organic compounds
1-(4-Chlorophenyl)-3-(3-chloropropionyl)thiourea
aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: ctfairus@ukm.my
In the title compound, C10H10Cl2N2OS, the molecule adopts a trans–cis conformation with respect to the position of the carbonyl group and the chlorophenyl groups relative to the thiono group across the C—N bonds. The molecule is stabilized by an N—H⋯O hydrogen bond. In the crystal, molecules are linked by N—H⋯S and C—H⋯O hydrogen bonds, forming zigzag chains along the b-axis direction. C—H⋯π interactions are also present.
CCDC reference: 966877
Related literature
For bond-length data, see: Allen et al. (1987). For related thiourea derivatives, see: Othman et al. (2010); Yamin et al. (2011); Yamin & Othman (2011); Yusof et al. (2011).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).
Supporting information
CCDC reference: 966877
10.1107/S1600536813028511/lr2115sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028511/lr2115Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813028511/lr2115Isup3.cml
4-chloroaniline (1.27 g, 0.01 mol) disolved in 30 ml of acetone was added into a solution of 3-chloropropionyl isothiocyanate (1.49 g, 0.01 mol) in 30 ml acetone. The mixture was refluxed for 2 hours. The solution was filtered and left to evaporate at room temperature. The white precipitate obtained after a few days, was washed with water and cold ethanol. The colorless crystals were obtained by recrystallization from ethanol.
After location in the difference map, the H-atoms attached to the C and N atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms with C—H = 0.93-0.97 Å, N—H = 0.86 Å and with Uiso(H)=1.2Ueq(C or N).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).Fig. 1. Molecular structure of (I) with 50% probability displacement ellipsoids | |
Fig. 2. Molecular packing of (I) in the unit cell viewed down the a axis |
C10H10Cl2N2OS | V = 602.1 (3) Å3 |
Mr = 277.16 | Z = 2 |
Triclinic, P1 | F(000) = 284 |
Hall symbol: -P 1 | Dx = 1.529 Mg m−3 |
a = 5.5151 (16) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.045 (3) Å | µ = 0.69 mm−1 |
c = 12.387 (4) Å | T = 298 K |
α = 101.000 (5)° | Block, colourless |
β = 94.027 (5)° | 0.47 × 0.21 × 0.08 mm |
γ = 94.780 (5)° |
Bruker SMART APEX CCD area-detector diffractometer | 2227 independent reflections |
Radiation source: fine-focus sealed tube | 1698 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 83.66 pixels mm-1 | θmax = 25.5°, θmin = 1.7° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −10→10 |
Tmin = 0.737, Tmax = 0.947 | l = −14→14 |
5947 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.22 | w = 1/[σ2(Fo2) + (0.0289P)2 + 0.4821P] where P = (Fo2 + 2Fc2)/3 |
2227 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C10H10Cl2N2OS | γ = 94.780 (5)° |
Mr = 277.16 | V = 602.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.5151 (16) Å | Mo Kα radiation |
b = 9.045 (3) Å | µ = 0.69 mm−1 |
c = 12.387 (4) Å | T = 298 K |
α = 101.000 (5)° | 0.47 × 0.21 × 0.08 mm |
β = 94.027 (5)° |
Bruker SMART APEX CCD area-detector diffractometer | 2227 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1698 reflections with I > 2σ(I) |
Tmin = 0.737, Tmax = 0.947 | Rint = 0.035 |
5947 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.22 | Δρmax = 0.25 e Å−3 |
2227 reflections | Δρmin = −0.29 e Å−3 |
145 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.1359 (2) | 0.15827 (13) | 0.11875 (8) | 0.0690 (3) | |
Cl2 | −0.63977 (19) | 0.26746 (13) | 0.95531 (9) | 0.0666 (3) | |
S1 | 0.27725 (18) | 0.51842 (10) | 0.63440 (8) | 0.0481 (3) | |
O1 | −0.0306 (5) | 0.1007 (3) | 0.3804 (2) | 0.0569 (7) | |
N1 | 0.2306 (5) | 0.3097 (3) | 0.4537 (2) | 0.0405 (7) | |
H1A | 0.3596 | 0.3612 | 0.4406 | 0.049* | |
N2 | −0.0333 (5) | 0.2657 (3) | 0.5811 (2) | 0.0422 (7) | |
H2A | −0.0743 | 0.1856 | 0.5312 | 0.051* | |
C1 | 0.1271 (7) | 0.0805 (4) | 0.1674 (3) | 0.0491 (9) | |
H1B | 0.0777 | −0.0151 | 0.1878 | 0.059* | |
H1C | 0.2346 | 0.0610 | 0.1087 | 0.059* | |
C2 | 0.2629 (7) | 0.1865 (4) | 0.2656 (3) | 0.0465 (9) | |
H2B | 0.4247 | 0.1547 | 0.2774 | 0.056* | |
H2C | 0.2824 | 0.2874 | 0.2494 | 0.056* | |
C3 | 0.1378 (6) | 0.1931 (4) | 0.3701 (3) | 0.0419 (8) | |
C4 | 0.1477 (6) | 0.3573 (4) | 0.5567 (3) | 0.0369 (8) | |
C5 | −0.1697 (6) | 0.2764 (4) | 0.6739 (3) | 0.0382 (8) | |
C6 | −0.1040 (7) | 0.3699 (4) | 0.7750 (3) | 0.0503 (10) | |
H6A | 0.0389 | 0.4351 | 0.7854 | 0.060* | |
C7 | −0.2499 (7) | 0.3672 (4) | 0.8611 (3) | 0.0522 (10) | |
H7A | −0.2060 | 0.4310 | 0.9291 | 0.063* | |
C8 | −0.4593 (6) | 0.2700 (4) | 0.8458 (3) | 0.0436 (9) | |
C9 | −0.5279 (6) | 0.1755 (4) | 0.7458 (3) | 0.0467 (9) | |
H9A | −0.6708 | 0.1104 | 0.7358 | 0.056* | |
C10 | −0.3824 (6) | 0.1788 (4) | 0.6610 (3) | 0.0442 (9) | |
H10A | −0.4269 | 0.1143 | 0.5932 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0701 (7) | 0.0818 (8) | 0.0521 (6) | 0.0101 (6) | 0.0018 (5) | 0.0059 (5) |
Cl2 | 0.0648 (7) | 0.0843 (8) | 0.0560 (6) | 0.0065 (6) | 0.0285 (5) | 0.0192 (5) |
S1 | 0.0518 (6) | 0.0429 (5) | 0.0431 (5) | −0.0112 (4) | 0.0107 (4) | −0.0034 (4) |
O1 | 0.0667 (18) | 0.0535 (16) | 0.0418 (14) | −0.0241 (14) | 0.0165 (12) | −0.0041 (12) |
N1 | 0.0400 (16) | 0.0419 (16) | 0.0347 (16) | −0.0095 (13) | 0.0090 (12) | −0.0012 (12) |
N2 | 0.0476 (17) | 0.0416 (16) | 0.0320 (15) | −0.0097 (13) | 0.0099 (13) | −0.0027 (12) |
C1 | 0.054 (2) | 0.049 (2) | 0.039 (2) | −0.0039 (18) | 0.0112 (17) | −0.0030 (16) |
C2 | 0.053 (2) | 0.049 (2) | 0.0352 (19) | −0.0072 (18) | 0.0104 (17) | 0.0039 (16) |
C3 | 0.049 (2) | 0.040 (2) | 0.0351 (19) | −0.0011 (17) | 0.0060 (16) | 0.0035 (15) |
C4 | 0.0367 (19) | 0.0363 (19) | 0.0359 (18) | −0.0024 (15) | 0.0017 (14) | 0.0057 (14) |
C5 | 0.0395 (19) | 0.043 (2) | 0.0315 (18) | 0.0014 (16) | 0.0052 (14) | 0.0053 (15) |
C6 | 0.044 (2) | 0.062 (2) | 0.039 (2) | −0.0111 (18) | 0.0075 (16) | 0.0024 (18) |
C7 | 0.057 (2) | 0.063 (3) | 0.033 (2) | −0.001 (2) | 0.0095 (17) | 0.0000 (17) |
C8 | 0.041 (2) | 0.052 (2) | 0.042 (2) | 0.0070 (17) | 0.0135 (16) | 0.0141 (17) |
C9 | 0.040 (2) | 0.048 (2) | 0.052 (2) | −0.0045 (17) | 0.0088 (17) | 0.0114 (18) |
C10 | 0.045 (2) | 0.045 (2) | 0.040 (2) | −0.0032 (17) | 0.0050 (16) | 0.0028 (16) |
Cl1—C1 | 1.780 (4) | C2—C3 | 1.502 (4) |
Cl2—C8 | 1.741 (3) | C2—H2B | 0.9700 |
S1—C4 | 1.660 (3) | C2—H2C | 0.9700 |
O1—C3 | 1.227 (4) | C5—C6 | 1.376 (5) |
N1—C3 | 1.366 (4) | C5—C10 | 1.388 (5) |
N1—C4 | 1.389 (4) | C6—C7 | 1.383 (5) |
N1—H1A | 0.8600 | C6—H6A | 0.9300 |
N2—C4 | 1.332 (4) | C7—C8 | 1.370 (5) |
N2—C5 | 1.410 (4) | C7—H7A | 0.9300 |
N2—H2A | 0.8600 | C8—C9 | 1.373 (5) |
C1—C2 | 1.506 (4) | C9—C10 | 1.369 (5) |
C1—H1B | 0.9700 | C9—H9A | 0.9300 |
C1—H1C | 0.9700 | C10—H10A | 0.9300 |
C3—N1—C4 | 129.6 (3) | N2—C4—N1 | 114.4 (3) |
C3—N1—H1A | 115.2 | N2—C4—S1 | 127.3 (3) |
C4—N1—H1A | 115.2 | N1—C4—S1 | 118.3 (2) |
C4—N2—C5 | 131.6 (3) | C6—C5—C10 | 118.7 (3) |
C4—N2—H2A | 114.2 | C6—C5—N2 | 125.5 (3) |
C5—N2—H2A | 114.2 | C10—C5—N2 | 115.7 (3) |
C2—C1—Cl1 | 111.2 (3) | C5—C6—C7 | 120.2 (3) |
C2—C1—H1B | 109.4 | C5—C6—H6A | 119.9 |
Cl1—C1—H1B | 109.4 | C7—C6—H6A | 119.9 |
C2—C1—H1C | 109.4 | C8—C7—C6 | 119.7 (3) |
Cl1—C1—H1C | 109.4 | C8—C7—H7A | 120.1 |
H1B—C1—H1C | 108.0 | C6—C7—H7A | 120.1 |
C3—C2—C1 | 113.6 (3) | C7—C8—C9 | 121.0 (3) |
C3—C2—H2B | 108.8 | C7—C8—Cl2 | 119.1 (3) |
C1—C2—H2B | 108.8 | C9—C8—Cl2 | 119.9 (3) |
C3—C2—H2C | 108.8 | C10—C9—C8 | 118.9 (3) |
C1—C2—H2C | 108.8 | C10—C9—H9A | 120.6 |
H2B—C2—H2C | 107.7 | C8—C9—H9A | 120.6 |
O1—C3—N1 | 122.7 (3) | C9—C10—C5 | 121.4 (3) |
O1—C3—C2 | 123.2 (3) | C9—C10—H10A | 119.3 |
N1—C3—C2 | 114.1 (3) | C5—C10—H10A | 119.3 |
Cl1—C1—C2—C3 | 73.9 (4) | C10—C5—C6—C7 | −0.8 (6) |
C4—N1—C3—O1 | −7.3 (6) | N2—C5—C6—C7 | −178.1 (3) |
C4—N1—C3—C2 | 173.8 (3) | C5—C6—C7—C8 | 0.5 (6) |
C1—C2—C3—O1 | 13.7 (5) | C6—C7—C8—C9 | −0.4 (6) |
C1—C2—C3—N1 | −167.4 (3) | C6—C7—C8—Cl2 | 179.7 (3) |
C5—N2—C4—N1 | −177.7 (3) | C7—C8—C9—C10 | 0.4 (6) |
C5—N2—C4—S1 | 1.6 (6) | Cl2—C8—C9—C10 | −179.6 (3) |
C3—N1—C4—N2 | 7.8 (5) | C8—C9—C10—C5 | −0.7 (6) |
C3—N1—C4—S1 | −171.5 (3) | C6—C5—C10—C9 | 0.9 (5) |
C4—N2—C5—C6 | −17.2 (6) | N2—C5—C10—C9 | 178.4 (3) |
C4—N2—C5—C10 | 165.4 (3) |
Cg1 is the centroid of the C5–C10 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1 | 0.86 | 1.92 | 2.646 (4) | 141 |
C6—H6A···S1 | 0.93 | 2.55 | 3.193 (4) | 126 |
N1—H1A···S1i | 0.86 | 2.52 | 3.367 (3) | 169 |
C9—H9A···O1ii | 0.93 | 2.55 | 3.402 (5) | 152 |
C1—H1B···Cg1iii | 0.97 | 2.92 | 3.690 (4) | 137 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x−1, −y, −z+1; (iii) −x, −y, −z+1. |
Cg1 is the centroid of the C5–C10 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1 | 0.86 | 1.92 | 2.646 (4) | 141 |
N1—H1A···S1i | 0.86 | 2.52 | 3.367 (3) | 169 |
C9—H9A···O1ii | 0.93 | 2.55 | 3.402 (5) | 152 |
C1—H1B···Cg1iii | 0.97 | 2.92 | 3.690 (4) | 137 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x−1, −y, −z+1; (iii) −x, −y, −z+1. |
Acknowledgements
The authors would like to thank Universiti Kebangsaan Malaysia and the Ministry of Science and Technology, Malaysia for research grants GGPM-2012-015 and DIP-2012-11, and the Centre of Research and Instrumentation (CRIM) for research facilities.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Othman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamin, B. M. & Othman, N. E. A. (2011). Acta Cryst. E67, o1629. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There are not many halogenocarbonyl reported compare to other aroyl or alkoyl-thioureas. N-(4-chlorobutanoyl)-N'-phenylthiourea (Yamin et al., 2011), N-(4-chlorobutanoyl)-N'-(2-fluorophenyl)thiourea (Yusof et al., 2011) and N-(4-bromobutanoyl)-N'-phenylthiourea (Yamin & Othman, 2011) are some examples of halogenobutanoyl thiourea. The title compound is a 3-chloropropionyl thiourea similar to N-(3-chloropropionyl)-N'- phenylthiourea (Othman et al. 2010) except the presence of chlorine atom at the para-position of the phenyl ring.
The whole molecule is not planar (Fig. 1) because of the dihedral angle of 14.36 (12)° between chlorophenylamine, Cl2/(C5-C10)/N2, and thiourea C5/N2/C4/N1/S1 fragments. Both fragments are each planar with maximum deviation of 0.015 (3)Å for N2 atom from the least square plane of the thiourea fragment. The bond lengths and angles are in normal ranges (Allen et al. 1987). The molecule maintains trans-cis configuration with respect to the position of chloropropionyl and chlorophenyl against the thiono group about N1-C4 and N2-C4 bonds, respectively.
There is an intramolecular N2-H2A···O1 hydrogen bonds . In the crystal packing, the molecules are linked by N1-H1A···S1 and C9-H9A···O1 intermolecular hydrogen bonds (symmetry codes as in Table 1) to form zigzag linear chains extended along b axis (Fig. 2). In addition, there is also a C1-H1B···π bond with the centroid benzene ring Cg1, (C5-C10) (Table 2).