organic compounds
(Dimethylphosphoryl)methanaminium nitrate
aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de
In the crystal of the title salt, C3H11NOP+·NO3−, dicationic inversion dimers are head-to-tail connected by a pair of strong N—H⋯O hydrogen bonds. The resulting graph-set descriptor of this ring system is R22(10). The nitrate counter-anions connect the dicationic dimers via N—H⋯O hydrogen bonds, forming two-dimensional networks in the bc plane.
CCDC reference: 965649
Related literature
For transition metal complexes of the (dimethylphosphoryl)methanamine (dpma) ligand, see: Dodoff et al. (1990); Borisov et al. (1994); Trendafilova et al. (1997); Kochel (2009). For transition metal complexes of the protonated dpmaH+ ligand, see: Reiss (2013a,b). For simple dpmaH+ salts, see: Reiss & Jörgens (2012); Lambertz et al. (2013); Buhl et al. (2013); Reiss (2013c,d). For a definition of the term tecton, see: Brunet et al. (1997). For a definition of the term antitype, see: Lima-de-Faria et al. (1990). For graph-set theory, see: Etter et al.(1990); Grell et al. (2002). For structures showing an analogous topology, see: Holl & Thewalt (1986); Reiss (2002); Reiss & Helmbrecht (2012).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013; molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 965649
10.1107/S1600536813027694/lh5656sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027694/lh5656Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813027694/lh5656Isup3.cml
The title compound was synthesized by dissolving 1.07 g (10.0 mmol) (dimethylphosphoryl)methanamine in dilute nitric acid (2 ml, 12%) while the mixture was heated. After a few days colourless platelets were obtained by slow evaporation of the solvent at room temperature.
All H-atoms were identified in difference syntheses. Hydrogen atoms at both methyl groups and at the CH2 group were idealized and refined using a riding model (AFIX 137 (methyl) and AFIX 23(CH2) option of the SHELXL-2013 program [Sheldrick, 2008; Uiso = 1.5Ueq(Cmethyl) and 1.2Ueq(Cmethylene)]. The coordinates of the hydrogen atoms at the aminium group were refined freely with individual Uiso values.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. A view of the asymmetric unit of the title structure together with a symmetry related cation and their hydrogen bonds (dashed lines) to adjacent ions. Displacement ellipsoids are drawn at the 45% probability level (' = –x, 1 – y, –z). The green numbers mark the ring size of the first level R22(10) graph-set descriptor for the cyclic dimer consisting of two dpmaH+ cations.) | |
Fig. 2. View along [100] on the two-dimensional network of the title structure. Hydrogen bonds are shown as dashed lines. |
C3H11NOP+·NO3− | F(000) = 360 |
Mr = 170.11 | Dx = 1.437 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7718 (3) Å | Cell parameters from 40230 reflections |
b = 7.9892 (3) Å | θ = 3.8–36.3° |
c = 11.2921 (6) Å | µ = 0.32 mm−1 |
β = 96.581 (4)° | T = 290 K |
V = 786.14 (6) Å3 | Block, colourless |
Z = 4 | 0.63 × 0.38 × 0.19 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 3770 independent reflections |
Radiation source: fine-focus sealed tube | 3313 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 16.2711 pixels mm-1 | θmax = 36.4°, θmin = 3.8° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −13→13 |
Tmin = 0.809, Tmax = 1.000 | l = −18→18 |
82785 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.011P)2 + 0.3P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
3770 reflections | Δρmax = 0.40 e Å−3 |
106 parameters | Δρmin = −0.34 e Å−3 |
0 restraints | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0296 (13) |
C3H11NOP+·NO3− | V = 786.14 (6) Å3 |
Mr = 170.11 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.7718 (3) Å | µ = 0.32 mm−1 |
b = 7.9892 (3) Å | T = 290 K |
c = 11.2921 (6) Å | 0.63 × 0.38 × 0.19 mm |
β = 96.581 (4)° |
Oxford Diffraction Xcalibur Eos diffractometer | 3770 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 3313 reflections with I > 2σ(I) |
Tmin = 0.809, Tmax = 1.000 | Rint = 0.032 |
82785 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.40 e Å−3 |
3770 reflections | Δρmin = −0.34 e Å−3 |
106 parameters |
Experimental. The Raman spectrum was measured using a Bruker MULTIRAM spectrometer (Nd:YAG-Laser at 1064 nm; RT-InGaAs-detector; backscattering geometry); 4000–70 cm-1: 3112 (w), 2994 (s), 2952 (m), 2916 (s), 2854 (w), 2834 (w), 2804 (w), 2654 (w), 2625 (w), 2588 (w), 1645 (w), 1615 (w), 1549 (w), 1430 (w), 1407 (w), 1373 (w), 1309 (w), 1155 (m), 1126 (w), 1092 (w), 1046 (s), 1029 (w), 947 (w), 918 (w), 895 (w), 858 (w), 787 (w), 759 (w), 726 (m), 662 (s), 456 (w), 369 (w), 314 (m), 295 (w), 268 (w), 238 (w), 137 (w), 121 (m), 95 (s), 73 (s). – IR spectroscopic data were recorded on a Digilab FT3400 spectrometer using a MIRacle ATR unit (Pike Technologies); 4000–560 cm-1: 3439 (w), 2993 (s), 2946 (s), 2915 (s), 2885 (s), 2830 (s), 2749 (m), 2722 (m), 2651 (m), 2625 (m), 2403 (w), 2066 (w), 1757 (w), 1638 (m), 1551 (m), 1432 (m), 1420 (m), 1405 (m), 1346 (s), 1330 (s), 1306 (s), 1297 (s), 1157 (s), 1119 (m), 1088 (s), 1045 (w), 1029 (w), 944 (s), 914 (m), 889 (s), 855 (m), 826 (m), 784 (m), 756 (m), 723 (w), 714 (w), 657 (w). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.16112 (2) | 0.75856 (3) | 0.06006 (2) | 0.02633 (6) | |
O1 | 0.04435 (8) | 0.70859 (9) | −0.04036 (6) | 0.03792 (15) | |
N1 | 0.24474 (9) | 0.42711 (10) | 0.08323 (7) | 0.03066 (14) | |
H11 | 0.2939 (15) | 0.3482 (18) | 0.1290 (12) | 0.050 (4)* | |
H12 | 0.2989 (15) | 0.4449 (17) | 0.0211 (13) | 0.051 (4)* | |
H13 | 0.1553 (16) | 0.3832 (18) | 0.0591 (12) | 0.052 (4)* | |
C1 | 0.09272 (13) | 0.90021 (14) | 0.16403 (10) | 0.0431 (2) | |
H1A | 0.0774 | 1.0085 | 0.1278 | 0.065* | |
H1B | 0.1667 | 0.9085 | 0.2333 | 0.065* | |
H1C | −0.0027 | 0.8598 | 0.1869 | 0.065* | |
C2 | 0.32841 (11) | 0.84891 (13) | 0.00985 (10) | 0.0400 (2) | |
H2A | 0.3758 | 0.7689 | −0.0377 | 0.060* | |
H2B | 0.3994 | 0.8799 | 0.0774 | 0.060* | |
H2C | 0.3000 | 0.9465 | −0.0371 | 0.060* | |
C3 | 0.22309 (10) | 0.57989 (11) | 0.15315 (7) | 0.02919 (15) | |
H3A | 0.3190 | 0.6073 | 0.2007 | 0.035* | |
H3B | 0.1473 | 0.5578 | 0.2073 | 0.035* | |
O2 | 0.41973 (10) | 0.17393 (12) | 0.21553 (7) | 0.0511 (2) | |
O3 | 0.41189 (9) | 0.03797 (10) | 0.37965 (7) | 0.04730 (19) | |
O4 | 0.26575 (11) | 0.25210 (12) | 0.33988 (9) | 0.0596 (2) | |
N2 | 0.36518 (9) | 0.15533 (10) | 0.31187 (7) | 0.03293 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.02420 (9) | 0.02590 (9) | 0.02829 (10) | −0.00258 (7) | 0.00046 (7) | 0.00021 (7) |
O1 | 0.0351 (3) | 0.0393 (3) | 0.0364 (3) | −0.0046 (3) | −0.0083 (3) | −0.0003 (3) |
N1 | 0.0296 (3) | 0.0285 (3) | 0.0324 (3) | 0.0006 (3) | −0.0028 (3) | 0.0034 (3) |
C1 | 0.0432 (5) | 0.0381 (5) | 0.0488 (5) | 0.0000 (4) | 0.0091 (4) | −0.0112 (4) |
C2 | 0.0363 (4) | 0.0384 (5) | 0.0463 (5) | −0.0080 (4) | 0.0093 (4) | 0.0071 (4) |
C3 | 0.0303 (4) | 0.0314 (4) | 0.0255 (3) | −0.0033 (3) | 0.0015 (3) | 0.0026 (3) |
O2 | 0.0497 (4) | 0.0641 (5) | 0.0410 (4) | 0.0132 (4) | 0.0115 (3) | 0.0187 (4) |
O3 | 0.0484 (4) | 0.0474 (4) | 0.0467 (4) | 0.0145 (3) | 0.0078 (3) | 0.0202 (3) |
O4 | 0.0608 (5) | 0.0584 (5) | 0.0621 (5) | 0.0296 (4) | 0.0177 (4) | 0.0120 (4) |
N2 | 0.0290 (3) | 0.0338 (4) | 0.0346 (3) | 0.0006 (3) | −0.0021 (3) | 0.0046 (3) |
P1—O1 | 1.4927 (7) | C1—H1C | 0.9600 |
P1—C1 | 1.7834 (10) | C2—H2A | 0.9600 |
P1—C2 | 1.7851 (9) | C2—H2B | 0.9600 |
P1—C3 | 1.8186 (9) | C2—H2C | 0.9600 |
N1—C3 | 1.4777 (12) | C3—H3A | 0.9700 |
N1—H11 | 0.894 (14) | C3—H3B | 0.9700 |
N1—H12 | 0.902 (14) | O2—N2 | 1.2465 (11) |
N1—H13 | 0.874 (14) | O3—N2 | 1.2494 (10) |
C1—H1A | 0.9600 | O4—N2 | 1.2336 (11) |
C1—H1B | 0.9600 | ||
O1—P1—C1 | 114.62 (5) | H1B—C1—H1C | 109.5 |
O1—P1—C2 | 112.60 (5) | P1—C2—H2A | 109.5 |
C1—P1—C2 | 107.66 (5) | P1—C2—H2B | 109.5 |
O1—P1—C3 | 111.27 (4) | H2A—C2—H2B | 109.5 |
C1—P1—C3 | 102.61 (5) | P1—C2—H2C | 109.5 |
C2—P1—C3 | 107.38 (5) | H2A—C2—H2C | 109.5 |
C3—N1—H11 | 110.9 (9) | H2B—C2—H2C | 109.5 |
C3—N1—H12 | 113.4 (9) | N1—C3—P1 | 112.81 (6) |
H11—N1—H12 | 107.4 (12) | N1—C3—H3A | 109.0 |
C3—N1—H13 | 109.4 (9) | P1—C3—H3A | 109.0 |
H11—N1—H13 | 104.7 (12) | N1—C3—H3B | 109.0 |
H12—N1—H13 | 110.7 (12) | P1—C3—H3B | 109.0 |
P1—C1—H1A | 109.5 | H3A—C3—H3B | 107.8 |
P1—C1—H1B | 109.5 | O4—N2—O2 | 120.16 (8) |
H1A—C1—H1B | 109.5 | O4—N2—O3 | 120.34 (9) |
P1—C1—H1C | 109.5 | O2—N2—O3 | 119.50 (8) |
H1A—C1—H1C | 109.5 | ||
O1—P1—C3—N1 | 40.98 (7) | C2—P1—C3—N1 | −82.67 (7) |
C1—P1—C3—N1 | 164.01 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O2 | 0.894 (14) | 1.966 (15) | 2.8555 (11) | 173.1 (12) |
N1—H12···O3i | 0.902 (14) | 1.979 (14) | 2.8784 (12) | 174.5 (13) |
N1—H13···O1ii | 0.874 (14) | 1.888 (14) | 2.7493 (10) | 168.2 (13) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O2 | 0.894 (14) | 1.966 (15) | 2.8555 (11) | 173.1 (12) |
N1—H12···O3i | 0.902 (14) | 1.979 (14) | 2.8784 (12) | 174.5 (13) |
N1—H13···O1ii | 0.874 (14) | 1.888 (14) | 2.7493 (10) | 168.2 (13) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y+1, −z. |
Acknowledgements
We thank E. Hammes for technical support. Furthermore, the funding by the 'Lehrförderfond' of the Heinrich-Heine-Universität Düsseldorf is gratefully acknowledged.
References
Borisov, G., Varbanov, S. G., Venanzi, L. M., Albinati, A. & Demartin, F. (1994). Inorg. Chem. 33, 5430–5437. CSD CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brunet, P., Simard, M. & Wuest, J. D. (1997). J. Am. Chem. Soc. 119, 2737–2738. CSD CrossRef CAS Web of Science Google Scholar
Buhl, D., Gün, H., Jablonka, A. & Reiss, G. J. (2013). Crystals, 3, 350–362. CSD CrossRef CAS Google Scholar
Dodoff, N., Macicek, J., Angelova, O., Varbanov, S. G. & Spassovska, N. (1990). J. Coord. Chem. 22, 219–228. CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Grell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1–56. CrossRef CAS Google Scholar
Holl, K. & Thewalt, U. (1986). Z. Naturforsch. Teil B, 41, 581–586. Google Scholar
Kochel, A. (2009). Inorg. Chim. Acta, 362, 1379–1382. Web of Science CSD CrossRef CAS Google Scholar
Lambertz, C., Luppa, A. & Reiss, G. J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 227–228. CAS Google Scholar
Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1–11. CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Reiß, G. J. (2002). Acta Cryst. E58, m47–m50. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reiss, G. J. (2013a). Acta Cryst. E69, m248–m249. CSD CrossRef CAS IUCr Journals Google Scholar
Reiss, G. J. (2013b). Acta Cryst. E69, m250–m251. CSD CrossRef CAS IUCr Journals Google Scholar
Reiss, G. J. (2013c). Acta Cryst. E69, o1253–o1254. CSD CrossRef CAS IUCr Journals Google Scholar
Reiss, G. J. (2013d). Z. Kristallogr. New Cryst. Struct. 228, 431–433. CAS Google Scholar
Reiss, G. J. & Helmbrecht, C. (2012). Acta Cryst. E68, m1402–m1403. CSD CrossRef CAS IUCr Journals Google Scholar
Reiss, G. J. & Jörgens, S. (2012). Acta Cryst. E68, o2899–o2900. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trendafilova, N., Georgieva, I., Bauer, G., Varbanov, S. G. & Dodoff, N. (1997). Spectrochim. Acta Part A, 53, 819–828. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There are several reports which prove the ability of the bidentate dpma ligand (dpma = (dimethylphosphoryl)methanamine) to coordinate a variety of transition metals (Dodoff et al., 1990; Borisov et al., 1994; Trendafilova et al., 1997; Kochel, 2009). Additionally, two metal complexes containing the dpmaH+ cation have been structurally characterized so far (Reiss, 2013a,b). For simple dpmaH+ salt structures it has been shown that this tecton (Brunet et al., 1997) can be used to construct hydrogen bonded one-dimensional polymers (Reiss & Jörgens, 2012; Lambertz et al., 2013; Buhl et al., 2013; Reiss, 2013c). Only for the double salt (H3O)dpmaHBr the ions are connected by hydrogen bonds, forming a two-dimensional network (Reiss, 2013d)
The title compound dpmaHNO3 crystallizes in the monoclinic space group, P21/c, with one dpmaH+ cation and one nitrate anion in the asymmetric unit. The angles and bond lengths of both ions are all in the typical ranges. The dpmaH+ cation features the hydrogen bond donor group NH3+ at the one end and the hydrogen bond accepting group –P=O at the other end. Therefore, this tecton in principle is capable to form connections among other dpmaH+ cations and to counter anions. In the title structure two dpmaH+ cations are connected by two strong, charge supported –NH+···O=P– hydrogen bonds (N···O = 2.7493 (10) Å) head to tail forming cyclic dimers (Fig. 1; first level graph-set descriptor: R22(10); Etter et al.,1990; Grell et al., 2002). Moreover, each dimer is associated by charge supported, strong –NH+···O≐ N– hydrogen bonds (N···O = 2.8555 (11) Å, 2.8784 (12) Å) to four adjacent nitrate counter anions (Fig. 2). Consequently, each nitrate anion forms two hydrogen bonds to two adjacent dicationic dimers constructing a two-dimensional network in the bc plane. The dimers act as a tetradentate hydrogen bond donor. The nitrate anions act as bidentate hydrogen bond acceptors by two of their oxygen atoms.
In three related structures built up by the complex anions [SnCl6]2- and [IrCl6]2- these anions are tetradentate hydrogen bond acceptors whereas the simple diisopropylammonium (Reiss, 2002; Reiss & Helmbrecht, 2012) and the aminothiodithiazyl ((S3N2)NH2)+ (Holl & Thewalt, 1986) counter cations are bidentate hydrogen bond donors. The title structure can be understood as the antitype (Lima-de-Faria et al. 1990) of these hexahalogenometallate salts.