organic compounds
2-(4-Chlorophenyl)-4-phenyl-1,2-dihydroquinazoline
aLaboratoire de Synthèse des Molécules d'Intérêts Biologiques, Département de Chimie, Faculté des Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi 04000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, C20H15ClN2, the pyrimidine ring is in a flattened half-chair conformation. The phenyl and chloro-substituted benzene rings form dihedral angles of 84.97 (5) and 80.23 (4)°, respectively, with the benzene ring of the dihydroquinazoline group. The dihedral angle between the phenyl and chloro-substituted benzene rings is 61.71 (5)°. In the crystal, molecules are arranged in intersecting layers parallel to (101) and (-102), with N—H⋯N hydrogen bonds linking molecules along [010]. In addition, a weak C—H⋯π interaction is observed.
CCDC reference: 965764
Related literature
For the preparation and applications of quinazoline derivatives, see: Gundla et al. (2008); Luth & Lowe (2008); Fry et al. (1994); Kunes et al. (2000); Michael (2002); Frère et al. (2003); Langer & Bodtke (2003).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 965764
10.1107/S1600536813027839/lh5660sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027839/lh5660Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813027839/lh5660Isup3.cml
The title compound was prepared by condensation of 4-chlorobenzaldehyde (1.0 equiv), 2-aminobenzophenone (1.0 equiv), ammonium acetate (2.0 equiv), and dimethylaminopyridine (0.2 equiv.) in 5 ml of absolute ethanol at 313 K. After completion of the reaction as monitored by TLC, the reaction was poured into ice cold water; solid product was filtered, washed with water and dried. The crude product was recrystallized from ethyl acetate to give the tite compound as a yellow solid (m.p. 415–417 K). X-ray quality crystals were grown from a solution of the title compound in ethyl acetate.
H atoms bonded to C atoms were initially located in a difference Fourier map. However, they were subsequently placed in idealized positions and refined in a riding-model approximation. The applied constraints were as follows: Caryl—Haryl = 0.93 Å; Cmethine—Hmethine = 0.98 Å; Uiso(HarylHmethine) = 1.2Ueq(Caryl/Cmethine). Atom H1N was located in a difference Fourier map and refined isotropically.
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).C20H15ClN2 | F(000) = 664 |
Mr = 318.79 | Dx = 1.368 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4726 reflections |
a = 9.2563 (10) Å | θ = 2.5–25.1° |
b = 10.6283 (11) Å | µ = 0.25 mm−1 |
c = 17.6230 (19) Å | T = 150 K |
β = 116.775 (7)° | Needle, colourless |
V = 1547.8 (3) Å3 | 0.18 × 0.04 × 0.03 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2462 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −10→11 |
Tmin = 0.948, Tmax = 1.000 | k = −12→12 |
8914 measured reflections | l = −17→21 |
2724 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.033P)2 + 0.9522P] where P = (Fo2 + 2Fc2)/3 |
2724 reflections | (Δ/σ)max = 0.001 |
212 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C20H15ClN2 | V = 1547.8 (3) Å3 |
Mr = 318.79 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.2563 (10) Å | µ = 0.25 mm−1 |
b = 10.6283 (11) Å | T = 150 K |
c = 17.6230 (19) Å | 0.18 × 0.04 × 0.03 mm |
β = 116.775 (7)° |
Bruker APEXII CCD area-detector diffractometer | 2724 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 2462 reflections with I > 2σ(I) |
Tmin = 0.948, Tmax = 1.000 | Rint = 0.027 |
8914 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.22 e Å−3 |
2724 reflections | Δρmin = −0.26 e Å−3 |
212 parameters |
Experimental. Spectroscopic data: IR (KBr) ν 3320, 2364 1620, 1537, 1486, 1321, 1263, 1155, 1015, 964, 805, 741, 697 cm-1; 1H NMR (CDCl3, 400 MHz) δ 7.72–7.61 (m, 5H, arom.), 7.49–7.36 (m, 4H, arom.), 7.32–7.21 (m, 2H, arom.), 6.77 (td, J=8.0,1.0 Hz, 1H, arom.), 6.72 (d, J=8.0 Hz, 1H), 6.02 (s, 1H, CH), 4.38 (s, 1H, NH); 13 C NMR (CDCl3, 100 MHz) δ 165.8, 146.9, 141.5, 141.4, 140.9, 138.1, 132.9, 130.2, 129.4, 129.3, 129.1, 128.1, 127.8, 127.5, 127.3, 127.2, 118.3, 117.9, 114.3, 72.4. Anal. calcd for C20H15N2Cl: C, 75.35; H, 4.74; N, 8.79; Found: C, 75.75; H, 4.95; N, 9.42. HRMS calcd for C20H16N2Cl (MH+) 319.0924; found 319.0863. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.53121 (17) | 0.77886 (14) | 0.50548 (10) | 0.0165 (3) | |
C2 | 0.44580 (18) | 0.66972 (14) | 0.49960 (9) | 0.0168 (3) | |
H2 | 0.4841 | 0.6114 | 0.5437 | 0.02* | |
C3 | 0.30186 (17) | 0.64835 (14) | 0.42695 (10) | 0.0153 (3) | |
H3 | 0.244 | 0.5748 | 0.4223 | 0.018* | |
C4 | 0.24323 (17) | 0.73546 (13) | 0.36111 (9) | 0.0130 (3) | |
C5 | 0.33457 (18) | 0.84305 (14) | 0.36800 (10) | 0.0161 (3) | |
H5 | 0.2981 | 0.9009 | 0.3237 | 0.019* | |
C6 | 0.47870 (18) | 0.86503 (14) | 0.43980 (10) | 0.0177 (3) | |
H6 | 0.5393 | 0.9367 | 0.4438 | 0.021* | |
C7 | 0.07957 (17) | 0.71954 (13) | 0.28323 (9) | 0.0131 (3) | |
H7 | 0.0982 | 0.72 | 0.2327 | 0.016* | |
C8 | −0.10527 (16) | 0.82529 (13) | 0.31836 (9) | 0.0124 (3) | |
C9 | −0.18848 (17) | 0.94230 (13) | 0.32554 (9) | 0.0129 (3) | |
C10 | −0.35237 (19) | 0.96183 (15) | 0.27479 (11) | 0.0239 (4) | |
H10 | −0.4123 | 0.903 | 0.2334 | 0.029* | |
C11 | −0.42727 (19) | 1.06843 (15) | 0.28539 (11) | 0.0258 (4) | |
H11 | −0.5367 | 1.0821 | 0.2503 | 0.031* | |
C12 | −0.33965 (19) | 1.15455 (14) | 0.34810 (10) | 0.0208 (3) | |
H12 | −0.3906 | 1.2252 | 0.356 | 0.025* | |
C13 | −0.1764 (2) | 1.13562 (15) | 0.39897 (10) | 0.0228 (4) | |
H13 | −0.1174 | 1.1936 | 0.4412 | 0.027* | |
C14 | −0.10031 (18) | 1.03001 (14) | 0.38718 (10) | 0.0188 (3) | |
H14 | 0.0101 | 1.0182 | 0.4208 | 0.023* | |
C15 | −0.08004 (16) | 0.59670 (13) | 0.33333 (9) | 0.0119 (3) | |
C16 | −0.12929 (16) | 0.70970 (13) | 0.35624 (9) | 0.0129 (3) | |
C17 | −0.20595 (17) | 0.70602 (14) | 0.40861 (9) | 0.0160 (3) | |
H17 | −0.2382 | 0.7806 | 0.424 | 0.019* | |
C18 | −0.23427 (18) | 0.59305 (14) | 0.43764 (10) | 0.0180 (3) | |
H18 | −0.2842 | 0.5913 | 0.4731 | 0.022* | |
C19 | −0.18758 (18) | 0.48132 (14) | 0.41355 (10) | 0.0171 (3) | |
H19 | −0.2075 | 0.405 | 0.4329 | 0.021* | |
C20 | −0.11248 (17) | 0.48210 (13) | 0.36158 (9) | 0.0140 (3) | |
H20 | −0.0834 | 0.4068 | 0.3453 | 0.017* | |
N1 | −0.00529 (14) | 0.60480 (12) | 0.28194 (8) | 0.0135 (3) | |
N2 | −0.01662 (14) | 0.83324 (11) | 0.27983 (7) | 0.0129 (3) | |
Cl1 | 0.70928 (4) | 0.80771 (4) | 0.59784 (2) | 0.02398 (13) | |
H1N | 0.018 (2) | 0.5377 (18) | 0.2660 (11) | 0.023 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0120 (7) | 0.0221 (8) | 0.0148 (7) | 0.0023 (6) | 0.0053 (6) | −0.0041 (6) |
C2 | 0.0180 (7) | 0.0189 (8) | 0.0154 (7) | 0.0047 (6) | 0.0093 (6) | 0.0039 (6) |
C3 | 0.0161 (7) | 0.0135 (7) | 0.0193 (8) | 0.0010 (6) | 0.0107 (6) | 0.0008 (6) |
C4 | 0.0143 (7) | 0.0136 (7) | 0.0146 (7) | 0.0027 (5) | 0.0095 (6) | −0.0015 (5) |
C5 | 0.0191 (8) | 0.0151 (7) | 0.0161 (7) | 0.0019 (6) | 0.0095 (6) | 0.0024 (6) |
C6 | 0.0168 (8) | 0.0150 (7) | 0.0221 (8) | −0.0014 (6) | 0.0096 (6) | −0.0028 (6) |
C7 | 0.0158 (7) | 0.0122 (7) | 0.0137 (7) | 0.0001 (5) | 0.0088 (6) | 0.0001 (5) |
C8 | 0.0122 (7) | 0.0127 (7) | 0.0098 (7) | −0.0014 (5) | 0.0027 (6) | −0.0017 (5) |
C9 | 0.0166 (7) | 0.0106 (7) | 0.0137 (7) | 0.0001 (5) | 0.0090 (6) | 0.0029 (5) |
C10 | 0.0194 (8) | 0.0181 (8) | 0.0263 (9) | 0.0000 (6) | 0.0034 (7) | −0.0073 (7) |
C11 | 0.0157 (8) | 0.0223 (8) | 0.0329 (9) | 0.0061 (6) | 0.0050 (7) | 0.0001 (7) |
C12 | 0.0269 (9) | 0.0144 (7) | 0.0254 (9) | 0.0071 (6) | 0.0156 (7) | 0.0023 (6) |
C13 | 0.0283 (9) | 0.0155 (8) | 0.0203 (8) | 0.0015 (6) | 0.0073 (7) | −0.0045 (6) |
C14 | 0.0169 (8) | 0.0157 (8) | 0.0197 (8) | 0.0022 (6) | 0.0047 (6) | −0.0002 (6) |
C15 | 0.0101 (7) | 0.0142 (7) | 0.0097 (7) | −0.0006 (5) | 0.0029 (5) | −0.0016 (5) |
C16 | 0.0124 (7) | 0.0125 (7) | 0.0131 (7) | −0.0002 (5) | 0.0051 (6) | −0.0005 (5) |
C17 | 0.0184 (8) | 0.0143 (7) | 0.0184 (8) | 0.0031 (6) | 0.0109 (6) | −0.0007 (6) |
C18 | 0.0217 (8) | 0.0176 (8) | 0.0219 (8) | 0.0020 (6) | 0.0162 (7) | 0.0021 (6) |
C19 | 0.0192 (8) | 0.0129 (7) | 0.0210 (8) | −0.0008 (6) | 0.0105 (6) | 0.0034 (6) |
C20 | 0.0158 (7) | 0.0100 (7) | 0.0156 (7) | 0.0012 (5) | 0.0066 (6) | −0.0019 (5) |
N1 | 0.0171 (6) | 0.0115 (6) | 0.0155 (6) | −0.0005 (5) | 0.0104 (5) | −0.0031 (5) |
N2 | 0.0139 (6) | 0.0122 (6) | 0.0118 (6) | −0.0003 (5) | 0.0052 (5) | −0.0007 (5) |
Cl1 | 0.0168 (2) | 0.0295 (2) | 0.0186 (2) | −0.00015 (15) | 0.00177 (16) | −0.00224 (15) |
C1—C2 | 1.381 (2) | C10—H10 | 0.93 |
C1—C6 | 1.381 (2) | C11—C12 | 1.382 (2) |
C1—Cl1 | 1.7443 (15) | C11—H11 | 0.93 |
C2—C3 | 1.389 (2) | C12—C13 | 1.381 (2) |
C2—H2 | 0.93 | C12—H12 | 0.93 |
C3—C4 | 1.389 (2) | C13—C14 | 1.390 (2) |
C3—H3 | 0.93 | C13—H13 | 0.93 |
C4—C5 | 1.395 (2) | C14—H14 | 0.93 |
C4—C7 | 1.528 (2) | C15—N1 | 1.3678 (19) |
C5—C6 | 1.384 (2) | C15—C20 | 1.399 (2) |
C5—H5 | 0.93 | C15—C16 | 1.407 (2) |
C6—H6 | 0.93 | C16—C17 | 1.395 (2) |
C7—N1 | 1.4452 (18) | C17—C18 | 1.376 (2) |
C7—N2 | 1.4861 (18) | C17—H17 | 0.93 |
C7—H7 | 0.98 | C18—C19 | 1.394 (2) |
C8—N2 | 1.2820 (19) | C18—H18 | 0.93 |
C8—C16 | 1.462 (2) | C19—C20 | 1.377 (2) |
C8—C9 | 1.4979 (19) | C19—H19 | 0.93 |
C9—C14 | 1.384 (2) | C20—H20 | 0.93 |
C9—C10 | 1.386 (2) | N1—H1N | 0.831 (19) |
C10—C11 | 1.384 (2) | ||
C2—C1—C6 | 121.37 (14) | C12—C11—H11 | 120 |
C2—C1—Cl1 | 119.08 (12) | C10—C11—H11 | 120 |
C6—C1—Cl1 | 119.56 (12) | C13—C12—C11 | 119.94 (14) |
C1—C2—C3 | 119.04 (13) | C13—C12—H12 | 120 |
C1—C2—H2 | 120.5 | C11—C12—H12 | 120 |
C3—C2—H2 | 120.5 | C12—C13—C14 | 120.04 (15) |
C2—C3—C4 | 120.82 (14) | C12—C13—H13 | 120 |
C2—C3—H3 | 119.6 | C14—C13—H13 | 120 |
C4—C3—H3 | 119.6 | C9—C14—C13 | 120.12 (14) |
C3—C4—C5 | 118.71 (14) | C9—C14—H14 | 119.9 |
C3—C4—C7 | 122.18 (13) | C13—C14—H14 | 119.9 |
C5—C4—C7 | 119.07 (13) | N1—C15—C20 | 122.97 (13) |
C6—C5—C4 | 121.00 (14) | N1—C15—C16 | 117.54 (12) |
C6—C5—H5 | 119.5 | C20—C15—C16 | 119.47 (13) |
C4—C5—H5 | 119.5 | C17—C16—C15 | 119.54 (13) |
C1—C6—C5 | 119.00 (14) | C17—C16—C8 | 123.56 (13) |
C1—C6—H6 | 120.5 | C15—C16—C8 | 116.78 (13) |
C5—C6—H6 | 120.5 | C18—C17—C16 | 120.62 (13) |
N1—C7—N2 | 111.97 (11) | C18—C17—H17 | 119.7 |
N1—C7—C4 | 114.81 (12) | C16—C17—H17 | 119.7 |
N2—C7—C4 | 106.24 (11) | C17—C18—C19 | 119.54 (14) |
N1—C7—H7 | 107.9 | C17—C18—H18 | 120.2 |
N2—C7—H7 | 107.9 | C19—C18—H18 | 120.2 |
C4—C7—H7 | 107.9 | C20—C19—C18 | 121.08 (13) |
N2—C8—C16 | 124.23 (13) | C20—C19—H19 | 119.5 |
N2—C8—C9 | 117.79 (12) | C18—C19—H19 | 119.5 |
C16—C8—C9 | 117.99 (12) | C19—C20—C15 | 119.72 (13) |
C14—C9—C10 | 119.50 (14) | C19—C20—H20 | 120.1 |
C14—C9—C8 | 118.79 (13) | C15—C20—H20 | 120.1 |
C10—C9—C8 | 121.65 (13) | C15—N1—C7 | 118.43 (12) |
C11—C10—C9 | 120.30 (14) | C15—N1—H1N | 117.2 (13) |
C11—C10—H10 | 119.8 | C7—N1—H1N | 120.4 (13) |
C9—C10—H10 | 119.8 | C8—N2—C7 | 116.09 (12) |
C12—C11—C10 | 120.06 (15) | ||
C6—C1—C2—C3 | −1.8 (2) | C12—C13—C14—C9 | −1.2 (2) |
Cl1—C1—C2—C3 | 178.36 (11) | N1—C15—C16—C17 | −179.97 (12) |
C1—C2—C3—C4 | −0.5 (2) | C20—C15—C16—C17 | 1.7 (2) |
C2—C3—C4—C5 | 2.2 (2) | N1—C15—C16—C8 | 3.85 (19) |
C2—C3—C4—C7 | −175.49 (13) | C20—C15—C16—C8 | −174.52 (12) |
C3—C4—C5—C6 | −1.8 (2) | N2—C8—C16—C17 | 170.14 (14) |
C7—C4—C5—C6 | 176.00 (13) | C9—C8—C16—C17 | −9.4 (2) |
C2—C1—C6—C5 | 2.2 (2) | N2—C8—C16—C15 | −13.8 (2) |
Cl1—C1—C6—C5 | −177.93 (11) | C9—C8—C16—C15 | 166.65 (12) |
C4—C5—C6—C1 | −0.4 (2) | C15—C16—C17—C18 | −0.3 (2) |
C3—C4—C7—N1 | −2.54 (19) | C8—C16—C17—C18 | 175.64 (14) |
C5—C4—C7—N1 | 179.78 (12) | C16—C17—C18—C19 | −0.8 (2) |
C3—C4—C7—N2 | 121.79 (14) | C17—C18—C19—C20 | 0.4 (2) |
C5—C4—C7—N2 | −55.89 (16) | C18—C19—C20—C15 | 1.0 (2) |
N2—C8—C9—C14 | −79.22 (17) | N1—C15—C20—C19 | 179.72 (13) |
C16—C8—C9—C14 | 100.32 (16) | C16—C15—C20—C19 | −2.0 (2) |
N2—C8—C9—C10 | 103.78 (17) | C20—C15—N1—C7 | −155.71 (13) |
C16—C8—C9—C10 | −76.68 (18) | C16—C15—N1—C7 | 25.99 (18) |
C14—C9—C10—C11 | 0.3 (2) | N2—C7—N1—C15 | −45.39 (17) |
C8—C9—C10—C11 | 177.24 (15) | C4—C7—N1—C15 | 75.86 (16) |
C9—C10—C11—C12 | −1.6 (3) | C16—C8—N2—C7 | −6.74 (19) |
C10—C11—C12—C13 | 1.5 (3) | C9—C8—N2—C7 | 172.77 (12) |
C11—C12—C13—C14 | −0.1 (2) | N1—C7—N2—C8 | 34.69 (16) |
C10—C9—C14—C13 | 1.1 (2) | C4—C7—N2—C8 | −91.38 (14) |
C8—C9—C14—C13 | −175.93 (14) |
Cg is the centroid of the C15–C20 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2i | 0.830 (19) | 2.316 (19) | 3.1234 (18) | 164.3 (19) |
C3—H3···N1 | 0.93 | 2.53 | 2.878 (2) | 102 |
C11—H11···Cgii | 0.93 | 2.76 | 3.666 (2) | 165 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x−1, y+1/2, −z+1/2. |
Cg is the centroid of the C15–C20 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2i | 0.830 (19) | 2.316 (19) | 3.1234 (18) | 164.3 (19) |
C11—H11···Cgii | 0.93 | 2.76 | 3.666 (2) | 165 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x−1, y+1/2, −z+1/2. |
Acknowledgements
We are grateful to all the personnel of the LSMIB laboratory and UR–CHEMS, Université Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Algeria) for financial support.
References
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frère, S., Thierry, V., Bailly, C. & Besson, T. (2003). Tetrahedron, 59, 773–779. Google Scholar
Fry, D. W., Kraker, A. J., McMichael, A., Ambroso, L. A., Nelson, J. M., Leopold, W. R., Connors, R. W. & Bridges, A. (1994). J. Sci. 265, 1093–1095. CrossRef CAS Web of Science Google Scholar
Gundla, R., Kazemi, R., Sanam, R., Muttineni, R., Sarma, J. A. R. P., Dayam, R. & Neamati, N. (2008). J. Med. Chem. 51, 3367–3377. Web of Science CrossRef PubMed CAS Google Scholar
Kunes, J., Pour, M., Waisser, K., Slosarek, M. & Janota, J. (2000). Il Farmaco, 55, 725–729. Web of Science PubMed CAS Google Scholar
Langer, P. & Bodtke, A. (2003). Tetrahedron Lett. 44, 5965–5967. Web of Science CrossRef CAS Google Scholar
Luth, A. & Lowe, W. (2008). Eur. J. Med. Chem. 43, 1478–1488. Web of Science PubMed Google Scholar
Michael, J. P. (2002). Nat. Prod. Rep. 19, 742–760. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic chemistry is a potential part of the synthetic organic chemistry, covering a wide variety of bioactive molecules. Among six-membered heterocycles, quinazoline occupies significant position and is commonly found in a wide variety of natural products, synthetic pharmaceutical molecules, and other functional materials (Gundla et al., 2008; Luth & Lowe, 2008). Quinazoline derivatives are among the most potent tyrosine kinase and cellular phosphorylation inhibitors (Fry et al., 1994), and they also show remarkable activity as antitubercular, antiviral, and anticancer agents (Kunes et al., 2000). The growing medicinal importance of these heterocycles perpetuates to provide strong rationale for the development of synthetic methods for their preparation. These efforts have led to several reviews emphasizing the synthesis (Michael, 2002; Frère et al., 2003; Langer & Bodtke, 2003), and biological evaluation of quinazolines.
In the course of a program directed toward the synthesis of new heterocyclic systems for pharmacological evaluation, we report herein the crystallographic study and the synthesis of the title compound. The molecular structure is shown in Fig. 1. The phenyl ring and chloro-substituted benzene rings form a dihedral angles of 84.97 (5) and 80.23 (4)° respectively with the benzene ring of dihydroquinazoline group. The dihedral angle between the phenyl ring and chloro-substituted benzene ring is 61.71 (5) °. In the crystal, molecules are arranged in intersecting layers parallel to (101) and (-102) (see, Fig. 2) with N—H···N hydrogen bonds linking molecules along [010] (Fig. 3). In addition, a weak C—H···π interaction is observed (Table 1).