaphthalene was obtained as a result of attemping to crystallize crystal complex of 1:1 mixture of rac-1,1'-bi-2-naphthol/1,5-dimethoxynaphalene from mixture of methanol and ethylacetate.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

Computing details top

Data collection: SUPERNOVA (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius [symmetry operator indicated by a prime is -x + 1, -y + 1, -z + 2].
[Figure 2] Fig. 2. The packing in (I) viewed along [100] and showing the herringbone arrangement.
[Figure 3] Fig. 3. Intermolecular C—H···O hydrogen bonds forming chains that propagate along [101] (symmetry operator indicated by a double prime is -x, -y + 1, -z + 1).
1,5-Dimethoxynaphthalene top
Crystal data top
C12H12O2F(000) = 200
Mr = 188.23Dx = 1.342 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 3622 reflections
a = 7.0412 (3) Åθ = 4–77°
b = 10.1058 (4) ŵ = 0.73 mm1
c = 6.5773 (2) ÅT = 150 K
β = 95.509 (3)°Plate, clear_pale_colourless
V = 465.86 (3) Å30.18 × 0.08 × 0.01 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova
diffractometer
890 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 76.7°, θmin = 6.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
h = 87
Tmin = 0.59, Tmax = 1.00k = 1212
7624 measured reflectionsl = 88
975 independent reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.093 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.06P)2 + 0.1P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.0004116
971 reflectionsΔρmax = 0.22 e Å3
64 parametersΔρmin = 0.18 e Å3
0 restraints
Crystal data top
C12H12O2V = 465.86 (3) Å3
Mr = 188.23Z = 2
Monoclinic, P21/cCu Kα radiation
a = 7.0412 (3) ŵ = 0.73 mm1
b = 10.1058 (4) ÅT = 150 K
c = 6.5773 (2) Å0.18 × 0.08 × 0.01 mm
β = 95.509 (3)°
Data collection top
Oxford Diffraction SuperNova
diffractometer
975 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
890 reflections with I > 2.0σ(I)
Tmin = 0.59, Tmax = 1.00Rint = 0.027
7624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
971 reflectionsΔρmin = 0.18 e Å3
64 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46630 (14)0.35777 (9)1.31198 (15)0.0246
C20.28469 (14)0.36191 (10)1.19978 (15)0.0251
C30.25474 (13)0.43124 (9)1.02089 (14)0.0226
C40.40796 (12)0.50104 (9)0.94482 (13)0.0202
C50.38406 (14)0.57492 (9)0.75848 (14)0.0219
O60.20285 (10)0.57222 (7)0.66380 (11)0.0274
C70.16539 (15)0.64994 (10)0.48270 (16)0.0296
H110.48370.30881.43500.0297*
H210.18190.31571.25190.0309*
H310.12960.43380.94790.0276*
H730.03250.63420.43240.0427*
H720.18490.74310.51700.0424*
H710.24760.62320.37930.0432*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0273 (5)0.0242 (5)0.0220 (4)0.0007 (4)0.0001 (4)0.0018 (3)
C20.0220 (5)0.0258 (5)0.0277 (5)0.0029 (4)0.0041 (4)0.0001 (4)
C30.0179 (5)0.0236 (5)0.0260 (5)0.0001 (3)0.0002 (3)0.0027 (3)
C40.0195 (5)0.0186 (4)0.0220 (4)0.0012 (3)0.0002 (4)0.0031 (3)
C50.0210 (5)0.0214 (5)0.0225 (5)0.0011 (3)0.0023 (4)0.0024 (3)
O60.0223 (4)0.0314 (4)0.0268 (4)0.0028 (3)0.0064 (3)0.0060 (3)
C70.0298 (5)0.0308 (5)0.0261 (5)0.0002 (4)0.0077 (4)0.0044 (4)
Geometric parameters (Å, º) top
C1—C5i1.3717 (14)C4—C4i1.4236 (17)
C1—C21.4143 (13)C4—C51.4312 (13)
C1—H110.946C5—O61.3653 (11)
C2—C31.3683 (14)O6—C71.4301 (11)
C2—H210.953C7—H730.975
C3—C41.4197 (13)C7—H720.974
C3—H310.962C7—H710.972
C5i—C1—C2119.63 (9)C3—C4—C5122.01 (9)
C5i—C1—H11120.5C4—C5—C1i121.13 (9)
C2—C1—H11119.9C4—C5—O6114.09 (8)
C1—C2—C3121.39 (9)C1i—C5—O6124.78 (9)
C1—C2—H21118.6C5—O6—C7117.29 (8)
C3—C2—H21120.0O6—C7—H73106.7
C2—C3—C4119.86 (9)O6—C7—H72109.1
C2—C3—H31120.1H73—C7—H72110.2
C4—C3—H31120.1O6—C7—H71110.8
C4i—C4—C3119.90 (10)H73—C7—H71109.5
C4i—C4—C5118.09 (11)H72—C7—H71110.5
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H73···O6ii0.982.703.495 (1)139
Symmetry code: (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H73···O6i0.9752.703.495 (1)139
Symmetry code: (i) x, y+1, z+1.
 

Footnotes

Visiting: Chemical Crystallography, Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England.

Acknowledgements

EMO would like to thank the University of Cape Coast for assistance with travel and the Department of Chemistry, University of Oxford, for support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H. & Kirby, A. J. (1984). J. Am. Chem. Soc. 106, 6197–6200.  CrossRef CAS Web of Science Google Scholar
First citationAmabilino, D. B. & Veciana, J. (2003). In Magnetism, Molecules to Materials II, edited by J. S. Miller & M. Drillon. New York: John Wiley & Sons, Inc.  Google Scholar
First citationAshton, P. R., Brown, C. L., Chrystal, E. J. T., Goodnow, T. T., Kaifer, A. E., Parry, K. P., Phili, D., Slawin, A. M. Z., Spencer, N., Stoddart, J. F. & Williams, D. J. (1991). J. Chem. Soc. Chem. Commun. pp. 634–639.  CrossRef Web of Science Google Scholar
First citationBeintema, J. (1965). Acta Cryst. 18, 647–654.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBelskii, V. K., Kharchenko, E. V., Sobolev, A. N., Zavodnik, V. E., Kolomiets, N. A., Prober, G. S. & Oleksenko, L. P. (1990). Zh. Strukt. Khim. 31, 116–121.  CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBolte, M. & Bauch, C. (1998). Acta Cryst. C54, 1862–1863.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCosmo, R., Hambley, T. W. & Sternhell, S. (1990). Acta Cryst. B46, 557–562.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCruickshank, D. W. J. (1957). Acta Cryst. 10, 504–508.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGaultier, J. & Hauw, C. (1967). Acta Cryst. 23, 1016–1024.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKato, S., Suzuki, D. & Yoshiko, Y. S. (2003). US Patent No. US 6,656,328 B2, 2nd December.  Google Scholar
First citationKim, Y. K., Jeonmin-dong, Y., Daejeon, L., Hyun, S., Eoeun-dong, Y., Daejeon, R., Mun, C., Jeonmin-dong, Y., Daejeon, C., Yong, S., Banseok-dong, Y., Daejeon, S., Gyu, Y. & Galma-dong, S. (2008). Patent Number WO 2008/18645 A1.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPawley, G. S. & Yeats, E. A. (1969). Acta Cryst. B25, 2009–2013.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRawson, J. M., Alberola, A. & Whalley, A. (2006). J. Mater. Chem. 16, 2560–2575.  Web of Science CrossRef CAS Google Scholar
First citationRozycka-Sokolowska, E. & Marciniak, B. (2009). Acta Cryst. C65, o565–o568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2004). Acta Cryst. E60, o884–o885.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2005). Acta Cryst. E61, o114–o115.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWiedenfeld, D., Xiao, W. & Gravelle, P. W. (1999). J. Chem. Crystallogr. 29, 955–959.  Web of Science CSD CrossRef CAS Google Scholar
First citationWilson, C. C. (1997). Chem Commun. pp. 1281–1282.  CSD CrossRef Web of Science Google Scholar
First citationWilson, C. C., Shankland, N. & Florence, A. J. (1996). Chem. Phys. Lett. 253, 103–107.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1655-o1656
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds