organic compounds
1,5-Dimethoxynaphthalene
aDepartment of Chemistry, University of Cape Coast, Cape Coast, Ghana, and bChemical Crystallography, Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: emmanuel_jp@yahoo.com
The title compound, C12H12O2, lies across an inversion centre. The molecular structure suggests that the methoxy groups in the 1- and 5-positions of the naphthalene moiety do not significantly distort the planar conformation of the ring system, which has a maximum deviation of 0.0025 (9) Å. In the crystal, molecules pack in a herringbone arrangement in layers parallel to (100) and with chains propagating along [101] formed by very weak C—H⋯O interactions.
CCDC reference: 963646
Related literature
For details of the uses of 1,5-dimethoxynaphthalene, see: Ashton et al. (1991); Amabilino & Veciana (2003); Kim et al. (2008); Kato et al. (2003); Rawson et al. (2006). For related compounds, see: Allen & Kirby (1984); Beintema (1965); Belskii et al. (1990); Bolte & Bauch (1998); Cosmo et al. (1990); Cruickshank (1957); Gaultier & Hauw (1967); Pawley & Yeats (1969); Rozycka-Sokolowska & Marciniak (2009); Rozycka-Sokolowska et al. (2004, 2005); Wiedenfeld et al. (1999); Wilson et al. (1996); Wilson (1997). For details of the low-temperature device used, see: Cosier & Glazer (1986). For details of the H-atom treatment, see: Cooper et al. (2010). For Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: SUPERNOVA (Oxford Diffraction, 2007); cell CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
CCDC reference: 963646
10.1107/S1600536813026731/lh5655sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813026731/lh5655Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813026731/lh5655Isup3.cml
The crystal of 1,5-dimethoxynaphthalene was obtained as a result of attemping to crystallize crystal complex of 1:1 mixture of rac-1,1'-bi-2-naphthol/1,5-dimethoxynaphalene from mixture of methanol and ethylacetate.
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).
Data collection: SUPERNOVA (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C12H12O2 | F(000) = 200 |
Mr = 188.23 | Dx = 1.342 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 3622 reflections |
a = 7.0412 (3) Å | θ = 4–77° |
b = 10.1058 (4) Å | µ = 0.73 mm−1 |
c = 6.5773 (2) Å | T = 150 K |
β = 95.509 (3)° | Plate, clear_pale_colourless |
V = 465.86 (3) Å3 | 0.18 × 0.08 × 0.01 mm |
Z = 2 |
Oxford Diffraction SuperNova diffractometer | 890 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 76.7°, θmin = 6.3° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | h = −8→7 |
Tmin = 0.59, Tmax = 1.00 | k = −12→12 |
7624 measured reflections | l = −8→8 |
975 independent reflections |
Refinement on F2 | Primary atom site location: other |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.093 | Method = Modified Sheldrick w = 1/[σ2(F2) + (0.06P)2 + 0.1P], where P = (max(Fo2,0) + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.0004116 |
971 reflections | Δρmax = 0.22 e Å−3 |
64 parameters | Δρmin = −0.18 e Å−3 |
0 restraints |
C12H12O2 | V = 465.86 (3) Å3 |
Mr = 188.23 | Z = 2 |
Monoclinic, P21/c | Cu Kα radiation |
a = 7.0412 (3) Å | µ = 0.73 mm−1 |
b = 10.1058 (4) Å | T = 150 K |
c = 6.5773 (2) Å | 0.18 × 0.08 × 0.01 mm |
β = 95.509 (3)° |
Oxford Diffraction SuperNova diffractometer | 975 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 890 reflections with I > 2.0σ(I) |
Tmin = 0.59, Tmax = 1.00 | Rint = 0.027 |
7624 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.22 e Å−3 |
971 reflections | Δρmin = −0.18 e Å−3 |
64 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.46630 (14) | 0.35777 (9) | 1.31198 (15) | 0.0246 | |
C2 | 0.28469 (14) | 0.36191 (10) | 1.19978 (15) | 0.0251 | |
C3 | 0.25474 (13) | 0.43124 (9) | 1.02089 (14) | 0.0226 | |
C4 | 0.40796 (12) | 0.50104 (9) | 0.94482 (13) | 0.0202 | |
C5 | 0.38406 (14) | 0.57492 (9) | 0.75848 (14) | 0.0219 | |
O6 | 0.20285 (10) | 0.57222 (7) | 0.66380 (11) | 0.0274 | |
C7 | 0.16539 (15) | 0.64994 (10) | 0.48270 (16) | 0.0296 | |
H11 | 0.4837 | 0.3088 | 1.4350 | 0.0297* | |
H21 | 0.1819 | 0.3157 | 1.2519 | 0.0309* | |
H31 | 0.1296 | 0.4338 | 0.9479 | 0.0276* | |
H73 | 0.0325 | 0.6342 | 0.4324 | 0.0427* | |
H72 | 0.1849 | 0.7431 | 0.5170 | 0.0424* | |
H71 | 0.2476 | 0.6232 | 0.3793 | 0.0432* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0273 (5) | 0.0242 (5) | 0.0220 (4) | −0.0007 (4) | 0.0001 (4) | 0.0018 (3) |
C2 | 0.0220 (5) | 0.0258 (5) | 0.0277 (5) | −0.0029 (4) | 0.0041 (4) | 0.0001 (4) |
C3 | 0.0179 (5) | 0.0236 (5) | 0.0260 (5) | −0.0001 (3) | −0.0002 (3) | −0.0027 (3) |
C4 | 0.0195 (5) | 0.0186 (4) | 0.0220 (4) | 0.0012 (3) | −0.0002 (4) | −0.0031 (3) |
C5 | 0.0210 (5) | 0.0214 (5) | 0.0225 (5) | 0.0011 (3) | −0.0023 (4) | −0.0024 (3) |
O6 | 0.0223 (4) | 0.0314 (4) | 0.0268 (4) | −0.0028 (3) | −0.0064 (3) | 0.0060 (3) |
C7 | 0.0298 (5) | 0.0308 (5) | 0.0261 (5) | −0.0002 (4) | −0.0077 (4) | 0.0044 (4) |
C1—C5i | 1.3717 (14) | C4—C4i | 1.4236 (17) |
C1—C2 | 1.4143 (13) | C4—C5 | 1.4312 (13) |
C1—H11 | 0.946 | C5—O6 | 1.3653 (11) |
C2—C3 | 1.3683 (14) | O6—C7 | 1.4301 (11) |
C2—H21 | 0.953 | C7—H73 | 0.975 |
C3—C4 | 1.4197 (13) | C7—H72 | 0.974 |
C3—H31 | 0.962 | C7—H71 | 0.972 |
C5i—C1—C2 | 119.63 (9) | C3—C4—C5 | 122.01 (9) |
C5i—C1—H11 | 120.5 | C4—C5—C1i | 121.13 (9) |
C2—C1—H11 | 119.9 | C4—C5—O6 | 114.09 (8) |
C1—C2—C3 | 121.39 (9) | C1i—C5—O6 | 124.78 (9) |
C1—C2—H21 | 118.6 | C5—O6—C7 | 117.29 (8) |
C3—C2—H21 | 120.0 | O6—C7—H73 | 106.7 |
C2—C3—C4 | 119.86 (9) | O6—C7—H72 | 109.1 |
C2—C3—H31 | 120.1 | H73—C7—H72 | 110.2 |
C4—C3—H31 | 120.1 | O6—C7—H71 | 110.8 |
C4i—C4—C3 | 119.90 (10) | H73—C7—H71 | 109.5 |
C4i—C4—C5 | 118.09 (11) | H72—C7—H71 | 110.5 |
Symmetry code: (i) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H73···O6ii | 0.98 | 2.70 | 3.495 (1) | 139 |
Symmetry code: (ii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H73···O6i | 0.975 | 2.70 | 3.495 (1) | 139 |
Symmetry code: (i) −x, −y+1, −z+1. |
Footnotes
‡Visiting: Chemical Crystallography, Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England.
Acknowledgements
EMO would like to thank the University of Cape Coast for assistance with travel and the Department of Chemistry, University of Oxford, for support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H. & Kirby, A. J. (1984). J. Am. Chem. Soc. 106, 6197–6200. CrossRef CAS Web of Science Google Scholar
Amabilino, D. B. & Veciana, J. (2003). In Magnetism, Molecules to Materials II, edited by J. S. Miller & M. Drillon. New York: John Wiley & Sons, Inc. Google Scholar
Ashton, P. R., Brown, C. L., Chrystal, E. J. T., Goodnow, T. T., Kaifer, A. E., Parry, K. P., Phili, D., Slawin, A. M. Z., Spencer, N., Stoddart, J. F. & Williams, D. J. (1991). J. Chem. Soc. Chem. Commun. pp. 634–639. CrossRef Web of Science Google Scholar
Beintema, J. (1965). Acta Cryst. 18, 647–654. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Belskii, V. K., Kharchenko, E. V., Sobolev, A. N., Zavodnik, V. E., Kolomiets, N. A., Prober, G. S. & Oleksenko, L. P. (1990). Zh. Strukt. Khim. 31, 116–121. CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bolte, M. & Bauch, C. (1998). Acta Cryst. C54, 1862–1863. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cosmo, R., Hambley, T. W. & Sternhell, S. (1990). Acta Cryst. B46, 557–562. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Cruickshank, D. W. J. (1957). Acta Cryst. 10, 504–508. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Gaultier, J. & Hauw, C. (1967). Acta Cryst. 23, 1016–1024. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Kato, S., Suzuki, D. & Yoshiko, Y. S. (2003). US Patent No. US 6,656,328 B2, 2nd December. Google Scholar
Kim, Y. K., Jeonmin-dong, Y., Daejeon, L., Hyun, S., Eoeun-dong, Y., Daejeon, R., Mun, C., Jeonmin-dong, Y., Daejeon, C., Yong, S., Banseok-dong, Y., Daejeon, S., Gyu, Y. & Galma-dong, S. (2008). Patent Number WO 2008/18645 A1. Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pawley, G. S. & Yeats, E. A. (1969). Acta Cryst. B25, 2009–2013. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Rawson, J. M., Alberola, A. & Whalley, A. (2006). J. Mater. Chem. 16, 2560–2575. Web of Science CrossRef CAS Google Scholar
Rozycka-Sokolowska, E. & Marciniak, B. (2009). Acta Cryst. C65, o565–o568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2004). Acta Cryst. E60, o884–o885. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2005). Acta Cryst. E61, o114–o115. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Wiedenfeld, D., Xiao, W. & Gravelle, P. W. (1999). J. Chem. Crystallogr. 29, 955–959. Web of Science CSD CrossRef CAS Google Scholar
Wilson, C. C. (1997). Chem Commun. pp. 1281–1282. CSD CrossRef Web of Science Google Scholar
Wilson, C. C., Shankland, N. & Florence, A. J. (1996). Chem. Phys. Lett. 253, 103–107. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,5-Dimethoxynaphthalene has numerous industrial applications and uses. It is employed in the synthesis of pesticides (Kim et al., 2008) for the agriculture industry, involved in the preparation of polyhydric alcohols (Kato et al., 2003), as well as a component in molecular magnetic devices (Ashton et al., 1991) for the electronics industry. It is also involved in the synthesis of more complex paramagnetic supramolecular architectures including rotaxanes and catenanes (Amabilino & Veciana, 2003, Rawson et al., 2006). Despite this, reports discussing single-crystal studies of naphthalene (Pawley et al., 1969; Wilson et al., 1996; Wilson et al., 1997) and its analogues including naphthol (Rozycka-Sokolowska, et al., 2004; Rozycka-Sokolowska et al., 2009; CSD (Allen, 2002) refcode NAPHOLO1), 1,4- and 1,5-dihydroxynaphthalene (Gaultier, et al., 1967; CSD refcode NPHHQU10), Belskii et al., 1990; CSD refcode VOGRUE) and 1,4-dimethoxynaphthalene (Wiedenfeld, et al., 1999; CSD refcode ALUJIA; Cosmo et al., 1990; CSD refcode MATFES) confirm that the crystal structure of 1,5-dimethoxynaphthalene (I) is not known.
The colorless single-crystal of 1,5-dimethoxynaphthalene was crystallized while attemping to crystallize the rac-1,1'-bi-2-naphthol/1,5-dimethoxynaphalene complex from a blend of methanol/ethylacetate solvents. It crystallizes in the monoclinic space group P21/c with the molecule located on an inversion centre. The refined molecule and the labeling scheme are given in Fig. 1. It exhibits a herringbone packing motif and the molecules are arranged in layers parallel to the lattice plane (100) as shown in Fig. 2. All bond distances and angles fall within expected ranges.
In 1,5-dimethylnaphthalene (Gaultier, et al., 1967; Belskii et al., 1990; Beintema, 1965) as well as those in 1,4-dimethoxynaphthalene (Wiedenfeld, et al., 1999), 1,8-dimethoxynaphthalene (Cosmo et al., 1990), the steric interactions of the methyl groups cause a deviation from planarity in the naphthalene moiety. However, the ten-membered aromatic ring formed by atoms C1–C10 in (I) is planar; the steric interactions of the methoxy and H atoms do not cause any significant deviation from planarity. The exterior C4—C5—C4' angle (122.13 (9)°; symmetry operator indicated by a prime is -x + 1, -y + 1, -z + 2) in the naphathalene moiety shows no evidence of distortion in the naphthalene core associated with 1,5-disubstitutions. This suggests that the methoxy group seems to be restrained in the packing structure as a result of steric interaction between methoxy group and hydrogen atoms that reduce the propensity of the methoxy group to freely rotate in the crystal structure.
The methoxy substituents point away from the centre of the naphthalene moiety and each one forms a weak hydrogen bonded dimer with the neighbouring molecule. Since the molecule sits on an inversion centre, this leads to the formation of chains in the [101] direction (Fig. 3) via the weak intermolecular C—H···O hydrogen bonds involving the methoxy groups (with a C···O distance of 3.495 (1) Å).
In conclusion, the structure suggests that the methoxy groups in 1 and 5 positions around the naphthalene moiety do not significantly distort the planar conformation of the naphthalene, and the size of the groups and their positions are not influenced by steric interactions with the naphthalene moiety.