metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[4-bromo-2-(methyl­imino­meth­yl)phenolato-κ2N,O]cobalt(III)

aCollege of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: jiang.xifu@163.com

(Received 22 September 2013; accepted 9 October 2013; online 16 October 2013)

In the title compound, [Co(C8H7BrNO)3], the CoIII ion is coordinated in a slightly distorted octa­hedral environment by three N atoms and three O atoms from three bidentate 4-bromo-2-(methyl­imino­meth­yl)phenolate ligands. The dihedral angles between the benzene rings are 82.6 (2), 57.1 (2) and 62.9 (2)°. In the crystal, mol­ecules are linked by pairs of weak C—H⋯Br hydrogen bonds, forming inversion dimers.

Related literature

For applications of Schiff base complexes, see: Pradeep & Das (2013[Pradeep, C. P. & Das, S. K. (2013). Coord. Chem. Rev. 257, 1699-1715.]); Shankara et al. (2013[Shankara, B. S., Shashidhar, N., Patil, Y. P., Krishna, P. M. & Nethaji, M. (2013). Acta Cryst. E69, o61.]); Feng et al. (2007[Feng, X.-Z., Zhang, S.-H., Liu, Z., Li, G.-Z. & Jin, L.-X. (2007). Acta Cryst. E63, m529-m531.]); Yang et al. (2007[Yang, C. I., Wernsdorfer, W., Lee, G. H. & Tsai, H. L. (2007). J. Am. Chem. Soc. 129, 456-457.]); Raptopoulou et al. (2006[Raptopoulou, C. P., Boudalis, A. K., Sanakis, Y., Psycharis, V., Clemente-Juan, J. M., Fardis, M., Diamantopoulos, G. & Papavassiliou, G. (2006). Inorg. Chem. 45, 2317-2326.]); Zhang & Feng (2010[Zhang, S. H. & Feng, C. (2010). J. Mol. Struct. 977, 62-66.]); Qin et al. (2009[Qin, X. Y., Zhang, S. H., Jiang, Y. M., Liu, J. C. & Qin, J. C. (2009). J. Coord. Chem. 62, 427-4396.]). For related structures, see: Park et al. (2008[Park, J., Lang, K., Abboud, K. A. & Hong, S. (2008). J. Am. Chem. Soc. 130, 16484-16485.]); Huang et al. (2011[Huang, Q. P., Zhang, S. H., Guo, J. J., Feng, C. & Tang, F. S. (2011). Acta Cryst. E67, m1611.], 2012[Huang, Q. P., Guo, J. J., Zhang, Y. D. & Zhang, S. H. (2012). Acta Cryst. E68, m1047.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H7BrNO)3]

  • Mr = 698.10

  • Orthorhombic, P b c a

  • a = 17.1086 (6) Å

  • b = 15.0188 (4) Å

  • c = 19.9578 (7) Å

  • V = 5128.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.38 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.282, Tmax = 1.000

  • 15312 measured reflections

  • 4558 independent reflections

  • 3104 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.089

  • S = 1.01

  • 4558 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯Br1i 0.93 2.90 3.657 (4) 140
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base complexes play an important role in antibacterial and catalytic performance, and have attracted widespread interest by researchers (Pradeep & Das, 2013; Shankara et al., 2013). In addition, Schiff base complexes are of great significance in the biological and medical field (Feng et al., 2007; Yang et al., 2007; Raptopoulou et al., 2006; Zhang et al., 2010; Qin et al., 2009). The crystal structures of some related Co(III) complexes already appear in the literature (Park, et al., 2008; Huang, et al., 2011,2012). In the title complex, the CoIII ion is in a slightly distorted octahedral geometry, coordinated by three N atoms and three O atoms from three bidentate 4-bromo-2-(methyliminomethyl)phenolate ligands (Fig. 1). The dihedral angles between the benzene rings are 82.6 (2)° [C1-C6/C9-C14], 57.1 (2)° [C1-C6/C17-C22] and 62.9 (2)° [C9-C14/C17-C22]. The Co ion is in the 3+ oxidation state, as evidenced by bond valence summation calculations, charge balance considerations, and the presence of typical bond lengths for a CoIII ion (Park, et al. 2008; Huang, et al. 2012). In the crystal, molecules are linked by a pair of weak C—H···Br hydrogen bonds forming inversion dimers (Fig. 2).

Related literature top

For applications of Schiff base complexes, see: Pradeep & Das (2013); Shankara et al. (2013); Feng et al. (2007); Yang et al. (2007); Raptopoulou et al. (2006); Zhang & Feng (2010); Qin et al. (2009). For related structures, see: Park et al. (2008); Huang et al. (2011, 2012).

Experimental top

The title compound was prepared from a mixture of 5-bromo-2-hydroxy-benzaldehyde (0.181 g, 1.0 mmol), methylamine (0.031 g, 1.0 mmol), sodium hydroxide (0.040 g, 1 mmol), cobalt nitrate hexahydrate (0.145 g, 0.5 mmol) and methanol (8 ml), sealed in a 20 ml Teflon-lined stainless steel bomb, and kept at 373K for 3 days under autogenous pressure. After the reaction was slowly cooled to room temperature, brown block-like crystals were obtained (yield: 63% based on cobalt). Anal. Calc. for C24H21N3O3Br3Co (%): C, 41.15; H, 3.01; N, 6.02. Found (%): C, 41.17; H, 3.12; N, 6.00.

Refinement top

H atoms were positioned geometrically and refined with a riding model, with C–H distances of 0.93–0.96 Å, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level
[Figure 2] Fig. 2. An inversion dimer of (I) with weak hydrogen bonds shown as dashed lines. Only H atoms involved in weak hydrogen bonds are shown.
Tris[4-bromo-2-(methyliminomethyl)phenolato-κ2N,O]cobalt(III) top
Crystal data top
[Co(C8H7BrNO)3]F(000) = 2736
Mr = 698.10Dx = 1.808 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4287 reflections
a = 17.1086 (6) Åθ = 2.9–29.1°
b = 15.0188 (4) ŵ = 5.38 mm1
c = 19.9578 (7) ÅT = 293 K
V = 5128.2 (3) Å3Block, brown
Z = 80.18 × 0.16 × 0.14 mm
Data collection top
Bruker SMART CCD
diffractometer
4558 independent reflections
Radiation source: fine-focus sealed tube3104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: no pixels mm-1θmax = 25.1°, θmin = 2.9°
ω scansh = 1920
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1717
Tmin = 0.282, Tmax = 1.000l = 2223
15312 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.030P)2 + 7.4066P]
where P = (Fo2 + 2Fc2)/3
4558 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Co(C8H7BrNO)3]V = 5128.2 (3) Å3
Mr = 698.10Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.1086 (6) ŵ = 5.38 mm1
b = 15.0188 (4) ÅT = 293 K
c = 19.9578 (7) Å0.18 × 0.16 × 0.14 mm
Data collection top
Bruker SMART CCD
diffractometer
4558 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3104 reflections with I > 2σ(I)
Tmin = 0.282, Tmax = 1.000Rint = 0.033
15312 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.01Δρmax = 0.82 e Å3
4558 reflectionsΔρmin = 0.75 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42428 (4)0.69768 (5)0.48113 (3)0.0903 (2)
Br20.19400 (4)0.72733 (4)0.03750 (3)0.0880 (2)
Br30.45860 (4)0.03597 (4)0.40953 (3)0.0764 (2)
C10.3526 (2)0.5538 (2)0.2818 (2)0.0346 (10)
C20.4091 (3)0.6212 (3)0.2826 (2)0.0422 (11)
H20.43240.63870.24260.051*
C30.4310 (3)0.6622 (3)0.3414 (3)0.0492 (12)
H30.46840.70710.34090.059*
C40.3973 (3)0.6367 (3)0.4009 (2)0.0529 (13)
C50.3430 (3)0.5699 (3)0.4029 (2)0.0503 (12)
H50.32070.55340.44350.060*
C60.3210 (3)0.5265 (3)0.3439 (2)0.0409 (11)
C70.2603 (3)0.4607 (3)0.3472 (2)0.0457 (12)
H70.23310.45600.38740.055*
C80.1706 (3)0.3516 (3)0.3114 (3)0.0638 (15)
H8A0.14820.36570.35420.096*
H8B0.18560.29000.31060.096*
H8C0.13270.36250.27680.096*
C90.2016 (3)0.5015 (3)0.1256 (2)0.0432 (11)
C100.1327 (3)0.5518 (3)0.1133 (3)0.0553 (13)
H100.08840.54140.13920.066*
C110.1304 (3)0.6153 (3)0.0641 (3)0.0651 (16)
H110.08470.64720.05660.078*
C120.1959 (3)0.6321 (3)0.0255 (3)0.0562 (14)
C130.2619 (3)0.5815 (3)0.0326 (2)0.0496 (12)
H130.30470.59120.00490.060*
C140.2648 (3)0.5150 (3)0.0818 (2)0.0396 (11)
C150.3322 (3)0.4577 (3)0.0834 (2)0.0389 (10)
H150.36620.46080.04710.047*
C160.4181 (3)0.3453 (3)0.1208 (3)0.0512 (13)
H16A0.43740.35150.07580.077*
H16B0.40360.28440.12860.077*
H16C0.45830.36230.15190.077*
C170.4012 (2)0.2962 (3)0.2891 (2)0.0375 (10)
C180.4649 (3)0.2921 (3)0.3340 (2)0.0446 (11)
H180.49600.34220.34060.054*
C190.4814 (3)0.2151 (3)0.3681 (2)0.0480 (12)
H190.52300.21350.39800.058*
C200.4367 (3)0.1399 (3)0.3582 (2)0.0470 (12)
C210.3765 (3)0.1399 (3)0.3132 (2)0.0456 (12)
H210.34810.08800.30580.055*
C220.3573 (3)0.2179 (3)0.2782 (2)0.0380 (10)
C230.2951 (3)0.2142 (3)0.2299 (2)0.0403 (11)
H230.27530.15810.22000.048*
C240.2037 (3)0.2610 (3)0.1494 (3)0.0543 (13)
H24A0.19610.19780.14640.081*
H24B0.21960.28370.10660.081*
H24C0.15560.28890.16270.081*
Co10.29471 (3)0.40287 (3)0.21453 (3)0.03520 (16)
N10.2399 (2)0.4078 (2)0.29993 (18)0.0424 (9)
N20.2642 (2)0.2802 (2)0.19908 (18)0.0389 (9)
N30.34932 (18)0.4031 (2)0.13001 (17)0.0351 (8)
O10.32936 (17)0.52222 (16)0.22408 (14)0.0401 (7)
O20.20115 (16)0.44434 (19)0.17475 (16)0.0457 (8)
O30.38751 (16)0.37176 (17)0.25932 (14)0.0409 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0634 (4)0.1341 (6)0.0734 (4)0.0235 (4)0.0026 (4)0.0567 (4)
Br20.1194 (6)0.0797 (4)0.0650 (4)0.0317 (4)0.0267 (4)0.0175 (3)
Br30.0879 (4)0.0639 (3)0.0773 (4)0.0232 (3)0.0011 (4)0.0260 (3)
C10.038 (2)0.024 (2)0.042 (3)0.0048 (19)0.002 (2)0.0038 (19)
C20.043 (3)0.038 (2)0.045 (3)0.001 (2)0.004 (2)0.000 (2)
C30.040 (3)0.047 (3)0.061 (3)0.006 (2)0.000 (3)0.011 (2)
C40.044 (3)0.064 (3)0.051 (3)0.003 (3)0.006 (3)0.023 (3)
C50.048 (3)0.063 (3)0.040 (3)0.002 (3)0.003 (3)0.010 (2)
C60.041 (3)0.039 (2)0.043 (3)0.002 (2)0.004 (2)0.004 (2)
C70.049 (3)0.045 (3)0.043 (3)0.002 (2)0.007 (3)0.000 (2)
C80.067 (3)0.057 (3)0.068 (4)0.024 (3)0.022 (3)0.014 (3)
C90.043 (3)0.039 (2)0.048 (3)0.008 (2)0.013 (3)0.011 (2)
C100.045 (3)0.055 (3)0.066 (4)0.008 (3)0.004 (3)0.013 (3)
C110.060 (4)0.060 (3)0.075 (4)0.019 (3)0.025 (3)0.009 (3)
C120.070 (4)0.048 (3)0.051 (3)0.014 (3)0.027 (3)0.002 (2)
C130.058 (3)0.058 (3)0.032 (3)0.009 (3)0.013 (3)0.003 (2)
C140.044 (3)0.042 (3)0.033 (2)0.007 (2)0.007 (2)0.007 (2)
C150.041 (3)0.041 (2)0.035 (3)0.002 (2)0.000 (2)0.005 (2)
C160.041 (3)0.044 (3)0.069 (3)0.009 (2)0.011 (3)0.003 (2)
C170.036 (2)0.043 (3)0.034 (2)0.000 (2)0.002 (2)0.003 (2)
C180.046 (3)0.044 (3)0.043 (3)0.003 (2)0.003 (3)0.004 (2)
C190.047 (3)0.055 (3)0.042 (3)0.010 (2)0.004 (3)0.005 (2)
C200.058 (3)0.044 (3)0.038 (3)0.021 (3)0.012 (3)0.007 (2)
C210.051 (3)0.038 (2)0.047 (3)0.005 (2)0.012 (3)0.002 (2)
C220.041 (2)0.035 (2)0.038 (3)0.000 (2)0.003 (2)0.002 (2)
C230.043 (3)0.030 (2)0.048 (3)0.007 (2)0.006 (3)0.008 (2)
C240.051 (3)0.052 (3)0.060 (3)0.004 (3)0.016 (3)0.012 (2)
Co10.0362 (3)0.0308 (3)0.0386 (3)0.0002 (3)0.0013 (3)0.0029 (2)
N10.046 (2)0.036 (2)0.044 (2)0.0077 (18)0.003 (2)0.0010 (18)
N20.036 (2)0.040 (2)0.040 (2)0.0007 (17)0.0041 (19)0.0048 (17)
N30.0316 (19)0.0326 (18)0.041 (2)0.0023 (16)0.0029 (18)0.0053 (17)
O10.0511 (18)0.0315 (15)0.0379 (18)0.0013 (14)0.0001 (16)0.0016 (13)
O20.0368 (17)0.0480 (17)0.052 (2)0.0055 (15)0.0010 (17)0.0023 (16)
O30.0433 (17)0.0314 (15)0.0480 (18)0.0062 (14)0.0108 (16)0.0041 (14)
Geometric parameters (Å, º) top
Br1—C41.902 (4)C14—C151.438 (6)
Br2—C121.904 (5)C15—N31.275 (5)
Br3—C201.904 (4)C15—H150.9300
C1—O11.308 (5)C16—N31.475 (5)
C1—C21.400 (6)C16—H16A0.9600
C1—C61.413 (6)C16—H16B0.9600
C2—C31.377 (6)C16—H16C0.9600
C2—H20.9300C17—O31.302 (5)
C3—C41.374 (6)C17—C221.412 (6)
C3—H30.9300C17—C181.413 (6)
C4—C51.368 (6)C18—C191.371 (6)
C5—C61.396 (6)C18—H180.9300
C5—H50.9300C19—C201.378 (6)
C6—C71.436 (6)C19—H190.9300
C7—N11.281 (5)C20—C211.367 (6)
C7—H70.9300C21—C221.404 (6)
C8—N11.474 (5)C21—H210.9300
C8—H8A0.9600C22—C231.437 (6)
C8—H8B0.9600C23—N21.281 (5)
C8—H8C0.9600C23—H230.9300
C9—O21.304 (5)C24—N21.462 (5)
C9—C141.404 (6)C24—H24A0.9600
C9—C101.421 (6)C24—H24B0.9600
C10—C111.370 (7)C24—H24C0.9600
C10—H100.9300Co1—O31.881 (3)
C11—C121.383 (7)Co1—O21.892 (3)
C11—H110.9300Co1—O11.898 (3)
C12—C131.369 (6)Co1—N31.928 (3)
C13—C141.402 (6)Co1—N21.939 (3)
C13—H130.9300Co1—N11.946 (4)
O1—C1—C2118.8 (4)O3—C17—C22124.0 (4)
O1—C1—C6123.5 (4)O3—C17—C18117.8 (4)
C2—C1—C6117.6 (4)C22—C17—C18118.2 (4)
C3—C2—C1121.3 (4)C19—C18—C17120.6 (4)
C3—C2—H2119.3C19—C18—H18119.7
C1—C2—H2119.3C17—C18—H18119.7
C4—C3—C2119.9 (4)C18—C19—C20120.5 (4)
C4—C3—H3120.1C18—C19—H19119.8
C2—C3—H3120.1C20—C19—H19119.8
C5—C4—C3121.0 (4)C21—C20—C19120.8 (4)
C5—C4—Br1119.6 (4)C21—C20—Br3120.1 (4)
C3—C4—Br1119.4 (4)C19—C20—Br3119.1 (4)
C4—C5—C6120.0 (4)C20—C21—C22120.3 (4)
C4—C5—H5120.0C20—C21—H21119.9
C6—C5—H5120.0C22—C21—H21119.9
C5—C6—C1120.1 (4)C21—C22—C17119.6 (4)
C5—C6—C7118.5 (4)C21—C22—C23118.3 (4)
C1—C6—C7121.1 (4)C17—C22—C23122.1 (4)
N1—C7—C6126.2 (4)N2—C23—C22126.7 (4)
N1—C7—H7116.9N2—C23—H23116.7
C6—C7—H7116.9C22—C23—H23116.7
N1—C8—H8A109.5N2—C24—H24A109.5
N1—C8—H8B109.5N2—C24—H24B109.5
H8A—C8—H8B109.5H24A—C24—H24B109.5
N1—C8—H8C109.5N2—C24—H24C109.5
H8A—C8—H8C109.5H24A—C24—H24C109.5
H8B—C8—H8C109.5H24B—C24—H24C109.5
O2—C9—C14124.6 (4)O3—Co1—O2174.38 (12)
O2—C9—C10118.3 (4)O3—Co1—O185.60 (12)
C14—C9—C10117.1 (4)O2—Co1—O189.74 (12)
C11—C10—C9121.1 (5)O3—Co1—N390.42 (13)
C11—C10—H10119.4O2—Co1—N392.41 (14)
C9—C10—H10119.4O1—Co1—N386.25 (13)
C10—C11—C12120.3 (5)O3—Co1—N293.85 (13)
C10—C11—H11119.9O2—Co1—N291.03 (14)
C12—C11—H11119.9O1—Co1—N2175.83 (14)
C13—C12—C11120.6 (5)N3—Co1—N289.62 (14)
C13—C12—Br2120.0 (4)O3—Co1—N189.98 (14)
C11—C12—Br2119.4 (4)O2—Co1—N187.00 (14)
C12—C13—C14119.9 (5)O1—Co1—N191.51 (13)
C12—C13—H13120.1N3—Co1—N1177.69 (14)
C14—C13—H13120.1N2—Co1—N192.63 (14)
C13—C14—C9120.7 (4)C7—N1—C8117.3 (4)
C13—C14—C15118.0 (4)C7—N1—Co1122.5 (3)
C9—C14—C15121.2 (4)C8—N1—Co1120.1 (3)
N3—C15—C14125.8 (4)C23—N2—C24117.7 (4)
N3—C15—H15117.1C23—N2—Co1123.2 (3)
C14—C15—H15117.1C24—N2—Co1119.1 (3)
N3—C16—H16A109.5C15—N3—C16118.1 (4)
N3—C16—H16B109.5C15—N3—Co1121.9 (3)
H16A—C16—H16B109.5C16—N3—Co1119.7 (3)
N3—C16—H16C109.5C1—O1—Co1121.8 (2)
H16A—C16—H16C109.5C9—O2—Co1121.8 (3)
H16B—C16—H16C109.5C17—O3—Co1125.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Br1i0.932.903.657 (4)140
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Br1i0.932.903.657 (4)140
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 21161006) and the Program for Excellent Talents in Guangxi Higher Education Institutions (Gui Jiao Ren[2012]41).

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, X.-Z., Zhang, S.-H., Liu, Z., Li, G.-Z. & Jin, L.-X. (2007). Acta Cryst. E63, m529–m531.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuang, Q. P., Guo, J. J., Zhang, Y. D. & Zhang, S. H. (2012). Acta Cryst. E68, m1047.  CSD CrossRef IUCr Journals Google Scholar
First citationHuang, Q. P., Zhang, S. H., Guo, J. J., Feng, C. & Tang, F. S. (2011). Acta Cryst. E67, m1611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, J., Lang, K., Abboud, K. A. & Hong, S. (2008). J. Am. Chem. Soc. 130, 16484–16485.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPradeep, C. P. & Das, S. K. (2013). Coord. Chem. Rev. 257, 1699–1715.  Web of Science CrossRef CAS Google Scholar
First citationQin, X. Y., Zhang, S. H., Jiang, Y. M., Liu, J. C. & Qin, J. C. (2009). J. Coord. Chem. 62, 427–4396.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaptopoulou, C. P., Boudalis, A. K., Sanakis, Y., Psycharis, V., Clemente-Juan, J. M., Fardis, M., Diamantopoulos, G. & Papavassiliou, G. (2006). Inorg. Chem. 45, 2317–2326.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShankara, B. S., Shashidhar, N., Patil, Y. P., Krishna, P. M. & Nethaji, M. (2013). Acta Cryst. E69, o61.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, C. I., Wernsdorfer, W., Lee, G. H. & Tsai, H. L. (2007). J. Am. Chem. Soc. 129, 456–457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, S. H. & Feng, C. (2010). J. Mol. Struct. 977, 62–66.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds