metal-organic compounds
catena-Poly[bis[dimethyl(pyridine-κN)indium(III)]-μ4-benzene-1,3-diolato-bis[dimethylindium(III)]-μ4-benzene-1,3-diolato]
aDepartment of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick, E4L 1G8, Canada, and bDepartment of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
*Correspondence e-mail: gbriand@mta.ca
The title compound, [In2(CH3)4(C6H4O2)(C5H5N)] or [{(CH3)2In}(1,3-O2C6H4){In(CH3)2(py)}]n, (py = pyridine) contains two crystallographically unique InIII ions which are in distorted tetrahedral C2O2 and distorted trigonal-bipyramidal C2O2N coordination environments. The InIII coordination centers are bridged head-to-head via In—O bonds, yielding four-membered In2O2 rings and zigzag polymeric chains along [001].
CCDC reference: 967698
Related literature
For background to dimethylindium aryloxides, see: Briand et al. (2010); Beachley et al. (2003); Hausslein et al. (1999); Blake et al. (2011); Bradley et al. (1988); Trentler et al. (1997). For dimethylindium compounds with bidentate imine-alkoxide ligands, see: Hu et al. (1999); Wu et al. (1999); Pal et al. (2013); Lewinski et al. (2003); Ghoshal et al. (2007).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).
Supporting information
CCDC reference: 967698
10.1107/S1600536813028985/lh5663sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028985/lh5663Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813028985/lh5663Isup3.cdx
Under an atmosphere of dinitrogen, InMe3 (0.250 g, 1.56 mmol) was dissolved in diethyl ether (10 ml). Pyridine (0.125 g, 1.56 mmol) was added and the solution stirred for 30 min. Resorcinol (0.088 g, 0.78 mmol) was then added and the reaction mixture stirred for an additional 1 h. The reaction was then filtered and the filtrate allowed to sit at 296K. After 1 d, the solution was filtered to yield colourless crystals of [Me2In(1,3-O2C6H4)InMe2(py)]∞ (0.122 g, 0.256 mmol, 33%). Anal. Calc. for C15H21In2NO2: C, 37.77; H, 4.44; N, 2.94. Found: C, 38.32; H, 4.47; N, 2.88. F T—IR (ATR, cm-1): 618 w, 698 s, 748 m, 772 w, 829 w, 844 w, 968 s, 1003 w, 1034 w, 1142 s, 1171 s, 1213 w, 1249 m, 1299 m, 1427 w, 1441 w, 1482 m, 1467 m, 1573 s, 2283 w, 2475 w, 2881 m, 3004 m. FT-Raman (cm-1): 487 vs [νsym (Me—In—Me)], 524 w [νasym (Me—In—Me)], 994 m, 1034 m, 1159 m, 1305 w, 1586 w, 2920 m, 2982 w, 3064 m.
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).[In2(CH3)4(C6H4O2)(C5H5N)] | F(000) = 928 |
Mr = 476.97 | Dx = 1.774 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5671 reflections |
a = 9.1584 (17) Å | θ = 2.7–27.9° |
b = 14.075 (3) Å | µ = 2.58 mm−1 |
c = 13.856 (3) Å | T = 188 K |
β = 90.106 (3)° | Rod, colourless |
V = 1786.1 (6) Å3 | 0.20 × 0.03 × 0.03 mm |
Z = 4 |
Bruker P4/SMART 1000 diffractometer | 3967 independent reflections |
Radiation source: fine-focus sealed tube, K760 | 2885 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −10→11 |
Tmin = 0.626, Tmax = 0.938 | k = −18→18 |
12064 measured reflections | l = −16→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0339P)2 + 1.2232P] where P = (Fo2 + 2Fc2)/3 |
3967 reflections | (Δ/σ)max = 0.001 |
185 parameters | Δρmax = 1.02 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
[In2(CH3)4(C6H4O2)(C5H5N)] | V = 1786.1 (6) Å3 |
Mr = 476.97 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.1584 (17) Å | µ = 2.58 mm−1 |
b = 14.075 (3) Å | T = 188 K |
c = 13.856 (3) Å | 0.20 × 0.03 × 0.03 mm |
β = 90.106 (3)° |
Bruker P4/SMART 1000 diffractometer | 3967 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 2885 reflections with I > 2σ(I) |
Tmin = 0.626, Tmax = 0.938 | Rint = 0.039 |
12064 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.16 | Δρmax = 1.02 e Å−3 |
3967 reflections | Δρmin = −0.72 e Å−3 |
185 parameters |
Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
In1 | 0.12136 (4) | 0.57110 (3) | 0.43640 (3) | 0.03464 (12) | |
In2 | 0.11428 (4) | 0.39665 (3) | 1.01934 (3) | 0.02955 (11) | |
O1 | 0.0623 (4) | 0.5253 (3) | 0.5809 (2) | 0.0361 (8) | |
O2 | 0.0754 (3) | 0.5316 (2) | 0.9254 (2) | 0.0300 (8) | |
N1 | 0.0635 (5) | 0.2789 (3) | 1.1488 (3) | 0.0396 (11) | |
C1 | 0.0184 (8) | 0.7054 (5) | 0.4259 (6) | 0.073 (2) | |
H1A | 0.0580 | 0.7480 | 0.4755 | 0.109* | |
H1B | −0.0870 | 0.6980 | 0.4356 | 0.109* | |
H1C | 0.0365 | 0.7325 | 0.3619 | 0.109* | |
C2 | 0.3108 (7) | 0.4920 (5) | 0.3979 (5) | 0.0631 (19) | |
H2A | 0.3153 | 0.4856 | 0.3276 | 0.095* | |
H2B | 0.3060 | 0.4288 | 0.4275 | 0.095* | |
H2C | 0.3981 | 0.5253 | 0.4211 | 0.095* | |
C3 | 0.0431 (7) | 0.3018 (4) | 0.9068 (4) | 0.0562 (17) | |
H3A | 0.1234 | 0.2910 | 0.8616 | 0.084* | |
H3B | −0.0397 | 0.3302 | 0.8724 | 0.084* | |
H3C | 0.0130 | 0.2412 | 0.9353 | 0.084* | |
C4 | 0.3053 (6) | 0.4553 (4) | 1.0846 (4) | 0.0454 (15) | |
H4A | 0.3067 | 0.5242 | 1.0746 | 0.068* | |
H4B | 0.3923 | 0.4269 | 1.0553 | 0.068* | |
H4C | 0.3047 | 0.4417 | 1.1540 | 0.068* | |
C5 | 0.1383 (5) | 0.5416 (3) | 0.6650 (3) | 0.0270 (10) | |
C6 | 0.0693 (5) | 0.5259 (3) | 0.7530 (3) | 0.0277 (11) | |
H6 | −0.0282 | 0.5029 | 0.7544 | 0.033* | |
C7 | 0.1435 (5) | 0.5439 (3) | 0.8395 (3) | 0.0264 (10) | |
C8 | 0.2872 (5) | 0.5754 (4) | 0.8361 (4) | 0.0314 (11) | |
H8 | 0.3395 | 0.5870 | 0.8941 | 0.038* | |
C9 | 0.3536 (6) | 0.5897 (4) | 0.7479 (4) | 0.0371 (13) | |
H9 | 0.4518 | 0.6115 | 0.7462 | 0.044* | |
C10 | 0.2808 (5) | 0.5731 (3) | 0.6622 (3) | 0.0311 (11) | |
H10 | 0.3282 | 0.5832 | 0.6022 | 0.037* | |
C11 | −0.0627 (6) | 0.2311 (4) | 1.1471 (5) | 0.0464 (14) | |
H11 | −0.1250 | 0.2380 | 1.0927 | 0.056* | |
C12 | −0.1062 (7) | 0.1719 (4) | 1.2216 (5) | 0.0572 (17) | |
H12 | −0.1960 | 0.1383 | 1.2176 | 0.069* | |
C13 | −0.0192 (8) | 0.1624 (5) | 1.3002 (5) | 0.066 (2) | |
H13 | −0.0476 | 0.1223 | 1.3520 | 0.080* | |
C14 | 0.1099 (8) | 0.2112 (5) | 1.3044 (5) | 0.0614 (18) | |
H14 | 0.1723 | 0.2061 | 1.3590 | 0.074* | |
C15 | 0.1467 (7) | 0.2677 (4) | 1.2274 (4) | 0.0479 (15) | |
H15 | 0.2369 | 0.3010 | 1.2302 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
In1 | 0.0337 (2) | 0.0504 (2) | 0.0198 (2) | −0.00910 (16) | 0.00038 (15) | 0.00502 (16) |
In2 | 0.0284 (2) | 0.0370 (2) | 0.02328 (19) | 0.00222 (15) | 0.00004 (14) | −0.00206 (15) |
O1 | 0.035 (2) | 0.058 (2) | 0.0152 (17) | −0.0138 (17) | −0.0001 (15) | 0.0008 (16) |
O2 | 0.0281 (18) | 0.047 (2) | 0.0149 (17) | 0.0054 (15) | 0.0021 (14) | 0.0016 (15) |
N1 | 0.039 (3) | 0.040 (3) | 0.040 (3) | 0.001 (2) | 0.004 (2) | 0.003 (2) |
C1 | 0.080 (5) | 0.058 (4) | 0.081 (5) | −0.005 (4) | −0.005 (4) | 0.018 (4) |
C2 | 0.043 (4) | 0.103 (6) | 0.044 (4) | −0.001 (4) | 0.004 (3) | −0.014 (4) |
C3 | 0.078 (5) | 0.054 (4) | 0.037 (3) | −0.002 (3) | 0.002 (3) | −0.018 (3) |
C4 | 0.034 (3) | 0.051 (4) | 0.051 (4) | −0.007 (3) | −0.011 (3) | 0.011 (3) |
C5 | 0.035 (3) | 0.032 (3) | 0.014 (2) | −0.001 (2) | −0.001 (2) | 0.0007 (19) |
C6 | 0.022 (2) | 0.040 (3) | 0.022 (3) | −0.004 (2) | −0.001 (2) | 0.000 (2) |
C7 | 0.031 (3) | 0.030 (3) | 0.019 (2) | 0.006 (2) | 0.001 (2) | 0.001 (2) |
C8 | 0.028 (3) | 0.048 (3) | 0.018 (2) | −0.003 (2) | −0.004 (2) | −0.001 (2) |
C9 | 0.025 (3) | 0.058 (4) | 0.029 (3) | −0.007 (2) | −0.001 (2) | 0.004 (2) |
C10 | 0.031 (3) | 0.046 (3) | 0.016 (2) | −0.007 (2) | 0.003 (2) | −0.001 (2) |
C11 | 0.049 (4) | 0.040 (3) | 0.050 (4) | −0.003 (3) | −0.002 (3) | 0.001 (3) |
C12 | 0.049 (4) | 0.047 (4) | 0.076 (5) | −0.010 (3) | 0.009 (4) | 0.009 (3) |
C13 | 0.065 (5) | 0.065 (5) | 0.069 (5) | 0.001 (4) | 0.013 (4) | 0.024 (4) |
C14 | 0.073 (5) | 0.069 (5) | 0.042 (4) | 0.011 (4) | −0.004 (3) | 0.020 (3) |
C15 | 0.050 (4) | 0.048 (4) | 0.046 (4) | 0.001 (3) | 0.002 (3) | 0.008 (3) |
In1—C1 | 2.118 (7) | C3—H3C | 0.9800 |
In1—C2 | 2.130 (6) | C4—H4A | 0.9800 |
In1—O1 | 2.172 (3) | C4—H4B | 0.9800 |
In1—O1i | 2.174 (3) | C4—H4C | 0.9800 |
In2—C4 | 2.134 (5) | C5—C10 | 1.379 (7) |
In2—O2ii | 2.152 (3) | C5—C6 | 1.393 (6) |
In2—C3 | 2.152 (5) | C6—C7 | 1.400 (6) |
In2—O2 | 2.330 (3) | C6—H6 | 0.9500 |
In2—N1 | 2.486 (4) | C7—C8 | 1.390 (7) |
O1—C5 | 1.376 (5) | C8—C9 | 1.380 (7) |
O1—In1i | 2.174 (3) | C8—H8 | 0.9500 |
O2—C7 | 1.355 (5) | C9—C10 | 1.381 (7) |
O2—In2ii | 2.152 (3) | C9—H9 | 0.9500 |
N1—C11 | 1.337 (7) | C10—H10 | 0.9500 |
N1—C15 | 1.338 (7) | C11—C12 | 1.385 (8) |
C1—H1A | 0.9800 | C11—H11 | 0.9500 |
C1—H1B | 0.9800 | C12—C13 | 1.355 (9) |
C1—H1C | 0.9800 | C12—H12 | 0.9500 |
C2—H2A | 0.9800 | C13—C14 | 1.368 (9) |
C2—H2B | 0.9800 | C13—H13 | 0.9500 |
C2—H2C | 0.9800 | C14—C15 | 1.373 (8) |
C3—H3A | 0.9800 | C14—H14 | 0.9500 |
C3—H3B | 0.9800 | C15—H15 | 0.9500 |
C1—In1—C2 | 144.3 (3) | H3A—C3—H3C | 109.5 |
C1—In1—O1 | 102.5 (2) | H3B—C3—H3C | 109.5 |
C2—In1—O1 | 106.3 (2) | In2—C4—H4A | 109.5 |
C1—In1—O1i | 101.9 (2) | In2—C4—H4B | 109.5 |
C2—In1—O1i | 106.1 (2) | H4A—C4—H4B | 109.5 |
O1—In1—O1i | 73.87 (14) | In2—C4—H4C | 109.5 |
C4—In2—O2ii | 109.25 (19) | H4A—C4—H4C | 109.5 |
C4—In2—C3 | 142.5 (2) | H4B—C4—H4C | 109.5 |
O2ii—In2—C3 | 107.8 (2) | O1—C5—C10 | 120.5 (4) |
C4—In2—O2 | 92.62 (17) | O1—C5—C6 | 119.0 (4) |
O2ii—In2—O2 | 72.15 (13) | C10—C5—C6 | 120.4 (4) |
C3—In2—O2 | 93.2 (2) | C5—C6—C7 | 120.0 (4) |
C4—In2—N1 | 96.11 (19) | C5—C6—H6 | 120.0 |
O2ii—In2—N1 | 84.49 (13) | C7—C6—H6 | 120.0 |
C3—In2—N1 | 93.0 (2) | O2—C7—C8 | 120.5 (4) |
O2—In2—N1 | 156.63 (13) | O2—C7—C6 | 120.3 (4) |
C5—O1—In1 | 127.2 (3) | C8—C7—C6 | 119.1 (4) |
C5—O1—In1i | 126.0 (3) | C9—C8—C7 | 119.8 (5) |
In1—O1—In1i | 106.13 (14) | C9—C8—H8 | 120.1 |
C7—O2—In2ii | 128.7 (3) | C7—C8—H8 | 120.1 |
C7—O2—In2 | 121.6 (3) | C8—C9—C10 | 121.5 (5) |
In2ii—O2—In2 | 107.85 (13) | C8—C9—H9 | 119.2 |
C11—N1—C15 | 116.4 (5) | C10—C9—H9 | 119.2 |
C11—N1—In2 | 119.1 (4) | C5—C10—C9 | 119.1 (4) |
C15—N1—In2 | 124.0 (4) | C5—C10—H10 | 120.4 |
In1—C1—H1A | 109.5 | C9—C10—H10 | 120.4 |
In1—C1—H1B | 109.5 | N1—C11—C12 | 122.7 (6) |
H1A—C1—H1B | 109.5 | N1—C11—H11 | 118.7 |
In1—C1—H1C | 109.5 | C12—C11—H11 | 118.7 |
H1A—C1—H1C | 109.5 | C13—C12—C11 | 119.2 (6) |
H1B—C1—H1C | 109.5 | C13—C12—H12 | 120.4 |
In1—C2—H2A | 109.5 | C11—C12—H12 | 120.4 |
In1—C2—H2B | 109.5 | C12—C13—C14 | 119.5 (6) |
H2A—C2—H2B | 109.5 | C12—C13—H13 | 120.3 |
In1—C2—H2C | 109.5 | C14—C13—H13 | 120.3 |
H2A—C2—H2C | 109.5 | C13—C14—C15 | 118.1 (7) |
H2B—C2—H2C | 109.5 | C13—C14—H14 | 120.9 |
In2—C3—H3A | 109.5 | C15—C14—H14 | 120.9 |
In2—C3—H3B | 109.5 | N1—C15—C14 | 124.1 (6) |
H3A—C3—H3B | 109.5 | N1—C15—H15 | 118.0 |
In2—C3—H3C | 109.5 | C14—C15—H15 | 118.0 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [In2(CH3)4(C6H4O2)(C5H5N)] |
Mr | 476.97 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 188 |
a, b, c (Å) | 9.1584 (17), 14.075 (3), 13.856 (3) |
β (°) | 90.106 (3) |
V (Å3) | 1786.1 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.58 |
Crystal size (mm) | 0.20 × 0.03 × 0.03 |
Data collection | |
Diffractometer | Bruker P4/SMART 1000 diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.626, 0.938 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12064, 3967, 2885 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.087, 1.16 |
No. of reflections | 3967 |
No. of parameters | 185 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.02, −0.72 |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008b), SHELXL2013 (Sheldrick, 2008b), DIAMOND (Brandenburg, 2012), SHELXTL (Sheldrick, 2008b).
Acknowledgements
This work was supported by the Natural Sciences and Engineering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.
References
Beachley, O. T. Jr, MacRae, D. J. & Kovalevsky, A. Y. (2003). Organometallics, 22, 1690–1695. CAS Google Scholar
Blake, M. P., Schwarz, A. D. & Mountford, P. (2011). Organometallics, 30, 1202–1214. Web of Science CSD CrossRef CAS Google Scholar
Bradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). Organometallics, 7, 1112–1115. CSD CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Briand, G. G., Decken, A. & Hamilton, N. S. (2010). Dalton Trans. 39, 3833–3841. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ghoshal, S., Wadawale, A., Jain, V. K. & Nethaji, M. (2007). J. Chem. Res. pp. 221–225. Web of Science CrossRef Google Scholar
Hausslein, M., Hausen, H.-D., Klinkhammer, K. W., Weidlein, J. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 1608–1618. CAS Google Scholar
Hu, J.-Z., Yang, M., Wu, X.-S., Pan, Y., Liu, Y.-J. & Sun, X.-Z. (1999). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 347–350. CAS Google Scholar
Lewinski, J., Zachara, J., Starowieyski, K. B., Ochal, Z., Justyniak, I., Kopec, T., Stolarzewicz, P. & Dranka, M. (2003). Organometallics, 22, 3773–3780. Web of Science CSD CrossRef CAS Google Scholar
Pal, M. K., Kushwah, N., Manna, D., Wadawale, A., Sudarsan, V., Ghanty, T. K. & Jain, V. K. (2013). Organometallics, 32, 104–111. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trentler, T. J., Goel, S. C., Hickman, K. M., Viano, A. M., Chiang, M. Y., Beatty, A. M., Gibbons, P. C. & Buhro, W. E. (1997). J. Am. Chem. Soc. 119, 2172–2181. CSD CrossRef CAS Web of Science Google Scholar
Wu, X.-S., Pan, Y., Sun, X.-Z. & Zhu, Y. (1999). Jiegou Huaxue (Chin. J. Struct. Chem.), 18, 418–422. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dimethylindium aryloxides [Me2InOR]2 form dimeric structures in the solid state via intermolecular In—O coordinate bonding interactions (Briand et al., 2010; Beachley et al., 2003; Hausslein et al., 1999; Blake et al., 2011; Bradley et al., 1988; Trentler et al., 1997). These structures feature distorted tetrahedral geometries at In, distorted trigonal planar or slightly pyramidal geometries at O, and symmetric near planar In2O2 ring cores. Substitution of monodentate alkoxide (–OR) ligands with bidentate imine-alkoxide ligands additionally results in an intramolecular In—N coordination, yielding distorted trigonal bipyramidal In centres and asymmetric In2O2 rings (Hu et al., 1999; Wu et al., 1999; Pal et al., 2013; Lewinski et al., 2003; Ghoshal et al., 2007). The molecular structure of (I) (Fig. 1) shows two crystallographically unique In atoms. In addition to the In1—O1 bond, In1 exhibits an intermolecular In1—O1i interaction. This results in a distorted tetrahedral C2O2 bonding environment for indium [C1—In1—C2 = 144.3 (3), O1—In1—O1i = 73.87 (14)°] and a symmetric In2O2 ring structure [In1—O1 = 2.172 (3), In1—O1i = 2.174 (3) Å]. Similarly, In2 is coordinated to two methyl C atoms [C3 and C4] and two aryloxide O atoms [O2 and O2ii], but is is also coordinated by the N atom of a pyridine molecule [2.486 (4) Å]. This results in a distorted trigonal bypyramidal C2O2N bonding environment for In, with the two methyl C atoms and a bridging O atom in equatorial positions [C3—In2—C4 = 142.5 (2), C3—In2—O2ii = 107.8 (2), C4—In2—O2ii = 109.25 (19)°], and the pyridine N atom and a bridging O atom in axial positions [O2—In2—N1 = 156.63 (13)°]. The axial In2—O2 bond distance [2.330 (3) Å] is longer than the equatorial In2—O2ii bond distance [2.152 (3) Å], presumably as a result of the trans influence of the pyridine N atom, resulting in an asymmetric In2O2 ring. The two unique In2O2 rings are bridged by the 1,3-benzenediolate phenyl ring, giving a zigzag polymeric structure along [001] (Fig. 2).