organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phenyl)-3-(3-chloro­pro­pionyl)thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: ctfairus@ukm.my

(Received 20 September 2013; accepted 17 October 2013; online 23 October 2013)

In the title compound, C10H10Cl2N2OS, the mol­ecule adopts a trans–cis conformation with respect to the position of the carbonyl group and the chloro­phenyl groups relative to the thiono group across the C—N bonds. The mol­ecule is stabilized by an N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by N—H⋯S and C—H⋯O hydrogen bonds, forming zigzag chains along the b-axis direction. C—H⋯π inter­actions are also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related thio­urea derivatives, see: Othman et al. (2010[Othman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.]); Yamin et al. (2011[Yamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419.]); Yamin & Othman (2011[Yamin, B. M. & Othman, N. E. A. (2011). Acta Cryst. E67, o1629.]); Yusof et al. (2011[Yusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10Cl2N2OS

  • Mr = 277.16

  • Triclinic, [P \overline 1]

  • a = 5.5151 (16) Å

  • b = 9.045 (3) Å

  • c = 12.387 (4) Å

  • α = 101.000 (5)°

  • β = 94.027 (5)°

  • γ = 94.780 (5)°

  • V = 602.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 298 K

  • 0.47 × 0.21 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.737, Tmax = 0.947

  • 5947 measured reflections

  • 2227 independent reflections

  • 1698 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.116

  • S = 1.22

  • 2227 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.92 2.646 (4) 141
N1—H1A⋯S1i 0.86 2.52 3.367 (3) 169
C9—H9A⋯O1ii 0.93 2.55 3.402 (5) 152
C1—H1BCg1iii 0.97 2.92 3.690 (4) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x-1, -y, -z+1; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There are not many halogenocarbonyl reported compare to other aroyl or alkoyl-thioureas. N-(4-chlorobutanoyl)-N'-phenylthiourea (Yamin et al., 2011), N-(4-chlorobutanoyl)-N'-(2-fluorophenyl)thiourea (Yusof et al., 2011) and N-(4-bromobutanoyl)-N'-phenylthiourea (Yamin & Othman, 2011) are some examples of halogenobutanoyl thiourea. The title compound is a 3-chloropropionyl thiourea similar to N-(3-chloropropionyl)-N'- phenylthiourea (Othman et al. 2010) except the presence of chlorine atom at the para-position of the phenyl ring.

The whole molecule is not planar (Fig. 1) because of the dihedral angle of 14.36 (12)° between chlorophenylamine, Cl2/(C5-C10)/N2, and thiourea C5/N2/C4/N1/S1 fragments. Both fragments are each planar with maximum deviation of 0.015 (3)Å for N2 atom from the least square plane of the thiourea fragment. The bond lengths and angles are in normal ranges (Allen et al. 1987). The molecule maintains trans-cis configuration with respect to the position of chloropropionyl and chlorophenyl against the thiono group about N1-C4 and N2-C4 bonds, respectively.

There is an intramolecular N2-H2A···O1 hydrogen bonds . In the crystal packing, the molecules are linked by N1-H1A···S1 and C9-H9A···O1 intermolecular hydrogen bonds (symmetry codes as in Table 1) to form zigzag linear chains extended along b axis (Fig. 2). In addition, there is also a C1-H1B···π bond with the centroid benzene ring Cg1, (C5-C10) (Table 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For related thiourea derivatives, see: Othman et al. (2010); Yamin et al. (2011); Yamin & Othman (2011); Yusof et al. (2011).

Experimental top

4-chloroaniline (1.27 g, 0.01 mol) disolved in 30 ml of acetone was added into a solution of 3-chloropropionyl isothiocyanate (1.49 g, 0.01 mol) in 30 ml acetone. The mixture was refluxed for 2 hours. The solution was filtered and left to evaporate at room temperature. The white precipitate obtained after a few days, was washed with water and cold ethanol. The colorless crystals were obtained by recrystallization from ethanol.

Refinement top

After location in the difference map, the H-atoms attached to the C and N atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms with C—H = 0.93-0.97 Å, N—H = 0.86 Å and with Uiso(H)=1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with 50% probability displacement ellipsoids
[Figure 2] Fig. 2. Molecular packing of (I) in the unit cell viewed down the a axis
1-(4-Chlorophenyl)-3-(3-chloropropionyl)thiourea top
Crystal data top
C10H10Cl2N2OSV = 602.1 (3) Å3
Mr = 277.16Z = 2
Triclinic, P1F(000) = 284
Hall symbol: -P 1Dx = 1.529 Mg m3
a = 5.5151 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.045 (3) ŵ = 0.69 mm1
c = 12.387 (4) ÅT = 298 K
α = 101.000 (5)°Block, colourless
β = 94.027 (5)°0.47 × 0.21 × 0.08 mm
γ = 94.780 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2227 independent reflections
Radiation source: fine-focus sealed tube1698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 1.7°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1010
Tmin = 0.737, Tmax = 0.947l = 1414
5947 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.4821P]
where P = (Fo2 + 2Fc2)/3
2227 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H10Cl2N2OSγ = 94.780 (5)°
Mr = 277.16V = 602.1 (3) Å3
Triclinic, P1Z = 2
a = 5.5151 (16) ÅMo Kα radiation
b = 9.045 (3) ŵ = 0.69 mm1
c = 12.387 (4) ÅT = 298 K
α = 101.000 (5)°0.47 × 0.21 × 0.08 mm
β = 94.027 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2227 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1698 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.947Rint = 0.035
5947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.22Δρmax = 0.25 e Å3
2227 reflectionsΔρmin = 0.29 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.1359 (2)0.15827 (13)0.11875 (8)0.0690 (3)
Cl20.63977 (19)0.26746 (13)0.95531 (9)0.0666 (3)
S10.27725 (18)0.51842 (10)0.63440 (8)0.0481 (3)
O10.0306 (5)0.1007 (3)0.3804 (2)0.0569 (7)
N10.2306 (5)0.3097 (3)0.4537 (2)0.0405 (7)
H1A0.35960.36120.44060.049*
N20.0333 (5)0.2657 (3)0.5811 (2)0.0422 (7)
H2A0.07430.18560.53120.051*
C10.1271 (7)0.0805 (4)0.1674 (3)0.0491 (9)
H1B0.07770.01510.18780.059*
H1C0.23460.06100.10870.059*
C20.2629 (7)0.1865 (4)0.2656 (3)0.0465 (9)
H2B0.42470.15470.27740.056*
H2C0.28240.28740.24940.056*
C30.1378 (6)0.1931 (4)0.3701 (3)0.0419 (8)
C40.1477 (6)0.3573 (4)0.5567 (3)0.0369 (8)
C50.1697 (6)0.2764 (4)0.6739 (3)0.0382 (8)
C60.1040 (7)0.3699 (4)0.7750 (3)0.0503 (10)
H6A0.03890.43510.78540.060*
C70.2499 (7)0.3672 (4)0.8611 (3)0.0522 (10)
H7A0.20600.43100.92910.063*
C80.4593 (6)0.2700 (4)0.8458 (3)0.0436 (9)
C90.5279 (6)0.1755 (4)0.7458 (3)0.0467 (9)
H9A0.67080.11040.73580.056*
C100.3824 (6)0.1788 (4)0.6610 (3)0.0442 (9)
H10A0.42690.11430.59320.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0701 (7)0.0818 (8)0.0521 (6)0.0101 (6)0.0018 (5)0.0059 (5)
Cl20.0648 (7)0.0843 (8)0.0560 (6)0.0065 (6)0.0285 (5)0.0192 (5)
S10.0518 (6)0.0429 (5)0.0431 (5)0.0112 (4)0.0107 (4)0.0034 (4)
O10.0667 (18)0.0535 (16)0.0418 (14)0.0241 (14)0.0165 (12)0.0041 (12)
N10.0400 (16)0.0419 (16)0.0347 (16)0.0095 (13)0.0090 (12)0.0012 (12)
N20.0476 (17)0.0416 (16)0.0320 (15)0.0097 (13)0.0099 (13)0.0027 (12)
C10.054 (2)0.049 (2)0.039 (2)0.0039 (18)0.0112 (17)0.0030 (16)
C20.053 (2)0.049 (2)0.0352 (19)0.0072 (18)0.0104 (17)0.0039 (16)
C30.049 (2)0.040 (2)0.0351 (19)0.0011 (17)0.0060 (16)0.0035 (15)
C40.0367 (19)0.0363 (19)0.0359 (18)0.0024 (15)0.0017 (14)0.0057 (14)
C50.0395 (19)0.043 (2)0.0315 (18)0.0014 (16)0.0052 (14)0.0053 (15)
C60.044 (2)0.062 (2)0.039 (2)0.0111 (18)0.0075 (16)0.0024 (18)
C70.057 (2)0.063 (3)0.033 (2)0.001 (2)0.0095 (17)0.0000 (17)
C80.041 (2)0.052 (2)0.042 (2)0.0070 (17)0.0135 (16)0.0141 (17)
C90.040 (2)0.048 (2)0.052 (2)0.0045 (17)0.0088 (17)0.0114 (18)
C100.045 (2)0.045 (2)0.040 (2)0.0032 (17)0.0050 (16)0.0028 (16)
Geometric parameters (Å, º) top
Cl1—C11.780 (4)C2—C31.502 (4)
Cl2—C81.741 (3)C2—H2B0.9700
S1—C41.660 (3)C2—H2C0.9700
O1—C31.227 (4)C5—C61.376 (5)
N1—C31.366 (4)C5—C101.388 (5)
N1—C41.389 (4)C6—C71.383 (5)
N1—H1A0.8600C6—H6A0.9300
N2—C41.332 (4)C7—C81.370 (5)
N2—C51.410 (4)C7—H7A0.9300
N2—H2A0.8600C8—C91.373 (5)
C1—C21.506 (4)C9—C101.369 (5)
C1—H1B0.9700C9—H9A0.9300
C1—H1C0.9700C10—H10A0.9300
C3—N1—C4129.6 (3)N2—C4—N1114.4 (3)
C3—N1—H1A115.2N2—C4—S1127.3 (3)
C4—N1—H1A115.2N1—C4—S1118.3 (2)
C4—N2—C5131.6 (3)C6—C5—C10118.7 (3)
C4—N2—H2A114.2C6—C5—N2125.5 (3)
C5—N2—H2A114.2C10—C5—N2115.7 (3)
C2—C1—Cl1111.2 (3)C5—C6—C7120.2 (3)
C2—C1—H1B109.4C5—C6—H6A119.9
Cl1—C1—H1B109.4C7—C6—H6A119.9
C2—C1—H1C109.4C8—C7—C6119.7 (3)
Cl1—C1—H1C109.4C8—C7—H7A120.1
H1B—C1—H1C108.0C6—C7—H7A120.1
C3—C2—C1113.6 (3)C7—C8—C9121.0 (3)
C3—C2—H2B108.8C7—C8—Cl2119.1 (3)
C1—C2—H2B108.8C9—C8—Cl2119.9 (3)
C3—C2—H2C108.8C10—C9—C8118.9 (3)
C1—C2—H2C108.8C10—C9—H9A120.6
H2B—C2—H2C107.7C8—C9—H9A120.6
O1—C3—N1122.7 (3)C9—C10—C5121.4 (3)
O1—C3—C2123.2 (3)C9—C10—H10A119.3
N1—C3—C2114.1 (3)C5—C10—H10A119.3
Cl1—C1—C2—C373.9 (4)C10—C5—C6—C70.8 (6)
C4—N1—C3—O17.3 (6)N2—C5—C6—C7178.1 (3)
C4—N1—C3—C2173.8 (3)C5—C6—C7—C80.5 (6)
C1—C2—C3—O113.7 (5)C6—C7—C8—C90.4 (6)
C1—C2—C3—N1167.4 (3)C6—C7—C8—Cl2179.7 (3)
C5—N2—C4—N1177.7 (3)C7—C8—C9—C100.4 (6)
C5—N2—C4—S11.6 (6)Cl2—C8—C9—C10179.6 (3)
C3—N1—C4—N27.8 (5)C8—C9—C10—C50.7 (6)
C3—N1—C4—S1171.5 (3)C6—C5—C10—C90.9 (5)
C4—N2—C5—C617.2 (6)N2—C5—C10—C9178.4 (3)
C4—N2—C5—C10165.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.922.646 (4)141
C6—H6A···S10.932.553.193 (4)126
N1—H1A···S1i0.862.523.367 (3)169
C9—H9A···O1ii0.932.553.402 (5)152
C1—H1B···Cg1iii0.972.923.690 (4)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z+1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.922.646 (4)141
N1—H1A···S1i0.862.523.367 (3)169
C9—H9A···O1ii0.932.553.402 (5)152
C1—H1B···Cg1iii0.972.923.690 (4)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z+1; (iii) x, y, z+1.
 

Acknowledgements

The authors would like to thank Universiti Kebangsaan Malaysia and the Ministry of Science and Technology, Malaysia for research grants GGPM-2012-015 and DIP-2012-11, and the Centre of Research and Instrumentation (CRIM) for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOthman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Othman, N. E. A. (2011). Acta Cryst. E67, o1629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M., Othman, N. E. A., Yusof, M. S. M. & Embong, F. (2011). Acta Cryst. E67, o419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds