organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1653-o1654

2-(4-Chloro­phen­yl)-4-phenyl-1,2-di­hydro­quinazoline

aLaboratoire de Synthèse des Molécules d'Intérêts Biologiques, Département de Chimie, Faculté des Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi 04000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 1 October 2013; accepted 10 October 2013; online 19 October 2013)

In the title compound, C20H15ClN2, the pyrimidine ring is in a flattened half-chair conformation. The phenyl and chloro-substituted benzene rings form dihedral angles of 84.97 (5) and 80.23 (4)°, respectively, with the benzene ring of the di­hydro­quinazoline group. The dihedral angle between the phenyl and chloro-substituted benzene rings is 61.71 (5)°. In the crystal, mol­ecules are arranged in inter­secting layers parallel to (101) and (-102), with N—H⋯N hydrogen bonds linking mol­ecules along [010]. In addition, a weak C—H⋯π inter­action is observed.

Related literature

For the preparation and applications of quinazoline derivatives, see: Gundla et al. (2008[Gundla, R., Kazemi, R., Sanam, R., Muttineni, R., Sarma, J. A. R. P., Dayam, R. & Neamati, N. (2008). J. Med. Chem. 51, 3367-3377.]); Luth & Lowe (2008[Luth, A. & Lowe, W. (2008). Eur. J. Med. Chem. 43, 1478-1488.]); Fry et al. (1994[Fry, D. W., Kraker, A. J., McMichael, A., Ambroso, L. A., Nelson, J. M., Leopold, W. R., Connors, R. W. & Bridges, A. (1994). J. Sci. 265, 1093-1095.]); Kunes et al. (2000[Kunes, J., Pour, M., Waisser, K., Slosarek, M. & Janota, J. (2000). Il Farmaco, 55, 725-729.]); Michael (2002[Michael, J. P. (2002). Nat. Prod. Rep. 19, 742-760.]); Frère et al. (2003[Frère, S., Thierry, V., Bailly, C. & Besson, T. (2003). Tetrahedron, 59, 773-779.]); Langer & Bodtke (2003[Langer, P. & Bodtke, A. (2003). Tetrahedron Lett. 44, 5965-5967.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15ClN2

  • Mr = 318.79

  • Monoclinic, P 21 /c

  • a = 9.2563 (10) Å

  • b = 10.6283 (11) Å

  • c = 17.6230 (19) Å

  • β = 116.775 (7)°

  • V = 1547.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 150 K

  • 0.18 × 0.04 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.948, Tmax = 1.000

  • 8914 measured reflections

  • 2724 independent reflections

  • 2462 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.05

  • 2724 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.830 (19) 2.316 (19) 3.1234 (18) 164.3 (19)
C11—H11⋯Cgii 0.93 2.76 3.666 (2) 165
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Heterocyclic chemistry is a potential part of the synthetic organic chemistry, covering a wide variety of bioactive molecules. Among six-membered heterocycles, quinazoline occupies significant position and is commonly found in a wide variety of natural products, synthetic pharmaceutical molecules, and other functional materials (Gundla et al., 2008; Luth & Lowe, 2008). Quinazoline derivatives are among the most potent tyrosine kinase and cellular phosphorylation inhibitors (Fry et al., 1994), and they also show remarkable activity as antitubercular, antiviral, and anticancer agents (Kunes et al., 2000). The growing medicinal importance of these heterocycles perpetuates to provide strong rationale for the development of synthetic methods for their preparation. These efforts have led to several reviews emphasizing the synthesis (Michael, 2002; Frère et al., 2003; Langer & Bodtke, 2003), and biological evaluation of quinazolines.

In the course of a program directed toward the synthesis of new heterocyclic systems for pharmacological evaluation, we report herein the crystallographic study and the synthesis of the title compound. The molecular structure is shown in Fig. 1. The phenyl ring and chloro-substituted benzene rings form a dihedral angles of 84.97 (5) and 80.23 (4)° respectively with the benzene ring of dihydroquinazoline group. The dihedral angle between the phenyl ring and chloro-substituted benzene ring is 61.71 (5) °. In the crystal, molecules are arranged in intersecting layers parallel to (101) and (-102) (see, Fig. 2) with N—H···N hydrogen bonds linking molecules along [010] (Fig. 3). In addition, a weak C—H···π interaction is observed (Table 1).

Related literature top

For the preparation and applications of quinazoline derivatives, see: Gundla et al. (2008); Luth & Lowe (2008); Fry et al. (1994); Kunes et al. (2000); Michael (2002); Frère et al. (2003); Langer & Bodtke (2003).

Experimental top

The title compound was prepared by condensation of 4-chlorobenzaldehyde (1.0 equiv), 2-aminobenzophenone (1.0 equiv), ammonium acetate (2.0 equiv), and dimethylaminopyridine (0.2 equiv.) in 5 ml of absolute ethanol at 313 K. After completion of the reaction as monitored by TLC, the reaction was poured into ice cold water; solid product was filtered, washed with water and dried. The crude product was recrystallized from ethyl acetate to give the tite compound as a yellow solid (m.p. 415–417 K). X-ray quality crystals were grown from a solution of the title compound in ethyl acetate.

Refinement top

H atoms bonded to C atoms were initially located in a difference Fourier map. However, they were subsequently placed in idealized positions and refined in a riding-model approximation. The applied constraints were as follows: Caryl—Haryl = 0.93 Å; Cmethine—Hmethine = 0.98 Å; Uiso(HarylHmethine) = 1.2Ueq(Caryl/Cmethine). Atom H1N was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure viewed along the b axis. Cl is shown in green, N in blue and C in grey. Red lines indicate hydrogen bonds.
[Figure 3] Fig. 3. Part of the crystal structure showing the hydrogen bonds N—H···N as dashed red lines.
2-(4-Chlorophenyl)-4-phenyl-1,2-dihydroquinazoline top
Crystal data top
C20H15ClN2F(000) = 664
Mr = 318.79Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4726 reflections
a = 9.2563 (10) Åθ = 2.5–25.1°
b = 10.6283 (11) ŵ = 0.25 mm1
c = 17.6230 (19) ÅT = 150 K
β = 116.775 (7)°Needle, colourless
V = 1547.8 (3) Å30.18 × 0.04 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1011
Tmin = 0.948, Tmax = 1.000k = 1212
8914 measured reflectionsl = 1721
2724 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.033P)2 + 0.9522P]
where P = (Fo2 + 2Fc2)/3
2724 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H15ClN2V = 1547.8 (3) Å3
Mr = 318.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2563 (10) ŵ = 0.25 mm1
b = 10.6283 (11) ÅT = 150 K
c = 17.6230 (19) Å0.18 × 0.04 × 0.03 mm
β = 116.775 (7)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2724 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2462 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 1.000Rint = 0.027
8914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
2724 reflectionsΔρmin = 0.26 e Å3
212 parameters
Special details top

Experimental. Spectroscopic data: IR (KBr) ν 3320, 2364 1620, 1537, 1486, 1321, 1263, 1155, 1015, 964, 805, 741, 697 cm-1; 1H NMR (CDCl3, 400 MHz) δ 7.72–7.61 (m, 5H, arom.), 7.49–7.36 (m, 4H, arom.), 7.32–7.21 (m, 2H, arom.), 6.77 (td, J=8.0,1.0 Hz, 1H, arom.), 6.72 (d, J=8.0 Hz, 1H), 6.02 (s, 1H, CH), 4.38 (s, 1H, NH); 13 C NMR (CDCl3, 100 MHz) δ 165.8, 146.9, 141.5, 141.4, 140.9, 138.1, 132.9, 130.2, 129.4, 129.3, 129.1, 128.1, 127.8, 127.5, 127.3, 127.2, 118.3, 117.9, 114.3, 72.4. Anal. calcd for C20H15N2Cl: C, 75.35; H, 4.74; N, 8.79; Found: C, 75.75; H, 4.95; N, 9.42. HRMS calcd for C20H16N2Cl (MH+) 319.0924; found 319.0863.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53121 (17)0.77886 (14)0.50548 (10)0.0165 (3)
C20.44580 (18)0.66972 (14)0.49960 (9)0.0168 (3)
H20.48410.61140.54370.02*
C30.30186 (17)0.64835 (14)0.42695 (10)0.0153 (3)
H30.2440.57480.42230.018*
C40.24323 (17)0.73546 (13)0.36111 (9)0.0130 (3)
C50.33457 (18)0.84305 (14)0.36800 (10)0.0161 (3)
H50.29810.90090.32370.019*
C60.47870 (18)0.86503 (14)0.43980 (10)0.0177 (3)
H60.53930.93670.44380.021*
C70.07957 (17)0.71954 (13)0.28323 (9)0.0131 (3)
H70.09820.720.23270.016*
C80.10527 (16)0.82529 (13)0.31836 (9)0.0124 (3)
C90.18848 (17)0.94230 (13)0.32554 (9)0.0129 (3)
C100.35237 (19)0.96183 (15)0.27479 (11)0.0239 (4)
H100.41230.9030.23340.029*
C110.42727 (19)1.06843 (15)0.28539 (11)0.0258 (4)
H110.53671.08210.25030.031*
C120.33965 (19)1.15455 (14)0.34810 (10)0.0208 (3)
H120.39061.22520.3560.025*
C130.1764 (2)1.13562 (15)0.39897 (10)0.0228 (4)
H130.11741.19360.44120.027*
C140.10031 (18)1.03001 (14)0.38718 (10)0.0188 (3)
H140.01011.01820.42080.023*
C150.08004 (16)0.59670 (13)0.33333 (9)0.0119 (3)
C160.12929 (16)0.70970 (13)0.35624 (9)0.0129 (3)
C170.20595 (17)0.70602 (14)0.40861 (9)0.0160 (3)
H170.23820.78060.4240.019*
C180.23427 (18)0.59305 (14)0.43764 (10)0.0180 (3)
H180.28420.59130.47310.022*
C190.18758 (18)0.48132 (14)0.41355 (10)0.0171 (3)
H190.20750.4050.43290.021*
C200.11248 (17)0.48210 (13)0.36158 (9)0.0140 (3)
H200.08340.40680.34530.017*
N10.00529 (14)0.60480 (12)0.28194 (8)0.0135 (3)
N20.01662 (14)0.83324 (11)0.27983 (7)0.0129 (3)
Cl10.70928 (4)0.80771 (4)0.59784 (2)0.02398 (13)
H1N0.018 (2)0.5377 (18)0.2660 (11)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0120 (7)0.0221 (8)0.0148 (7)0.0023 (6)0.0053 (6)0.0041 (6)
C20.0180 (7)0.0189 (8)0.0154 (7)0.0047 (6)0.0093 (6)0.0039 (6)
C30.0161 (7)0.0135 (7)0.0193 (8)0.0010 (6)0.0107 (6)0.0008 (6)
C40.0143 (7)0.0136 (7)0.0146 (7)0.0027 (5)0.0095 (6)0.0015 (5)
C50.0191 (8)0.0151 (7)0.0161 (7)0.0019 (6)0.0095 (6)0.0024 (6)
C60.0168 (8)0.0150 (7)0.0221 (8)0.0014 (6)0.0096 (6)0.0028 (6)
C70.0158 (7)0.0122 (7)0.0137 (7)0.0001 (5)0.0088 (6)0.0001 (5)
C80.0122 (7)0.0127 (7)0.0098 (7)0.0014 (5)0.0027 (6)0.0017 (5)
C90.0166 (7)0.0106 (7)0.0137 (7)0.0001 (5)0.0090 (6)0.0029 (5)
C100.0194 (8)0.0181 (8)0.0263 (9)0.0000 (6)0.0034 (7)0.0073 (7)
C110.0157 (8)0.0223 (8)0.0329 (9)0.0061 (6)0.0050 (7)0.0001 (7)
C120.0269 (9)0.0144 (7)0.0254 (9)0.0071 (6)0.0156 (7)0.0023 (6)
C130.0283 (9)0.0155 (8)0.0203 (8)0.0015 (6)0.0073 (7)0.0045 (6)
C140.0169 (8)0.0157 (8)0.0197 (8)0.0022 (6)0.0047 (6)0.0002 (6)
C150.0101 (7)0.0142 (7)0.0097 (7)0.0006 (5)0.0029 (5)0.0016 (5)
C160.0124 (7)0.0125 (7)0.0131 (7)0.0002 (5)0.0051 (6)0.0005 (5)
C170.0184 (8)0.0143 (7)0.0184 (8)0.0031 (6)0.0109 (6)0.0007 (6)
C180.0217 (8)0.0176 (8)0.0219 (8)0.0020 (6)0.0162 (7)0.0021 (6)
C190.0192 (8)0.0129 (7)0.0210 (8)0.0008 (6)0.0105 (6)0.0034 (6)
C200.0158 (7)0.0100 (7)0.0156 (7)0.0012 (5)0.0066 (6)0.0019 (5)
N10.0171 (6)0.0115 (6)0.0155 (6)0.0005 (5)0.0104 (5)0.0031 (5)
N20.0139 (6)0.0122 (6)0.0118 (6)0.0003 (5)0.0052 (5)0.0007 (5)
Cl10.0168 (2)0.0295 (2)0.0186 (2)0.00015 (15)0.00177 (16)0.00224 (15)
Geometric parameters (Å, º) top
C1—C21.381 (2)C10—H100.93
C1—C61.381 (2)C11—C121.382 (2)
C1—Cl11.7443 (15)C11—H110.93
C2—C31.389 (2)C12—C131.381 (2)
C2—H20.93C12—H120.93
C3—C41.389 (2)C13—C141.390 (2)
C3—H30.93C13—H130.93
C4—C51.395 (2)C14—H140.93
C4—C71.528 (2)C15—N11.3678 (19)
C5—C61.384 (2)C15—C201.399 (2)
C5—H50.93C15—C161.407 (2)
C6—H60.93C16—C171.395 (2)
C7—N11.4452 (18)C17—C181.376 (2)
C7—N21.4861 (18)C17—H170.93
C7—H70.98C18—C191.394 (2)
C8—N21.2820 (19)C18—H180.93
C8—C161.462 (2)C19—C201.377 (2)
C8—C91.4979 (19)C19—H190.93
C9—C141.384 (2)C20—H200.93
C9—C101.386 (2)N1—H1N0.831 (19)
C10—C111.384 (2)
C2—C1—C6121.37 (14)C12—C11—H11120
C2—C1—Cl1119.08 (12)C10—C11—H11120
C6—C1—Cl1119.56 (12)C13—C12—C11119.94 (14)
C1—C2—C3119.04 (13)C13—C12—H12120
C1—C2—H2120.5C11—C12—H12120
C3—C2—H2120.5C12—C13—C14120.04 (15)
C2—C3—C4120.82 (14)C12—C13—H13120
C2—C3—H3119.6C14—C13—H13120
C4—C3—H3119.6C9—C14—C13120.12 (14)
C3—C4—C5118.71 (14)C9—C14—H14119.9
C3—C4—C7122.18 (13)C13—C14—H14119.9
C5—C4—C7119.07 (13)N1—C15—C20122.97 (13)
C6—C5—C4121.00 (14)N1—C15—C16117.54 (12)
C6—C5—H5119.5C20—C15—C16119.47 (13)
C4—C5—H5119.5C17—C16—C15119.54 (13)
C1—C6—C5119.00 (14)C17—C16—C8123.56 (13)
C1—C6—H6120.5C15—C16—C8116.78 (13)
C5—C6—H6120.5C18—C17—C16120.62 (13)
N1—C7—N2111.97 (11)C18—C17—H17119.7
N1—C7—C4114.81 (12)C16—C17—H17119.7
N2—C7—C4106.24 (11)C17—C18—C19119.54 (14)
N1—C7—H7107.9C17—C18—H18120.2
N2—C7—H7107.9C19—C18—H18120.2
C4—C7—H7107.9C20—C19—C18121.08 (13)
N2—C8—C16124.23 (13)C20—C19—H19119.5
N2—C8—C9117.79 (12)C18—C19—H19119.5
C16—C8—C9117.99 (12)C19—C20—C15119.72 (13)
C14—C9—C10119.50 (14)C19—C20—H20120.1
C14—C9—C8118.79 (13)C15—C20—H20120.1
C10—C9—C8121.65 (13)C15—N1—C7118.43 (12)
C11—C10—C9120.30 (14)C15—N1—H1N117.2 (13)
C11—C10—H10119.8C7—N1—H1N120.4 (13)
C9—C10—H10119.8C8—N2—C7116.09 (12)
C12—C11—C10120.06 (15)
C6—C1—C2—C31.8 (2)C12—C13—C14—C91.2 (2)
Cl1—C1—C2—C3178.36 (11)N1—C15—C16—C17179.97 (12)
C1—C2—C3—C40.5 (2)C20—C15—C16—C171.7 (2)
C2—C3—C4—C52.2 (2)N1—C15—C16—C83.85 (19)
C2—C3—C4—C7175.49 (13)C20—C15—C16—C8174.52 (12)
C3—C4—C5—C61.8 (2)N2—C8—C16—C17170.14 (14)
C7—C4—C5—C6176.00 (13)C9—C8—C16—C179.4 (2)
C2—C1—C6—C52.2 (2)N2—C8—C16—C1513.8 (2)
Cl1—C1—C6—C5177.93 (11)C9—C8—C16—C15166.65 (12)
C4—C5—C6—C10.4 (2)C15—C16—C17—C180.3 (2)
C3—C4—C7—N12.54 (19)C8—C16—C17—C18175.64 (14)
C5—C4—C7—N1179.78 (12)C16—C17—C18—C190.8 (2)
C3—C4—C7—N2121.79 (14)C17—C18—C19—C200.4 (2)
C5—C4—C7—N255.89 (16)C18—C19—C20—C151.0 (2)
N2—C8—C9—C1479.22 (17)N1—C15—C20—C19179.72 (13)
C16—C8—C9—C14100.32 (16)C16—C15—C20—C192.0 (2)
N2—C8—C9—C10103.78 (17)C20—C15—N1—C7155.71 (13)
C16—C8—C9—C1076.68 (18)C16—C15—N1—C725.99 (18)
C14—C9—C10—C110.3 (2)N2—C7—N1—C1545.39 (17)
C8—C9—C10—C11177.24 (15)C4—C7—N1—C1575.86 (16)
C9—C10—C11—C121.6 (3)C16—C8—N2—C76.74 (19)
C10—C11—C12—C131.5 (3)C9—C8—N2—C7172.77 (12)
C11—C12—C13—C140.1 (2)N1—C7—N2—C834.69 (16)
C10—C9—C14—C131.1 (2)C4—C7—N2—C891.38 (14)
C8—C9—C14—C13175.93 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.830 (19)2.316 (19)3.1234 (18)164.3 (19)
C3—H3···N10.932.532.878 (2)102
C11—H11···Cgii0.932.763.666 (2)165
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.830 (19)2.316 (19)3.1234 (18)164.3 (19)
C11—H11···Cgii0.932.763.666 (2)165
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to all the personnel of the LSMIB laboratory and UR–CHEMS, Université Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Algeria) for financial support.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrère, S., Thierry, V., Bailly, C. & Besson, T. (2003). Tetrahedron, 59, 773–779.  Google Scholar
First citationFry, D. W., Kraker, A. J., McMichael, A., Ambroso, L. A., Nelson, J. M., Leopold, W. R., Connors, R. W. & Bridges, A. (1994). J. Sci. 265, 1093–1095.  CrossRef CAS Web of Science Google Scholar
First citationGundla, R., Kazemi, R., Sanam, R., Muttineni, R., Sarma, J. A. R. P., Dayam, R. & Neamati, N. (2008). J. Med. Chem. 51, 3367–3377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKunes, J., Pour, M., Waisser, K., Slosarek, M. & Janota, J. (2000). Il Farmaco, 55, 725–729.  Web of Science PubMed CAS Google Scholar
First citationLanger, P. & Bodtke, A. (2003). Tetrahedron Lett. 44, 5965–5967.  Web of Science CrossRef CAS Google Scholar
First citationLuth, A. & Lowe, W. (2008). Eur. J. Med. Chem. 43, 1478–1488.  Web of Science PubMed Google Scholar
First citationMichael, J. P. (2002). Nat. Prod. Rep. 19, 742–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1653-o1654
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds