metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[bis­­[dimeth­yl(pyridine-κN)indium(III)]-μ4-benzene-1,3-diolato-bis­­[di­methyl­indium(III)]-μ4-benzene-1,3-diolato]

aDepartment of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick, E4L 1G8, Canada, and bDepartment of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
*Correspondence e-mail: gbriand@mta.ca

(Received 9 October 2013; accepted 22 October 2013; online 26 October 2013)

The title compound, [In2(CH3)4(C6H4O2)(C5H5N)] or [{(CH3)2In}(1,3-O2C6H4){In(CH3)2(py)}]n, (py = pyridine) contains two crystallographically unique InIII ions which are in distorted tetra­hedral C2O2 and distorted trigonal-bipyramidal C2O2N coordination environments. The InIII coordination centers are bridged head-to-head via In—O bonds, yielding four-membered In2O2 rings and zigzag polymeric chains along [001].

Related literature

For background to di­methyl­indium aryl­oxides, see: Briand et al. (2010[Briand, G. G., Decken, A. & Hamilton, N. S. (2010). Dalton Trans. 39, 3833-3841.]); Beachley et al. (2003[Beachley, O. T. Jr, MacRae, D. J. & Kovalevsky, A. Y. (2003). Organometallics, 22, 1690-1695.]); Hausslein et al. (1999[Hausslein, M., Hausen, H.-D., Klinkhammer, K. W., Weidlein, J. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 1608-1618.]); Blake et al. (2011[Blake, M. P., Schwarz, A. D. & Mountford, P. (2011). Organometallics, 30, 1202-1214.]); Bradley et al. (1988[Bradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). Organometallics, 7, 1112-1115.]); Trentler et al. (1997[Trentler, T. J., Goel, S. C., Hickman, K. M., Viano, A. M., Chiang, M. Y., Beatty, A. M., Gibbons, P. C. & Buhro, W. E. (1997). J. Am. Chem. Soc. 119, 2172-2181.]). For di­methyl­indium compounds with bidentate imine-alkoxide ligands, see: Hu et al. (1999[Hu, J.-Z., Yang, M., Wu, X.-S., Pan, Y., Liu, Y.-J. & Sun, X.-Z. (1999). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 347-350.]); Wu et al. (1999[Wu, X.-S., Pan, Y., Sun, X.-Z. & Zhu, Y. (1999). Jiegou Huaxue (Chin. J. Struct. Chem.), 18, 418-422.]); Pal et al. (2013[Pal, M. K., Kushwah, N., Manna, D., Wadawale, A., Sudarsan, V., Ghanty, T. K. & Jain, V. K. (2013). Organometallics, 32, 104-111.]); Lewinski et al. (2003[Lewinski, J., Zachara, J., Starowieyski, K. B., Ochal, Z., Justyniak, I., Kopec, T., Stolarzewicz, P. & Dranka, M. (2003). Organometallics, 22, 3773-3780.]); Ghoshal et al. (2007[Ghoshal, S., Wadawale, A., Jain, V. K. & Nethaji, M. (2007). J. Chem. Res. pp. 221-225.]).

[Scheme 1]

Experimental

Crystal data
  • [In2(CH3)4(C6H4O2)(C5H5N)]

  • Mr = 476.97

  • Monoclinic, P 21 /n

  • a = 9.1584 (17) Å

  • b = 14.075 (3) Å

  • c = 13.856 (3) Å

  • β = 90.106 (3)°

  • V = 1786.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.58 mm−1

  • T = 188 K

  • 0.20 × 0.03 × 0.03 mm

Data collection
  • Bruker P4/SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.626, Tmax = 0.938

  • 12064 measured reflections

  • 3967 independent reflections

  • 2885 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.16

  • 3967 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Dimethylindium aryloxides [Me2InOR]2 form dimeric structures in the solid state via intermolecular In—O coordinate bonding interactions (Briand et al., 2010; Beachley et al., 2003; Hausslein et al., 1999; Blake et al., 2011; Bradley et al., 1988; Trentler et al., 1997). These structures feature distorted tetrahedral geometries at In, distorted trigonal planar or slightly pyramidal geometries at O, and symmetric near planar In2O2 ring cores. Substitution of monodentate alkoxide (–OR) ligands with bidentate imine-alkoxide ligands additionally results in an intramolecular In—N coordination, yielding distorted trigonal bipyramidal In centres and asymmetric In2O2 rings (Hu et al., 1999; Wu et al., 1999; Pal et al., 2013; Lewinski et al., 2003; Ghoshal et al., 2007). The molecular structure of (I) (Fig. 1) shows two crystallographically unique In atoms. In addition to the In1—O1 bond, In1 exhibits an intermolecular In1—O1i interaction. This results in a distorted tetrahedral C2O2 bonding environment for indium [C1—In1—C2 = 144.3 (3), O1—In1—O1i = 73.87 (14)°] and a symmetric In2O2 ring structure [In1—O1 = 2.172 (3), In1—O1i = 2.174 (3) Å]. Similarly, In2 is coordinated to two methyl C atoms [C3 and C4] and two aryloxide O atoms [O2 and O2ii], but is is also coordinated by the N atom of a pyridine molecule [2.486 (4) Å]. This results in a distorted trigonal bypyramidal C2O2N bonding environment for In, with the two methyl C atoms and a bridging O atom in equatorial positions [C3—In2—C4 = 142.5 (2), C3—In2—O2ii = 107.8 (2), C4—In2—O2ii = 109.25 (19)°], and the pyridine N atom and a bridging O atom in axial positions [O2—In2—N1 = 156.63 (13)°]. The axial In2—O2 bond distance [2.330 (3) Å] is longer than the equatorial In2—O2ii bond distance [2.152 (3) Å], presumably as a result of the trans influence of the pyridine N atom, resulting in an asymmetric In2O2 ring. The two unique In2O2 rings are bridged by the 1,3-benzenediolate phenyl ring, giving a zigzag polymeric structure along [001] (Fig. 2).

Related literature top

For background to dimethylindium aryloxides, see: Briand et al. (2010); Beachley et al. (2003); Hausslein et al. (1999); Blake et al. (2011); Bradley et al. (1988); Trentler et al. (1997). For dimethylindium compounds with bidentate imine-alkoxide ligands, see: Hu et al. (1999); Wu et al. (1999); Pal et al. (2013); Lewinski et al. (2003); Ghoshal et al. (2007).

Experimental top

Under an atmosphere of dinitrogen, InMe3 (0.250 g, 1.56 mmol) was dissolved in diethyl ether (10 ml). Pyridine (0.125 g, 1.56 mmol) was added and the solution stirred for 30 min. Resorcinol (0.088 g, 0.78 mmol) was then added and the reaction mixture stirred for an additional 1 h. The reaction was then filtered and the filtrate allowed to sit at 296K. After 1 d, the solution was filtered to yield colourless crystals of [Me2In(1,3-O2C6H4)InMe2(py)] (0.122 g, 0.256 mmol, 33%). Anal. Calc. for C15H21In2NO2: C, 37.77; H, 4.44; N, 2.94. Found: C, 38.32; H, 4.47; N, 2.88. F T—IR (ATR, cm-1): 618 w, 698 s, 748 m, 772 w, 829 w, 844 w, 968 s, 1003 w, 1034 w, 1142 s, 1171 s, 1213 w, 1249 m, 1299 m, 1427 w, 1441 w, 1482 m, 1467 m, 1573 s, 2283 w, 2475 w, 2881 m, 3004 m. FT-Raman (cm-1): 487 vs [νsym (Me—In—Me)], 524 w [νasym (Me—In—Me)], 994 m, 1034 m, 1159 m, 1305 w, 1586 w, 2920 m, 2982 w, 3064 m.

Refinement top

Hydrogen atoms were included in calculated positions and refined using a riding model.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -x, 1 - y, 1 - z; (ii) -x, 1 - y, 2 - z.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the zigzag polymeric structure along [001], with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -x, 1 - y, 1 - z; (ii) -x, 1 - y, 2 - z.
catena-Poly[bis[dimethyl(pyridine-κN)indium(III)]-µ4-benzene-1,3-diolato-bis[dimethylindium(III)]-µ4-benzene-1,3-diolato] top
Crystal data top
[In2(CH3)4(C6H4O2)(C5H5N)]F(000) = 928
Mr = 476.97Dx = 1.774 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5671 reflections
a = 9.1584 (17) Åθ = 2.7–27.9°
b = 14.075 (3) ŵ = 2.58 mm1
c = 13.856 (3) ÅT = 188 K
β = 90.106 (3)°Rod, colourless
V = 1786.1 (6) Å30.20 × 0.03 × 0.03 mm
Z = 4
Data collection top
Bruker P4/SMART 1000
diffractometer
3967 independent reflections
Radiation source: fine-focus sealed tube, K7602885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1011
Tmin = 0.626, Tmax = 0.938k = 1818
12064 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0339P)2 + 1.2232P]
where P = (Fo2 + 2Fc2)/3
3967 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[In2(CH3)4(C6H4O2)(C5H5N)]V = 1786.1 (6) Å3
Mr = 476.97Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1584 (17) ŵ = 2.58 mm1
b = 14.075 (3) ÅT = 188 K
c = 13.856 (3) Å0.20 × 0.03 × 0.03 mm
β = 90.106 (3)°
Data collection top
Bruker P4/SMART 1000
diffractometer
3967 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2885 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.938Rint = 0.039
12064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.16Δρmax = 1.02 e Å3
3967 reflectionsΔρmin = 0.72 e Å3
185 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.12136 (4)0.57110 (3)0.43640 (3)0.03464 (12)
In20.11428 (4)0.39665 (3)1.01934 (3)0.02955 (11)
O10.0623 (4)0.5253 (3)0.5809 (2)0.0361 (8)
O20.0754 (3)0.5316 (2)0.9254 (2)0.0300 (8)
N10.0635 (5)0.2789 (3)1.1488 (3)0.0396 (11)
C10.0184 (8)0.7054 (5)0.4259 (6)0.073 (2)
H1A0.05800.74800.47550.109*
H1B0.08700.69800.43560.109*
H1C0.03650.73250.36190.109*
C20.3108 (7)0.4920 (5)0.3979 (5)0.0631 (19)
H2A0.31530.48560.32760.095*
H2B0.30600.42880.42750.095*
H2C0.39810.52530.42110.095*
C30.0431 (7)0.3018 (4)0.9068 (4)0.0562 (17)
H3A0.12340.29100.86160.084*
H3B0.03970.33020.87240.084*
H3C0.01300.24120.93530.084*
C40.3053 (6)0.4553 (4)1.0846 (4)0.0454 (15)
H4A0.30670.52421.07460.068*
H4B0.39230.42691.05530.068*
H4C0.30470.44171.15400.068*
C50.1383 (5)0.5416 (3)0.6650 (3)0.0270 (10)
C60.0693 (5)0.5259 (3)0.7530 (3)0.0277 (11)
H60.02820.50290.75440.033*
C70.1435 (5)0.5439 (3)0.8395 (3)0.0264 (10)
C80.2872 (5)0.5754 (4)0.8361 (4)0.0314 (11)
H80.33950.58700.89410.038*
C90.3536 (6)0.5897 (4)0.7479 (4)0.0371 (13)
H90.45180.61150.74620.044*
C100.2808 (5)0.5731 (3)0.6622 (3)0.0311 (11)
H100.32820.58320.60220.037*
C110.0627 (6)0.2311 (4)1.1471 (5)0.0464 (14)
H110.12500.23801.09270.056*
C120.1062 (7)0.1719 (4)1.2216 (5)0.0572 (17)
H120.19600.13831.21760.069*
C130.0192 (8)0.1624 (5)1.3002 (5)0.066 (2)
H130.04760.12231.35200.080*
C140.1099 (8)0.2112 (5)1.3044 (5)0.0614 (18)
H140.17230.20611.35900.074*
C150.1467 (7)0.2677 (4)1.2274 (4)0.0479 (15)
H150.23690.30101.23020.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.0337 (2)0.0504 (2)0.0198 (2)0.00910 (16)0.00038 (15)0.00502 (16)
In20.0284 (2)0.0370 (2)0.02328 (19)0.00222 (15)0.00004 (14)0.00206 (15)
O10.035 (2)0.058 (2)0.0152 (17)0.0138 (17)0.0001 (15)0.0008 (16)
O20.0281 (18)0.047 (2)0.0149 (17)0.0054 (15)0.0021 (14)0.0016 (15)
N10.039 (3)0.040 (3)0.040 (3)0.001 (2)0.004 (2)0.003 (2)
C10.080 (5)0.058 (4)0.081 (5)0.005 (4)0.005 (4)0.018 (4)
C20.043 (4)0.103 (6)0.044 (4)0.001 (4)0.004 (3)0.014 (4)
C30.078 (5)0.054 (4)0.037 (3)0.002 (3)0.002 (3)0.018 (3)
C40.034 (3)0.051 (4)0.051 (4)0.007 (3)0.011 (3)0.011 (3)
C50.035 (3)0.032 (3)0.014 (2)0.001 (2)0.001 (2)0.0007 (19)
C60.022 (2)0.040 (3)0.022 (3)0.004 (2)0.001 (2)0.000 (2)
C70.031 (3)0.030 (3)0.019 (2)0.006 (2)0.001 (2)0.001 (2)
C80.028 (3)0.048 (3)0.018 (2)0.003 (2)0.004 (2)0.001 (2)
C90.025 (3)0.058 (4)0.029 (3)0.007 (2)0.001 (2)0.004 (2)
C100.031 (3)0.046 (3)0.016 (2)0.007 (2)0.003 (2)0.001 (2)
C110.049 (4)0.040 (3)0.050 (4)0.003 (3)0.002 (3)0.001 (3)
C120.049 (4)0.047 (4)0.076 (5)0.010 (3)0.009 (4)0.009 (3)
C130.065 (5)0.065 (5)0.069 (5)0.001 (4)0.013 (4)0.024 (4)
C140.073 (5)0.069 (5)0.042 (4)0.011 (4)0.004 (3)0.020 (3)
C150.050 (4)0.048 (4)0.046 (4)0.001 (3)0.002 (3)0.008 (3)
Geometric parameters (Å, º) top
In1—C12.118 (7)C3—H3C0.9800
In1—C22.130 (6)C4—H4A0.9800
In1—O12.172 (3)C4—H4B0.9800
In1—O1i2.174 (3)C4—H4C0.9800
In2—C42.134 (5)C5—C101.379 (7)
In2—O2ii2.152 (3)C5—C61.393 (6)
In2—C32.152 (5)C6—C71.400 (6)
In2—O22.330 (3)C6—H60.9500
In2—N12.486 (4)C7—C81.390 (7)
O1—C51.376 (5)C8—C91.380 (7)
O1—In1i2.174 (3)C8—H80.9500
O2—C71.355 (5)C9—C101.381 (7)
O2—In2ii2.152 (3)C9—H90.9500
N1—C111.337 (7)C10—H100.9500
N1—C151.338 (7)C11—C121.385 (8)
C1—H1A0.9800C11—H110.9500
C1—H1B0.9800C12—C131.355 (9)
C1—H1C0.9800C12—H120.9500
C2—H2A0.9800C13—C141.368 (9)
C2—H2B0.9800C13—H130.9500
C2—H2C0.9800C14—C151.373 (8)
C3—H3A0.9800C14—H140.9500
C3—H3B0.9800C15—H150.9500
C1—In1—C2144.3 (3)H3A—C3—H3C109.5
C1—In1—O1102.5 (2)H3B—C3—H3C109.5
C2—In1—O1106.3 (2)In2—C4—H4A109.5
C1—In1—O1i101.9 (2)In2—C4—H4B109.5
C2—In1—O1i106.1 (2)H4A—C4—H4B109.5
O1—In1—O1i73.87 (14)In2—C4—H4C109.5
C4—In2—O2ii109.25 (19)H4A—C4—H4C109.5
C4—In2—C3142.5 (2)H4B—C4—H4C109.5
O2ii—In2—C3107.8 (2)O1—C5—C10120.5 (4)
C4—In2—O292.62 (17)O1—C5—C6119.0 (4)
O2ii—In2—O272.15 (13)C10—C5—C6120.4 (4)
C3—In2—O293.2 (2)C5—C6—C7120.0 (4)
C4—In2—N196.11 (19)C5—C6—H6120.0
O2ii—In2—N184.49 (13)C7—C6—H6120.0
C3—In2—N193.0 (2)O2—C7—C8120.5 (4)
O2—In2—N1156.63 (13)O2—C7—C6120.3 (4)
C5—O1—In1127.2 (3)C8—C7—C6119.1 (4)
C5—O1—In1i126.0 (3)C9—C8—C7119.8 (5)
In1—O1—In1i106.13 (14)C9—C8—H8120.1
C7—O2—In2ii128.7 (3)C7—C8—H8120.1
C7—O2—In2121.6 (3)C8—C9—C10121.5 (5)
In2ii—O2—In2107.85 (13)C8—C9—H9119.2
C11—N1—C15116.4 (5)C10—C9—H9119.2
C11—N1—In2119.1 (4)C5—C10—C9119.1 (4)
C15—N1—In2124.0 (4)C5—C10—H10120.4
In1—C1—H1A109.5C9—C10—H10120.4
In1—C1—H1B109.5N1—C11—C12122.7 (6)
H1A—C1—H1B109.5N1—C11—H11118.7
In1—C1—H1C109.5C12—C11—H11118.7
H1A—C1—H1C109.5C13—C12—C11119.2 (6)
H1B—C1—H1C109.5C13—C12—H12120.4
In1—C2—H2A109.5C11—C12—H12120.4
In1—C2—H2B109.5C12—C13—C14119.5 (6)
H2A—C2—H2B109.5C12—C13—H13120.3
In1—C2—H2C109.5C14—C13—H13120.3
H2A—C2—H2C109.5C13—C14—C15118.1 (7)
H2B—C2—H2C109.5C13—C14—H14120.9
In2—C3—H3A109.5C15—C14—H14120.9
In2—C3—H3B109.5N1—C15—C14124.1 (6)
H3A—C3—H3B109.5N1—C15—H15118.0
In2—C3—H3C109.5C14—C15—H15118.0
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[In2(CH3)4(C6H4O2)(C5H5N)]
Mr476.97
Crystal system, space groupMonoclinic, P21/n
Temperature (K)188
a, b, c (Å)9.1584 (17), 14.075 (3), 13.856 (3)
β (°) 90.106 (3)
V3)1786.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.58
Crystal size (mm)0.20 × 0.03 × 0.03
Data collection
DiffractometerBruker P4/SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.626, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
12064, 3967, 2885
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.16
No. of reflections3967
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.72

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008b), SHELXL2013 (Sheldrick, 2008b), DIAMOND (Brandenburg, 2012), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.

References

First citationBeachley, O. T. Jr, MacRae, D. J. & Kovalevsky, A. Y. (2003). Organometallics, 22, 1690–1695.  CAS Google Scholar
First citationBlake, M. P., Schwarz, A. D. & Mountford, P. (2011). Organometallics, 30, 1202–1214.  Web of Science CSD CrossRef CAS Google Scholar
First citationBradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). Organometallics, 7, 1112–1115.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBriand, G. G., Decken, A. & Hamilton, N. S. (2010). Dalton Trans. 39, 3833–3841.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhoshal, S., Wadawale, A., Jain, V. K. & Nethaji, M. (2007). J. Chem. Res. pp. 221–225.  Web of Science CrossRef Google Scholar
First citationHausslein, M., Hausen, H.-D., Klinkhammer, K. W., Weidlein, J. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 1608–1618.  CAS Google Scholar
First citationHu, J.-Z., Yang, M., Wu, X.-S., Pan, Y., Liu, Y.-J. & Sun, X.-Z. (1999). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 347–350.  CAS Google Scholar
First citationLewinski, J., Zachara, J., Starowieyski, K. B., Ochal, Z., Justyniak, I., Kopec, T., Stolarzewicz, P. & Dranka, M. (2003). Organometallics, 22, 3773–3780.  Web of Science CSD CrossRef CAS Google Scholar
First citationPal, M. K., Kushwah, N., Manna, D., Wadawale, A., Sudarsan, V., Ghanty, T. K. & Jain, V. K. (2013). Organometallics, 32, 104–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrentler, T. J., Goel, S. C., Hickman, K. M., Viano, A. M., Chiang, M. Y., Beatty, A. M., Gibbons, P. C. & Buhro, W. E. (1997). J. Am. Chem. Soc. 119, 2172–2181.  CSD CrossRef CAS Web of Science Google Scholar
First citationWu, X.-S., Pan, Y., Sun, X.-Z. & Zhu, Y. (1999). Jiegou Huaxue (Chin. J. Struct. Chem.), 18, 418–422.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds