organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,7-Di­phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one

aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, and bPenn State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

(Received 3 September 2013; accepted 11 October 2013; online 19 October 2013)

The asymmetric unit of the title compound, C19H19NOS, contains two independent mol­ecules (A and B), in both of which the 1,3-thia­zepan-4-one ring adopts a chair-type conformation. The dihedral angles between the two phenyl rings are 65.28 (8) and 60.31 (9)° for mol­ecules A and B, respectively. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, resulting in a three-dimensional network.

Related literature

For amide bond formation using 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane–2,4,6-trioxide (T3P), see: Dunetz et al. (2011[Dunetz, J. R., Xiang, Y., Baldwin, A. & Ringling, J. (2011). Org. Lett. 13, 5048-5051.]). For preparation of various heterocycles using imines and T3P, see: Unsworth et al. (2013[Unsworth, W. P., Kitsiou, C. & Taylor, R. J. K. (2013). Org. Lett. 15, 258-261.]). For omapatrilat, see: Graul et al. (1999[Graul, A., Leeson, P. & Castañer, J. (1999). Drugs Future, 24, 269-277.]); Robl et al. (1997[Robl, J. A., et al. (1997). J. Med. Chem. 40, 1570-1577.]); Tabrizchi (2001[Tabrizchi, R. (2001). Curr. Opin. Investig. Drugs, 2, 1414-1422.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19NOS

  • Mr = 309.41

  • Triclinic, [P \overline 1]

  • a = 9.9954 (18) Å

  • b = 10.695 (2) Å

  • c = 16.397 (3) Å

  • α = 79.764 (3)°

  • β = 83.659 (3)°

  • γ = 73.048 (3)°

  • V = 1646.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.29 × 0.28 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.559, Tmax = 1.000

  • 14502 measured reflections

  • 7089 independent reflections

  • 5751 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 1.02

  • 7089 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O2i 0.97 2.60 3.364 (2) 136
C38—H38A⋯O1 0.97 2.53 3.384 (2) 146
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The seven-membered 1,3-thiazepan-4-one ring system is of biological interest, as exemplified by the investigational compound omapatrilat (Graul et al., 1999; Robl et al., 1997; Tabrizchi, 2001). As part of our studies of cyclic 1,3-thiaza-4-one compounds, we report the synthesis and structure of the novel title compound. The title molecule was synthesized by condensation of N-[phenylmethylidene]aniline with [1-(sulfanylmethyl)cyclopropyl]acetic acid in the presence of 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) and pyridine (Dunetz et al., 2011; Unsworth et al., 2013). We report here the crystal structure of the title compound which crystallizes with two independent molecules, A & B, in the asymmetric unit. In the title compound (Fig. 1), the 1,3-thiazepan-4-one ring adopts a chair type conformation. The dihedral angles formed by the two benzene rings are 65.28 (8)° for molecule A and 60.31 (9)° for molecule B, respectively. In the crystal packing (Fig. 2), molecules are connected by weak C–H···O interactions (Table 1), resulting in a three-dimensional network.

Related literature top

For amide bond formation using 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane 2,4,6-trioxide (T3P), see: Dunetz et al. (2011). For preparation of various heterocycles using imines and T3P, see: Unsworth et al. (2013). For omapatrilat, see: Graul et al. (1999); Robl et al. (1997); Tabrizchi (2001).

Experimental top

A two-necked 25 ml pear flask was oven-dried, cooled under N2, and charged with a stir bar and N-[phenylmethylidene]aniline (1.087 g, 6 mmol). Tetrahydrofuran (2.3 mL) was added, the solid dissolved, and the solution was stirred. Pyridine (1.95 ml, 24 mmol) was added and then [1-(sulfanylmethyl)cyclopropyl] acetic acid (0.877 g, 6 mmol) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide in 2-methyltetrahydrofuran (50 weight percent, 7.1 ml, 12 mmol) was added. The reaction was stirred at room temperature for 20 h, then poured into a separatory funnel with dichloromethane. The mixture was washed with saturated sodium bicarbonate. The aqueous solution was then extracted twice with dichloromethane. The organics were combined and washed twice with saturated sodium bicarbonate, and once each with water and saturated sodium chloride. The organic was dried over sodium sulfate, concentrated in vacuo and chromatographed on 29 g flash silica gel, eluting with mixtures of ethyl acetate and hexanes. The product eluted with 30-50% EtOAc/hexanes and was concentrated in vacuo to a white solid (0.4594 g). Recrystallization from ethanol gave white crystals (0.2366 g, 12.7%). m.p.: 418-420 K. Crystals for X-Ray Crystallography were grown by slow evaporation from ethanol.

Refinement top

The C-bound H atoms were geometrically placed, with C—H = 0.93–0.97 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C)

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title comound. Thermal ellipsoids are drawn at 50% probability.
[Figure 2] Fig. 2. Crystal packing. C–H···O interactions are shown as dashed lines. [Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.]
6,7-Diphenyl-5-thia-7-azaspiro[2.6]nonan-8-one top
Crystal data top
C19H19NOSZ = 4
Mr = 309.41F(000) = 656
Triclinic, P1Dx = 1.248 Mg m3
Hall symbol: -P 1Melting point = 418–420 K
a = 9.9954 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.695 (2) ÅCell parameters from 5499 reflections
c = 16.397 (3) Åθ = 2.4–27.9°
α = 79.764 (3)°µ = 0.20 mm1
β = 83.659 (3)°T = 298 K
γ = 73.048 (3)°Block, colorless
V = 1646.8 (5) Å30.29 × 0.28 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7089 independent reflections
Radiation source: fine-focus sealed tube5751 reflections with I > 2σ(I)
Parallel,graphite monochromatorRint = 0.017
Detector resolution: 8.34 pixels mm-1θmax = 27.0°, θmin = 2.0°
ϕ and ω scansh = 1112
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1313
Tmin = 0.559, Tmax = 1l = 2020
14502 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.134H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0761P)2 + 0.240P]
where P = (Fo2 + 2Fc2)/3
7089 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H19NOSγ = 73.048 (3)°
Mr = 309.41V = 1646.8 (5) Å3
Triclinic, P1Z = 4
a = 9.9954 (18) ÅMo Kα radiation
b = 10.695 (2) ŵ = 0.20 mm1
c = 16.397 (3) ÅT = 298 K
α = 79.764 (3)°0.29 × 0.28 × 0.12 mm
β = 83.659 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7089 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5751 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 1Rint = 0.017
14502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
7089 reflectionsΔρmin = 0.19 e Å3
397 parameters
Special details top

Experimental. 1H NMR (CDCl3): 7.547-7.241 (10 H), 6.161 (s, 1 H), 3.120-3.094 (bd, 1H), 2.730-2.701 (bd, 1H), 2.524 (bs, 2H), 0.888 (bp, 1H), 0.763-0.609 (m, 3H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles, correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.85001 (16)0.37226 (15)0.11160 (9)0.0395 (3)
C20.91058 (17)0.31239 (15)0.19446 (9)0.0412 (3)
H2A0.89450.38180.22830.049*
H2B1.01110.27620.18580.049*
C30.84951 (18)0.20409 (16)0.24162 (10)0.0460 (4)
C40.9200 (2)0.06671 (16)0.22199 (11)0.0532 (4)
H4A0.88260.00420.26130.064*
H4B1.01930.04590.22970.064*
C50.97945 (16)0.16374 (15)0.05328 (9)0.0416 (3)
H50.98420.14230.00280.050*
C61.13156 (17)0.14856 (16)0.06834 (10)0.0445 (4)
C71.18570 (19)0.25627 (19)0.05273 (11)0.0529 (4)
H71.12740.34010.03540.063*
C81.3261 (2)0.2407 (2)0.06263 (14)0.0688 (5)
H81.36080.31410.05300.083*
C91.4136 (2)0.1172 (3)0.08663 (16)0.0824 (7)
H91.50770.10650.09340.099*
C101.3612 (2)0.0091 (3)0.10063 (17)0.0831 (7)
H101.42080.07480.11620.100*
C111.2211 (2)0.0236 (2)0.09179 (13)0.0629 (5)
H111.18700.05020.10150.075*
C120.81582 (16)0.35078 (15)0.02817 (9)0.0420 (3)
C130.67364 (19)0.3669 (2)0.02791 (12)0.0556 (4)
H130.62340.34630.02130.067*
C140.6062 (2)0.4137 (2)0.10098 (14)0.0681 (6)
H140.51030.42520.10080.082*
C150.6806 (2)0.4433 (2)0.17398 (13)0.0685 (6)
H150.63500.47600.22300.082*
C160.8219 (2)0.4245 (3)0.17412 (12)0.0746 (6)
H160.87250.44250.22370.090*
C170.89034 (19)0.3790 (2)0.10144 (11)0.0604 (5)
H170.98630.36750.10200.073*
C180.7963 (2)0.2142 (2)0.33049 (12)0.0688 (6)
H18A0.80830.13280.36950.083*
H18B0.80350.28940.35350.083*
C190.6963 (2)0.2399 (2)0.26482 (14)0.0671 (6)
H19A0.64230.33060.24810.081*
H19B0.64720.17420.26410.081*
C200.63401 (16)0.86157 (15)0.38230 (10)0.0409 (3)
C210.57843 (17)0.87198 (15)0.29878 (9)0.0425 (3)
H21A0.59100.95140.26370.051*
H21B0.47870.88040.30610.051*
C220.65069 (17)0.75300 (16)0.25537 (10)0.0431 (4)
C230.58698 (19)0.63898 (17)0.27661 (11)0.0497 (4)
H23A0.62750.57690.23810.060*
H23B0.48730.67210.26890.060*
C240.51975 (16)0.68075 (15)0.44372 (10)0.0411 (3)
H240.51800.63300.50050.049*
C250.36604 (16)0.74436 (16)0.42803 (9)0.0421 (3)
C260.30000 (18)0.87250 (18)0.44207 (11)0.0531 (4)
H260.35170.92300.45760.064*
C270.1571 (2)0.9260 (2)0.43309 (13)0.0671 (5)
H270.11401.01260.44190.081*
C280.0790 (2)0.8517 (3)0.41122 (14)0.0724 (6)
H280.01670.88750.40540.087*
C290.1442 (2)0.7237 (3)0.39810 (14)0.0725 (6)
H290.09170.67280.38380.087*
C300.28607 (19)0.6703 (2)0.40589 (12)0.0568 (5)
H300.32870.58400.39630.068*
C310.67344 (18)0.75204 (17)0.52198 (10)0.0470 (4)
C320.8144 (2)0.6878 (2)0.52163 (15)0.0738 (6)
H320.86290.65980.47340.089*
C330.8830 (3)0.6655 (3)0.5937 (2)0.1034 (10)
H330.97810.62130.59440.124*
C340.8105 (4)0.7087 (3)0.66459 (19)0.1085 (11)
H340.85750.69550.71260.130*
C350.6711 (3)0.7703 (3)0.66487 (15)0.0974 (9)
H350.62250.79710.71340.117*
C360.6012 (2)0.7933 (2)0.59327 (12)0.0684 (5)
H360.50580.83640.59320.082*
C370.80546 (19)0.72194 (19)0.23689 (12)0.0572 (5)
H37A0.85380.77910.25340.069*
H37B0.85850.62950.24110.069*
C380.7103 (2)0.7778 (2)0.16753 (11)0.0596 (5)
H38A0.70530.71910.12980.072*
H38B0.70060.86880.14210.072*
N10.88793 (13)0.30028 (12)0.04720 (8)0.0398 (3)
N20.60091 (13)0.77434 (13)0.44779 (8)0.0406 (3)
O10.76816 (14)0.48252 (11)0.10230 (8)0.0553 (3)
O20.70900 (14)0.92934 (12)0.39130 (8)0.0564 (3)
S10.89821 (5)0.04462 (4)0.11782 (3)0.05310 (14)
S20.61188 (5)0.55158 (4)0.38153 (3)0.05175 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0417 (8)0.0372 (8)0.0412 (8)0.0133 (6)0.0005 (6)0.0074 (6)
C20.0484 (9)0.0394 (8)0.0380 (8)0.0135 (7)0.0009 (7)0.0104 (6)
C30.0539 (10)0.0412 (8)0.0419 (8)0.0143 (7)0.0049 (7)0.0067 (7)
C40.0671 (12)0.0396 (8)0.0484 (9)0.0129 (8)0.0057 (8)0.0035 (7)
C50.0443 (9)0.0386 (8)0.0405 (8)0.0067 (7)0.0010 (7)0.0116 (6)
C60.0427 (9)0.0484 (9)0.0381 (8)0.0056 (7)0.0009 (7)0.0093 (7)
C70.0458 (9)0.0575 (10)0.0513 (10)0.0121 (8)0.0016 (8)0.0042 (8)
C80.0521 (11)0.0857 (15)0.0699 (13)0.0261 (11)0.0023 (10)0.0077 (11)
C90.0423 (11)0.109 (2)0.0902 (17)0.0129 (12)0.0071 (11)0.0121 (14)
C100.0531 (12)0.0779 (15)0.1000 (18)0.0089 (11)0.0135 (12)0.0060 (13)
C110.0537 (11)0.0524 (10)0.0732 (13)0.0014 (9)0.0056 (9)0.0066 (9)
C120.0397 (8)0.0455 (8)0.0402 (8)0.0090 (7)0.0046 (6)0.0087 (7)
C130.0430 (9)0.0745 (12)0.0529 (10)0.0214 (9)0.0018 (8)0.0109 (9)
C140.0445 (10)0.0924 (15)0.0718 (13)0.0186 (10)0.0175 (9)0.0166 (11)
C150.0672 (13)0.0852 (15)0.0533 (11)0.0169 (11)0.0242 (10)0.0062 (10)
C160.0642 (13)0.1120 (18)0.0427 (10)0.0242 (13)0.0038 (9)0.0008 (11)
C170.0408 (9)0.0904 (14)0.0452 (10)0.0141 (9)0.0019 (7)0.0049 (9)
C180.0964 (16)0.0564 (11)0.0489 (10)0.0207 (11)0.0187 (11)0.0109 (9)
C190.0631 (12)0.0542 (11)0.0835 (15)0.0214 (9)0.0233 (11)0.0176 (10)
C200.0396 (8)0.0381 (8)0.0452 (8)0.0127 (6)0.0048 (7)0.0085 (6)
C210.0460 (9)0.0389 (8)0.0412 (8)0.0128 (7)0.0034 (7)0.0045 (6)
C220.0428 (9)0.0442 (8)0.0436 (8)0.0143 (7)0.0055 (7)0.0112 (7)
C230.0496 (10)0.0506 (9)0.0547 (10)0.0197 (8)0.0072 (8)0.0198 (8)
C240.0401 (8)0.0423 (8)0.0424 (8)0.0181 (7)0.0015 (6)0.0020 (6)
C250.0373 (8)0.0523 (9)0.0372 (8)0.0174 (7)0.0038 (6)0.0039 (7)
C260.0460 (10)0.0578 (10)0.0552 (10)0.0166 (8)0.0067 (8)0.0102 (8)
C270.0503 (11)0.0664 (12)0.0701 (13)0.0030 (10)0.0111 (10)0.0039 (10)
C280.0372 (10)0.1025 (18)0.0692 (13)0.0149 (11)0.0012 (9)0.0005 (12)
C290.0471 (11)0.1038 (18)0.0773 (14)0.0349 (12)0.0018 (10)0.0197 (13)
C300.0472 (10)0.0675 (12)0.0627 (11)0.0259 (9)0.0024 (8)0.0150 (9)
C310.0441 (9)0.0521 (9)0.0480 (9)0.0211 (7)0.0066 (7)0.0008 (7)
C320.0497 (11)0.0854 (15)0.0829 (15)0.0173 (11)0.0134 (11)0.0006 (12)
C330.0674 (16)0.119 (2)0.122 (3)0.0301 (16)0.0475 (17)0.016 (2)
C340.126 (3)0.135 (3)0.0827 (19)0.067 (2)0.0608 (19)0.0192 (18)
C350.119 (2)0.132 (2)0.0551 (13)0.052 (2)0.0197 (14)0.0131 (14)
C360.0685 (13)0.0908 (15)0.0495 (11)0.0253 (12)0.0055 (9)0.0134 (10)
C370.0448 (10)0.0526 (10)0.0742 (13)0.0167 (8)0.0136 (9)0.0151 (9)
C380.0691 (12)0.0647 (11)0.0480 (10)0.0261 (10)0.0150 (9)0.0152 (8)
N10.0399 (7)0.0400 (7)0.0371 (6)0.0048 (5)0.0042 (5)0.0092 (5)
N20.0396 (7)0.0452 (7)0.0403 (7)0.0194 (6)0.0011 (5)0.0029 (5)
O10.0651 (8)0.0390 (6)0.0549 (7)0.0005 (6)0.0076 (6)0.0120 (5)
O20.0652 (8)0.0551 (7)0.0601 (7)0.0360 (6)0.0013 (6)0.0068 (6)
S10.0614 (3)0.0428 (2)0.0607 (3)0.0205 (2)0.0047 (2)0.01759 (19)
S20.0507 (3)0.0371 (2)0.0660 (3)0.01365 (18)0.0064 (2)0.00759 (19)
Geometric parameters (Å, º) top
C1—C21.506 (2)C20—C211.508 (2)
C1—N11.3718 (18)C20—N21.3706 (19)
C1—O11.2183 (19)C20—O21.2199 (18)
C2—H2A0.9700C21—H21A0.9700
C2—H2B0.9700C21—H21B0.9700
C2—C31.517 (2)C21—C221.523 (2)
C3—C41.508 (2)C22—C231.506 (2)
C3—C181.506 (2)C22—C371.493 (2)
C3—C191.489 (3)C22—C381.505 (2)
C4—H4A0.9700C23—H23A0.9700
C4—H4B0.9700C23—H23B0.9700
C4—S11.8100 (18)C23—S21.8118 (19)
C5—H50.9800C24—H240.9800
C5—C61.524 (2)C24—C251.518 (2)
C5—N11.4726 (19)C24—N21.4744 (19)
C5—S11.8267 (17)C24—S21.8297 (16)
C6—C71.383 (2)C25—C261.385 (2)
C6—C111.390 (2)C25—C301.391 (2)
C7—H70.9300C26—H260.9300
C7—C81.388 (3)C26—C271.389 (3)
C8—H80.9300C27—H270.9300
C8—C91.372 (3)C27—C281.376 (3)
C9—H90.9300C28—H280.9300
C9—C101.377 (4)C28—C291.378 (3)
C10—H100.9300C29—H290.9300
C10—C111.384 (3)C29—C301.377 (3)
C11—H110.9300C30—H300.9300
C12—C131.380 (2)C31—C321.376 (3)
C12—C171.376 (2)C31—C361.376 (3)
C12—N11.4391 (19)C31—N21.433 (2)
C13—H130.9300C32—H320.9300
C13—C141.381 (3)C32—C331.380 (3)
C14—H140.9300C33—H330.9300
C14—C151.375 (3)C33—C341.379 (4)
C15—H150.9300C34—H340.9300
C15—C161.367 (3)C34—C351.356 (4)
C16—H160.9300C35—H350.9300
C16—C171.380 (3)C35—C361.380 (3)
C17—H170.9300C36—H360.9300
C18—H18A0.9700C37—H37A0.9700
C18—H18B0.9700C37—H37B0.9700
C18—C191.485 (3)C37—C381.491 (3)
C19—H19A0.9700C38—H38A0.9700
C19—H19B0.9700C38—H38B0.9700
N1—C1—C2118.89 (13)C20—C21—H21B109.0
O1—C1—C2120.36 (13)C20—C21—C22112.84 (13)
O1—C1—N1120.74 (14)H21A—C21—H21B107.8
C1—C2—H2A108.8C22—C21—H21A109.0
C1—C2—H2B108.8C22—C21—H21B109.0
C1—C2—C3113.86 (13)C23—C22—C21115.21 (13)
H2A—C2—H2B107.7C37—C22—C21118.26 (14)
C3—C2—H2A108.8C37—C22—C23117.80 (14)
C3—C2—H2B108.8C37—C22—C3859.63 (12)
C4—C3—C2115.73 (14)C38—C22—C21118.20 (14)
C18—C3—C2117.56 (14)C38—C22—C23116.52 (14)
C18—C3—C4116.33 (15)C22—C23—H23A108.7
C19—C3—C2117.76 (15)C22—C23—H23B108.7
C19—C3—C4118.35 (15)C22—C23—S2114.33 (12)
C19—C3—C1859.44 (13)H23A—C23—H23B107.6
C3—C4—H4A108.7S2—C23—H23A108.7
C3—C4—H4B108.7S2—C23—H23B108.7
C3—C4—S1114.30 (13)C25—C24—H24103.9
H4A—C4—H4B107.6C25—C24—S2115.68 (11)
S1—C4—H4A108.7N2—C24—H24103.9
S1—C4—H4B108.7N2—C24—C25114.89 (13)
C6—C5—H5103.9N2—C24—S2112.78 (10)
C6—C5—S1116.07 (11)S2—C24—H24103.9
N1—C5—H5103.9C26—C25—C24121.14 (14)
N1—C5—C6114.66 (13)C26—C25—C30118.65 (16)
N1—C5—S1112.51 (11)C30—C25—C24119.99 (15)
S1—C5—H5103.9C25—C26—H26119.8
C7—C6—C5121.04 (15)C25—C26—C27120.44 (18)
C7—C6—C11118.82 (17)C27—C26—H26119.8
C11—C6—C5119.94 (16)C26—C27—H27119.8
C6—C7—H7119.6C28—C27—C26120.4 (2)
C6—C7—C8120.74 (18)C28—C27—H27119.8
C8—C7—H7119.6C27—C28—H28120.4
C7—C8—H8119.9C27—C28—C29119.28 (19)
C9—C8—C7120.1 (2)C29—C28—H28120.4
C9—C8—H8119.9C28—C29—H29119.6
C8—C9—H9120.2C30—C29—C28120.8 (2)
C8—C9—C10119.5 (2)C30—C29—H29119.6
C10—C9—H9120.2C25—C30—H30119.8
C9—C10—H10119.6C29—C30—C25120.46 (19)
C9—C10—C11120.9 (2)C29—C30—H30119.8
C11—C10—H10119.6C32—C31—N2119.67 (17)
C6—C11—H11120.0C36—C31—C32120.55 (19)
C10—C11—C6119.9 (2)C36—C31—N2119.77 (16)
C10—C11—H11120.0C31—C32—H32120.4
C13—C12—N1120.51 (15)C31—C32—C33119.2 (3)
C17—C12—C13119.90 (16)C33—C32—H32120.4
C17—C12—N1119.56 (15)C32—C33—H33120.0
C12—C13—H13120.1C34—C33—C32119.9 (3)
C12—C13—C14119.84 (17)C34—C33—H33120.0
C14—C13—H13120.1C33—C34—H34119.7
C13—C14—H14119.9C35—C34—C33120.5 (2)
C15—C14—C13120.17 (18)C35—C34—H34119.7
C15—C14—H14119.9C34—C35—H35120.0
C14—C15—H15120.2C34—C35—C36120.1 (3)
C16—C15—C14119.70 (18)C36—C35—H35120.0
C16—C15—H15120.2C31—C36—C35119.6 (2)
C15—C16—H16119.6C31—C36—H36120.2
C15—C16—C17120.72 (19)C35—C36—H36120.2
C17—C16—H16119.6C22—C37—H37A117.7
C12—C17—C16119.66 (18)C22—C37—H37B117.7
C12—C17—H17120.2H37A—C37—H37B114.8
C16—C17—H17120.2C38—C37—C2260.61 (12)
C3—C18—H18A117.8C38—C37—H37A117.7
C3—C18—H18B117.8C38—C37—H37B117.7
H18A—C18—H18B114.9C22—C38—H38A117.8
C19—C18—C359.69 (13)C22—C38—H38B117.8
C19—C18—H18A117.8C37—C38—C2259.76 (12)
C19—C18—H18B117.8C37—C38—H38A117.8
C3—C19—H19A117.7C37—C38—H38B117.8
C3—C19—H19B117.7H38A—C38—H38B114.9
C18—C19—C360.87 (13)C1—N1—C5124.94 (13)
C18—C19—H19A117.7C1—N1—C12118.35 (13)
C18—C19—H19B117.7C12—N1—C5115.82 (11)
H19A—C19—H19B114.8C20—N2—C24125.52 (13)
N2—C20—C21119.50 (13)C20—N2—C31117.58 (13)
O2—C20—C21120.25 (14)C31—N2—C24115.62 (12)
O2—C20—N2120.24 (15)C4—S1—C5102.63 (8)
C20—C21—H21A109.0C23—S2—C24102.03 (8)
C1—C2—C3—C487.12 (18)C25—C24—N2—C2068.64 (19)
C1—C2—C3—C18129.09 (17)C25—C24—N2—C31124.65 (15)
C1—C2—C3—C1961.01 (19)C25—C24—S2—C2357.87 (12)
C2—C1—N1—C53.3 (2)C25—C26—C27—C280.9 (3)
C2—C1—N1—C12171.94 (13)C26—C25—C30—C290.0 (3)
C2—C3—C4—S167.20 (18)C26—C27—C28—C290.2 (3)
C2—C3—C18—C19107.58 (18)C27—C28—C29—C300.6 (3)
C2—C3—C19—C18107.24 (17)C28—C29—C30—C250.7 (3)
C3—C4—S1—C560.62 (15)C30—C25—C26—C270.8 (3)
C4—C3—C18—C19108.84 (18)C31—C32—C33—C340.7 (4)
C4—C3—C19—C18105.47 (18)C32—C31—C36—C350.2 (3)
C5—C6—C7—C8176.77 (16)C32—C31—N2—C2068.0 (2)
C5—C6—C11—C10176.14 (19)C32—C31—N2—C2499.79 (19)
C6—C5—N1—C167.81 (19)C32—C33—C34—C351.7 (5)
C6—C5—N1—C12123.27 (14)C33—C34—C35—C361.7 (5)
C6—C5—S1—C456.71 (12)C34—C35—C36—C310.7 (4)
C6—C7—C8—C91.3 (3)C36—C31—C32—C330.2 (3)
C7—C6—C11—C101.2 (3)C36—C31—N2—C20112.91 (19)
C7—C8—C9—C100.1 (4)C36—C31—N2—C2479.3 (2)
C8—C9—C10—C110.8 (4)C37—C22—C23—S277.21 (18)
C9—C10—C11—C60.1 (4)C38—C22—C23—S2145.15 (14)
C11—C6—C7—C81.9 (3)N1—C1—C2—C373.44 (18)
C12—C13—C14—C150.5 (3)N1—C5—C6—C718.2 (2)
C13—C12—C17—C160.6 (3)N1—C5—C6—C11167.02 (15)
C13—C12—N1—C162.6 (2)N1—C5—S1—C478.17 (12)
C13—C12—N1—C5107.12 (17)N1—C12—C13—C14179.08 (17)
C13—C14—C15—C160.9 (4)N1—C12—C17—C16178.48 (19)
C14—C15—C16—C171.5 (4)N2—C20—C21—C2272.77 (18)
C15—C16—C17—C120.8 (4)N2—C24—C25—C2618.8 (2)
C17—C12—C13—C141.2 (3)N2—C24—C25—C30166.66 (15)
C17—C12—N1—C1119.57 (18)N2—C24—S2—C2377.24 (12)
C17—C12—N1—C570.7 (2)N2—C31—C32—C33179.3 (2)
C18—C3—C4—S1148.55 (15)N2—C31—C36—C35179.3 (2)
C19—C3—C4—S180.74 (19)O1—C1—C2—C3106.17 (17)
C20—C21—C22—C2387.61 (17)O1—C1—N1—C5176.34 (15)
C20—C21—C22—C3759.3 (2)O1—C1—N1—C127.7 (2)
C20—C21—C22—C38128.05 (16)O2—C20—C21—C22106.51 (17)
C21—C20—N2—C243.7 (2)O2—C20—N2—C24175.58 (15)
C21—C20—N2—C31170.18 (14)O2—C20—N2—C319.1 (2)
C21—C22—C23—S269.90 (17)S1—C5—C6—C7152.08 (13)
C21—C22—C37—C38107.87 (17)S1—C5—C6—C1133.10 (19)
C21—C22—C38—C37107.97 (17)S1—C5—N1—C167.73 (17)
C22—C23—S2—C2462.03 (13)S1—C5—N1—C12101.19 (13)
C23—C22—C37—C38106.03 (17)S2—C24—C25—C26152.98 (13)
C23—C22—C38—C37108.16 (17)S2—C24—C25—C3032.50 (19)
C24—C25—C26—C27175.41 (16)S2—C24—N2—C2066.84 (18)
C24—C25—C30—C29174.70 (17)S2—C24—N2—C3199.88 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O2i0.972.603.364 (2)136
C38—H38A···O10.972.533.384 (2)146
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O2i0.972.603.364 (2)136.0
C38—H38A···O10.972.533.384 (2)146.3
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer. We also express gratitude to Oakwood Products, Inc. for the gift of [1-(sulfanylmeth­yl)cyclo­prop­yl]acetic acid, and to Euticals for the gift of T3P in 2-methyl­tetra­hydro­furan.

References

First citationBruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDunetz, J. R., Xiang, Y., Baldwin, A. & Ringling, J. (2011). Org. Lett. 13, 5048–5051.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGraul, A., Leeson, P. & Castañer, J. (1999). Drugs Future, 24, 269–277.  CrossRef CAS Google Scholar
First citationRobl, J. A., et al. (1997). J. Med. Chem. 40, 1570–1577.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabrizchi, R. (2001). Curr. Opin. Investig. Drugs, 2, 1414–1422.  PubMed CAS Google Scholar
First citationUnsworth, W. P., Kitsiou, C. & Taylor, R. J. K. (2013). Org. Lett. 15, 258–261.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds