organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1639-o1640

(Di­methyl­phosphor­yl)methanaminium nitrate

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de

(Received 22 September 2013; accepted 9 October 2013; online 16 October 2013)

In the crystal of the title salt, C3H11NOP+·NO3, dicationic inversion dimers are head-to-tail connected by a pair of strong N—H⋯O hydrogen bonds. The resulting graph-set descriptor of this ring system is R22(10). The nitrate counter-anions connect the dicationic dimers via N—H⋯O hydrogen bonds, forming two-dimensional networks in the bc plane.

Related literature

For transition metal complexes of the (dimethylphos­phor­yl)methanamine (dpma) ligand, see: Dodoff et al. (1990[Dodoff, N., Macicek, J., Angelova, O., Varbanov, S. G. & Spassovska, N. (1990). J. Coord. Chem. 22, 219-228.]); Borisov et al. (1994[Borisov, G., Varbanov, S. G., Venanzi, L. M., Albinati, A. & Demartin, F. (1994). Inorg. Chem. 33, 5430-5437.]); Trendafilova et al. (1997[Trendafilova, N., Georgieva, I., Bauer, G., Varbanov, S. G. & Dodoff, N. (1997). Spectrochim. Acta Part A, 53, 819-828.]); Kochel (2009[Kochel, A. (2009). Inorg. Chim. Acta, 362, 1379-1382.]). For transition metal complexes of the protonated dpmaH+ ligand, see: Reiss (2013a[Reiss, G. J. (2013a). Acta Cryst. E69, m248-m249.],b[Reiss, G. J. (2013b). Acta Cryst. E69, m250-m251.]). For simple dpmaH+ salts, see: Reiss & Jörgens (2012[Reiss, G. J. & Jörgens, S. (2012). Acta Cryst. E68, o2899-o2900.]); Lambertz et al. (2013[Lambertz, C., Luppa, A. & Reiss, G. J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 227-228.]); Buhl et al. (2013[Buhl, D., Gün, H., Jablonka, A. & Reiss, G. J. (2013). Crystals, 3, 350-362.]); Reiss (2013c[Reiss, G. J. (2013c). Acta Cryst. E69, o1253-o1254.],d[Reiss, G. J. (2013d). Z. Kristallogr. New Cryst. Struct. 228, 431-433.]). For a definition of the term tecton, see: Brunet et al. (1997[Brunet, P., Simard, M. & Wuest, J. D. (1997). J. Am. Chem. Soc. 119, 2737-2738.]). For a definition of the term anti­type, see: Lima-de-Faria et al. (1990[Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1-11.]). For graph-set theory, see: Etter et al.(1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Grell et al. (2002[Grell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56.]). For structures showing an analogous topology, see: Holl & Thewalt (1986[Holl, K. & Thewalt, U. (1986). Z. Naturforsch. Teil B, 41, 581-586.]); Reiss (2002[Reiß, G. J. (2002). Acta Cryst. E58, m47-m50.]); Reiss & Helmbrecht (2012[Reiss, G. J. & Helmbrecht, C. (2012). Acta Cryst. E68, m1402-m1403.]).

[Scheme 1]

Experimental

Crystal data
  • C3H11NOP+·NO3

  • Mr = 170.11

  • Monoclinic, P 21 /c

  • a = 8.7718 (3) Å

  • b = 7.9892 (3) Å

  • c = 11.2921 (6) Å

  • β = 96.581 (4)°

  • V = 786.14 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 290 K

  • 0.63 × 0.38 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.809, Tmax = 1.000

  • 82785 measured reflections

  • 3770 independent reflections

  • 3313 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.065

  • S = 1.01

  • 3770 reflections

  • 106 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O2 0.894 (14) 1.966 (15) 2.8555 (11) 173.1 (12)
N1—H12⋯O3i 0.902 (14) 1.979 (14) 2.8784 (12) 174.5 (13)
N1—H13⋯O1ii 0.874 (14) 1.888 (14) 2.7493 (10) 168.2 (13)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013; molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There are several reports which prove the ability of the bidentate dpma ligand (dpma = (dimethylphosphoryl)methanamine) to coordinate a variety of transition metals (Dodoff et al., 1990; Borisov et al., 1994; Trendafilova et al., 1997; Kochel, 2009). Additionally, two metal complexes containing the dpmaH+ cation have been structurally characterized so far (Reiss, 2013a,b). For simple dpmaH+ salt structures it has been shown that this tecton (Brunet et al., 1997) can be used to construct hydrogen bonded one-dimensional polymers (Reiss & Jörgens, 2012; Lambertz et al., 2013; Buhl et al., 2013; Reiss, 2013c). Only for the double salt (H3O)dpmaHBr the ions are connected by hydrogen bonds, forming a two-dimensional network (Reiss, 2013d)

The title compound dpmaHNO3 crystallizes in the monoclinic space group, P21/c, with one dpmaH+ cation and one nitrate anion in the asymmetric unit. The angles and bond lengths of both ions are all in the typical ranges. The dpmaH+ cation features the hydrogen bond donor group NH3+ at the one end and the hydrogen bond accepting group –P=O at the other end. Therefore, this tecton in principle is capable to form connections among other dpmaH+ cations and to counter anions. In the title structure two dpmaH+ cations are connected by two strong, charge supported –NH+···O=P– hydrogen bonds (N···O = 2.7493 (10) Å) head to tail forming cyclic dimers (Fig. 1; first level graph-set descriptor: R22(10); Etter et al.,1990; Grell et al., 2002). Moreover, each dimer is associated by charge supported, strong –NH+···O N– hydrogen bonds (N···O = 2.8555 (11) Å, 2.8784 (12) Å) to four adjacent nitrate counter anions (Fig. 2). Consequently, each nitrate anion forms two hydrogen bonds to two adjacent dicationic dimers constructing a two-dimensional network in the bc plane. The dimers act as a tetradentate hydrogen bond donor. The nitrate anions act as bidentate hydrogen bond acceptors by two of their oxygen atoms.

In three related structures built up by the complex anions [SnCl6]2- and [IrCl6]2- these anions are tetradentate hydrogen bond acceptors whereas the simple diisopropylammonium (Reiss, 2002; Reiss & Helmbrecht, 2012) and the aminothiodithiazyl ((S3N2)NH2)+ (Holl & Thewalt, 1986) counter cations are bidentate hydrogen bond donors. The title structure can be understood as the antitype (Lima-de-Faria et al. 1990) of these hexahalogenometallate salts.

Related literature top

For transition metal complexes of the dpma ligand, see: Dodoff et al. (1990); Borisov et al. (1994); Trendafilova et al. (1997); Kochel (2009). For transition metal complexes of the protonated dpmaH+ ligand, see: Reiss (2013a,b). For simple dpmaH+ salts, see: Reiss & Jörgens (2012); Lambertz et al. (2013); Buhl et al. (2013); Reiss (2013c,d). For a definition of the term tecton, see: Brunet et al. (1997). For a definition of the term antitype, see: Lima-de-Faria et al. (1990). For graph-set theory, see: Etter et al.(1990); Grell et al. (2002). For structures showing an analogous topology, see: Holl & Thewalt (1986); Reiss (2002); Reiss & Helmbrecht (2012).

Experimental top

The title compound was synthesized by dissolving 1.07 g (10.0 mmol) (dimethylphosphoryl)methanamine in dilute nitric acid (2 ml, 12%) while the mixture was heated. After a few days colourless platelets were obtained by slow evaporation of the solvent at room temperature.

Refinement top

All H-atoms were identified in difference syntheses. Hydrogen atoms at both methyl groups and at the CH2 group were idealized and refined using a riding model (AFIX 137 (methyl) and AFIX 23(CH2) option of the SHELXL-2013 program [Sheldrick, 2008; Uiso = 1.5Ueq(Cmethyl) and 1.2Ueq(Cmethylene)]. The coordinates of the hydrogen atoms at the aminium group were refined freely with individual Uiso values.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title structure together with a symmetry related cation and their hydrogen bonds (dashed lines) to adjacent ions. Displacement ellipsoids are drawn at the 45% probability level (' = –x, 1 – y, –z). The green numbers mark the ring size of the first level R22(10) graph-set descriptor for the cyclic dimer consisting of two dpmaH+ cations.)
[Figure 2] Fig. 2. View along [100] on the two-dimensional network of the title structure. Hydrogen bonds are shown as dashed lines.
(Dimethylphosphoryl)methanaminium nitrate top
Crystal data top
C3H11NOP+·NO3F(000) = 360
Mr = 170.11Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.7718 (3) ÅCell parameters from 40230 reflections
b = 7.9892 (3) Åθ = 3.8–36.3°
c = 11.2921 (6) ŵ = 0.32 mm1
β = 96.581 (4)°T = 290 K
V = 786.14 (6) Å3Block, colourless
Z = 40.63 × 0.38 × 0.19 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3770 independent reflections
Radiation source: fine-focus sealed tube3313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.2711 pixels mm-1θmax = 36.4°, θmin = 3.8°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.809, Tmax = 1.000l = 1818
82785 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.011P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3770 reflectionsΔρmax = 0.40 e Å3
106 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0296 (13)
Crystal data top
C3H11NOP+·NO3V = 786.14 (6) Å3
Mr = 170.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7718 (3) ŵ = 0.32 mm1
b = 7.9892 (3) ÅT = 290 K
c = 11.2921 (6) Å0.63 × 0.38 × 0.19 mm
β = 96.581 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3770 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3313 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 1.000Rint = 0.032
82785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.40 e Å3
3770 reflectionsΔρmin = 0.34 e Å3
106 parameters
Special details top

Experimental. The Raman spectrum was measured using a Bruker MULTIRAM spectrometer (Nd:YAG-Laser at 1064 nm; RT-InGaAs-detector; backscattering geometry); 4000–70 cm-1: 3112 (w), 2994 (s), 2952 (m), 2916 (s), 2854 (w), 2834 (w), 2804 (w), 2654 (w), 2625 (w), 2588 (w), 1645 (w), 1615 (w), 1549 (w), 1430 (w), 1407 (w), 1373 (w), 1309 (w), 1155 (m), 1126 (w), 1092 (w), 1046 (s), 1029 (w), 947 (w), 918 (w), 895 (w), 858 (w), 787 (w), 759 (w), 726 (m), 662 (s), 456 (w), 369 (w), 314 (m), 295 (w), 268 (w), 238 (w), 137 (w), 121 (m), 95 (s), 73 (s). – IR spectroscopic data were recorded on a Digilab FT3400 spectrometer using a MIRacle ATR unit (Pike Technologies); 4000–560 cm-1: 3439 (w), 2993 (s), 2946 (s), 2915 (s), 2885 (s), 2830 (s), 2749 (m), 2722 (m), 2651 (m), 2625 (m), 2403 (w), 2066 (w), 1757 (w), 1638 (m), 1551 (m), 1432 (m), 1420 (m), 1405 (m), 1346 (s), 1330 (s), 1306 (s), 1297 (s), 1157 (s), 1119 (m), 1088 (s), 1045 (w), 1029 (w), 944 (s), 914 (m), 889 (s), 855 (m), 826 (m), 784 (m), 756 (m), 723 (w), 714 (w), 657 (w).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.16112 (2)0.75856 (3)0.06006 (2)0.02633 (6)
O10.04435 (8)0.70859 (9)0.04036 (6)0.03792 (15)
N10.24474 (9)0.42711 (10)0.08323 (7)0.03066 (14)
H110.2939 (15)0.3482 (18)0.1290 (12)0.050 (4)*
H120.2989 (15)0.4449 (17)0.0211 (13)0.051 (4)*
H130.1553 (16)0.3832 (18)0.0591 (12)0.052 (4)*
C10.09272 (13)0.90021 (14)0.16403 (10)0.0431 (2)
H1A0.07741.00850.12780.065*
H1B0.16670.90850.23330.065*
H1C0.00270.85980.18690.065*
C20.32841 (11)0.84891 (13)0.00985 (10)0.0400 (2)
H2A0.37580.76890.03770.060*
H2B0.39940.87990.07740.060*
H2C0.30000.94650.03710.060*
C30.22309 (10)0.57989 (11)0.15315 (7)0.02919 (15)
H3A0.31900.60730.20070.035*
H3B0.14730.55780.20730.035*
O20.41973 (10)0.17393 (12)0.21553 (7)0.0511 (2)
O30.41189 (9)0.03797 (10)0.37965 (7)0.04730 (19)
O40.26575 (11)0.25210 (12)0.33988 (9)0.0596 (2)
N20.36518 (9)0.15533 (10)0.31187 (7)0.03293 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02420 (9)0.02590 (9)0.02829 (10)0.00258 (7)0.00046 (7)0.00021 (7)
O10.0351 (3)0.0393 (3)0.0364 (3)0.0046 (3)0.0083 (3)0.0003 (3)
N10.0296 (3)0.0285 (3)0.0324 (3)0.0006 (3)0.0028 (3)0.0034 (3)
C10.0432 (5)0.0381 (5)0.0488 (5)0.0000 (4)0.0091 (4)0.0112 (4)
C20.0363 (4)0.0384 (5)0.0463 (5)0.0080 (4)0.0093 (4)0.0071 (4)
C30.0303 (4)0.0314 (4)0.0255 (3)0.0033 (3)0.0015 (3)0.0026 (3)
O20.0497 (4)0.0641 (5)0.0410 (4)0.0132 (4)0.0115 (3)0.0187 (4)
O30.0484 (4)0.0474 (4)0.0467 (4)0.0145 (3)0.0078 (3)0.0202 (3)
O40.0608 (5)0.0584 (5)0.0621 (5)0.0296 (4)0.0177 (4)0.0120 (4)
N20.0290 (3)0.0338 (4)0.0346 (3)0.0006 (3)0.0021 (3)0.0046 (3)
Geometric parameters (Å, º) top
P1—O11.4927 (7)C1—H1C0.9600
P1—C11.7834 (10)C2—H2A0.9600
P1—C21.7851 (9)C2—H2B0.9600
P1—C31.8186 (9)C2—H2C0.9600
N1—C31.4777 (12)C3—H3A0.9700
N1—H110.894 (14)C3—H3B0.9700
N1—H120.902 (14)O2—N21.2465 (11)
N1—H130.874 (14)O3—N21.2494 (10)
C1—H1A0.9600O4—N21.2336 (11)
C1—H1B0.9600
O1—P1—C1114.62 (5)H1B—C1—H1C109.5
O1—P1—C2112.60 (5)P1—C2—H2A109.5
C1—P1—C2107.66 (5)P1—C2—H2B109.5
O1—P1—C3111.27 (4)H2A—C2—H2B109.5
C1—P1—C3102.61 (5)P1—C2—H2C109.5
C2—P1—C3107.38 (5)H2A—C2—H2C109.5
C3—N1—H11110.9 (9)H2B—C2—H2C109.5
C3—N1—H12113.4 (9)N1—C3—P1112.81 (6)
H11—N1—H12107.4 (12)N1—C3—H3A109.0
C3—N1—H13109.4 (9)P1—C3—H3A109.0
H11—N1—H13104.7 (12)N1—C3—H3B109.0
H12—N1—H13110.7 (12)P1—C3—H3B109.0
P1—C1—H1A109.5H3A—C3—H3B107.8
P1—C1—H1B109.5O4—N2—O2120.16 (8)
H1A—C1—H1B109.5O4—N2—O3120.34 (9)
P1—C1—H1C109.5O2—N2—O3119.50 (8)
H1A—C1—H1C109.5
O1—P1—C3—N140.98 (7)C2—P1—C3—N182.67 (7)
C1—P1—C3—N1164.01 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O20.894 (14)1.966 (15)2.8555 (11)173.1 (12)
N1—H12···O3i0.902 (14)1.979 (14)2.8784 (12)174.5 (13)
N1—H13···O1ii0.874 (14)1.888 (14)2.7493 (10)168.2 (13)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O20.894 (14)1.966 (15)2.8555 (11)173.1 (12)
N1—H12···O3i0.902 (14)1.979 (14)2.8784 (12)174.5 (13)
N1—H13···O1ii0.874 (14)1.888 (14)2.7493 (10)168.2 (13)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z.
 

Acknowledgements

We thank E. Hammes for technical support. Furthermore, the funding by the 'Lehrförderfond' of the Heinrich-Heine-Universität Düsseldorf is gratefully acknowledged.

References

First citationBorisov, G., Varbanov, S. G., Venanzi, L. M., Albinati, A. & Demartin, F. (1994). Inorg. Chem. 33, 5430–5437.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrunet, P., Simard, M. & Wuest, J. D. (1997). J. Am. Chem. Soc. 119, 2737–2738.  CSD CrossRef CAS Web of Science Google Scholar
First citationBuhl, D., Gün, H., Jablonka, A. & Reiss, G. J. (2013). Crystals, 3, 350–362.  CSD CrossRef CAS Google Scholar
First citationDodoff, N., Macicek, J., Angelova, O., Varbanov, S. G. & Spassovska, N. (1990). J. Coord. Chem. 22, 219–228.  CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1–56.  CrossRef CAS Google Scholar
First citationHoll, K. & Thewalt, U. (1986). Z. Naturforsch. Teil B, 41, 581–586.  Google Scholar
First citationKochel, A. (2009). Inorg. Chim. Acta, 362, 1379–1382.  Web of Science CSD CrossRef CAS Google Scholar
First citationLambertz, C., Luppa, A. & Reiss, G. J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 227–228.  CAS Google Scholar
First citationLima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1–11.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationReiß, G. J. (2002). Acta Cryst. E58, m47–m50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReiss, G. J. (2013a). Acta Cryst. E69, m248–m249.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. (2013b). Acta Cryst. E69, m250–m251.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. (2013c). Acta Cryst. E69, o1253–o1254.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. (2013d). Z. Kristallogr. New Cryst. Struct. 228, 431–433.  CAS Google Scholar
First citationReiss, G. J. & Helmbrecht, C. (2012). Acta Cryst. E68, m1402–m1403.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. & Jörgens, S. (2012). Acta Cryst. E68, o2899–o2900.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrendafilova, N., Georgieva, I., Bauer, G., Varbanov, S. G. & Dodoff, N. (1997). Spectrochim. Acta Part A, 53, 819–828.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1639-o1640
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds