organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,1′S,2′R,4a'S,9a'S,9b'R)-1′-Acet­yl­oxy-2,4′-dioxo-2′,4′,4a',7′,8′,9′,9a',9b'-octa­hydro-1′H,2H-spiro­[ace­naphthyl­ene-1,5′-pyrano[4,3-a]pyrrolizin]-2′-ylmethyl acetate

aResearch Department of Physics, SDNB Vaishnav College for Women, Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com

(Received 27 August 2013; accepted 21 September 2013; online 2 October 2013)

In the title compound C26H25NO7, the mean plane through the lactone-substituted ring of the pyrrolizidine moiety forms dihedral angles of 78.46 (6) and 58.28 (8)° with the ace­naphthyl­ene moiety and the sugar based-lactone ring, respectively. The sum of the angles at the the N atom of the pyrrolizidine ring (335.0°) is in accordance with sp3 hybridization. Some atoms of the acetate group are disordered and were refined using a split model [occupancy ratio 0.673 (10):0.327 (10)].

Related literature

For the importance of pyrrolidine and pyrrolizidine compounds and background to this work, see: Boido et al. (1994[Boido, A., Vazzana, I. & Sparatore, F. (1994). Il Farmaco, 49, 97-104.]); Cravotto et al. (2001[Cravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447-8453.]); Gershbein (1975[Gershbein, L. L. (1975). Res. Commun. Chem. Pathol. Pharmacol. 11, 445-466.]); Govind et al. (2003[Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E59, o1680-o1681.]); Jellimann et al. (2000[Jellimann, C., Allainmat, M., Andrieux, J., Kloubert, S., Boutin, J. A., Nicolas, J. P., Bennejean, C., Delagrange, P. & Langlois, M. (2000). J. Med. Chem. 43, 4051-4062.]); Nishimura et al. (1985[Nishimura, Y., Kondo, S. & Umezawa, H. (1985). J. Org. Chem. 50, 5210-5214.]); Selvanayagam et al. (2004[Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J., Durga, R. R. & Raghunathan, R. (2004). Acta Cryst. E60, o2216-o2218.]); Usha et al. (2005[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Durga, R. R. & Raghunathan, R. (2005). Acta Cryst. E61, o2267-o2269.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25NO7

  • Mr = 463.47

  • Tetragonal, P 43 21 2

  • a = 13.6792 (3) Å

  • c = 24.9625 (13) Å

  • V = 4671.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.976

  • 21173 measured reflections

  • 4010 independent reflections

  • 2923 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 1.06

  • 4010 reflections

  • 367 parameters

  • 138 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Synthesis of polycyclic compounds incorporating pyrrolidine and pyrrolizidine rings has been the center of attraction for the past several decades since it constitutes significant class of substances with highly pronounced biological activities (Nishimura et al.,1985). Pyrrolizidine alkaloids represent a group of compounds present in a variety of plants throughout the world (Usha et al., 2005). Acenaphthylene derivatives are found to have high κ-opioid receptor affinity and selectivity (Selvanayagam et al., 2004). These derivatives are used as new conformationally restricted ligands for melatonin receptors (Jellimann et al., 2000), liver regeneration (Gershbein et al., 1975) and antitumoral agents (Boido et al., 1994). Spiro compounds are often encountered in pharmacologically relevant alkaloids (Cravotto et al., 2001). In view of the important biological activities, the structure determination of the title compound was undertaken (Fig.1).

The lactone substituted ring of the pyrrolizidine moiety [C12/N1/C16—C18] forms dihedral angles of 78.46 (6)°, 58.28 (8)° with the acenaphthylene moiety [C12/C1—C11] and sugar based-lactone ring [C18/C17/C21/C20/O2/C19] respectively. The sum of the angles at nitrogen atom of the pyrrolizidine ring [335.01 (0.6)°] is in accordance with sp3 hybridization (Govind et al.,2003).

Related literature top

For the importance of pyrrolidine and pyrrolizidine compounds and background to this work, see: Boido et al. (1994); Cravotto et al. (2001); Gershbein (1975); Govind et al. (2003); Jellimann et al. (2000); Nishimura et al. (1985); Selvanayagam et al. (2004); Usha et al. (2005).

Experimental top

To a solution of acenaphthoquinone (1 equiv) and proline (1.4 equiv) in dry toluene, α,β- unsaturated sugar lactone was added under nitrogen atmosphere. The solution was refluxed for 10 h until the reaction was complete which was monitored by TLC. The solvent was evaporated under reduced pressure and the residue was extracted with dichloromethane and water. The organic layer was dried with anhydrous sodium sulfate and concentrated in vacuo. The crude product was purified by column chromatography using hexane/EtOAc (8:2) as an eluent. Crystals were obtained by slow evaporation of the solvent.

Refinement top

Both acetate groups are disordered over two positions with side occupancies of 0.673 (10) and 0.327 (10) respectively. The disorder was refined using restraints for the bond distances of 1.50 (1) A° for C—C, 1.32 (1) A° and 1.20 (1) A° for C—O and C=O respectively. Restraints were also used to refine the atomic displacement parameters. The hydrogen atoms were placed in calculated positions and were refined with Uiso(H) = 1.2Ueq(C) for non methyl group and Uiso(H) = 1.5Ueq(C) for methyl group using a riding model.The absolute structure was not determined since no strong anomalous scattering atoms are present.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius and disordering is shown with full and open bonds.
(1S,1'S,2'R,4a'S,9a'S,9b'R)-1'-Acetyloxy-2,4'-dioxo-2',4',4a',7',8',9',9a',9b'-octahydro-1'H,2H-spiro[acenaphthylene-1,5'-pyrano[4,3-a]pyrrolizin]-2'-ylmethyl acetate top
Crystal data top
C26H25NO7Dx = 1.318 Mg m3
Mr = 463.47Melting point: 481.15 K
Tetragonal, P43212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P4nw2abwCell parameters from 5405 reflections
a = 13.6792 (3) Åθ = 2.2–22.2°
c = 24.9625 (13) ŵ = 0.10 mm1
V = 4671.0 (3) Å3T = 295 K
Z = 8Block, yellow
F(000) = 19520.30 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4010 independent reflections
Radiation source: fine-focus sealed tube2923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scanθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1616
Tmin = 0.902, Tmax = 0.976k = 1116
21173 measured reflectionsl = 2728
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.438P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4010 reflectionsΔρmax = 0.24 e Å3
367 parametersΔρmin = 0.12 e Å3
138 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (5)
Crystal data top
C26H25NO7Z = 8
Mr = 463.47Mo Kα radiation
Tetragonal, P43212µ = 0.10 mm1
a = 13.6792 (3) ÅT = 295 K
c = 24.9625 (13) Å0.30 × 0.30 × 0.25 mm
V = 4671.0 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4010 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2923 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.976Rint = 0.034
21173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042138 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
4010 reflectionsΔρmin = 0.12 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.49450 (18)0.37963 (17)0.34572 (10)0.0529 (6)
C20.52973 (19)0.38194 (18)0.40078 (10)0.0567 (7)
C30.5995 (2)0.4377 (2)0.42606 (12)0.0727 (8)
H30.63770.48230.40730.087*
C40.6103 (2)0.4243 (3)0.48143 (14)0.0894 (10)
H40.65740.46090.49940.107*
C50.5552 (3)0.3604 (3)0.51006 (13)0.0843 (9)
H50.56490.35510.54680.101*
C60.4840 (2)0.3023 (2)0.48530 (10)0.0650 (7)
C70.4197 (2)0.2338 (2)0.50876 (12)0.0785 (9)
H70.42150.22330.54560.094*
C80.3560 (2)0.1837 (2)0.47842 (11)0.0763 (8)
H80.31570.13800.49490.092*
C90.3474 (2)0.19735 (19)0.42248 (11)0.0660 (7)
H90.30170.16210.40280.079*
C100.40725 (18)0.26315 (17)0.39801 (9)0.0522 (6)
C110.47403 (18)0.31481 (17)0.42968 (9)0.0538 (6)
C120.41909 (17)0.29582 (17)0.34043 (9)0.0508 (6)
C130.4556 (3)0.1226 (2)0.31434 (13)0.0898 (10)
H13A0.38750.10580.32010.108*
H13B0.49390.10070.34480.108*
C140.4941 (3)0.0793 (2)0.26195 (13)0.0945 (11)
H14A0.56500.07910.26120.113*
H14B0.47040.01310.25670.113*
C150.4528 (3)0.1477 (2)0.22047 (12)0.0893 (10)
H15A0.39200.12240.20610.107*
H15B0.49870.15680.19130.107*
C160.4355 (2)0.24436 (19)0.25035 (10)0.0639 (7)
H160.47630.29580.23460.077*
C170.33003 (19)0.28012 (19)0.25462 (9)0.0587 (7)
H170.28670.22300.25400.070*
C180.32353 (17)0.32766 (17)0.31052 (9)0.0505 (6)
H180.26860.29680.32920.061*
C190.30811 (17)0.43601 (18)0.31357 (10)0.0532 (6)
C200.34631 (19)0.44821 (18)0.21942 (9)0.0567 (6)
H200.41670.43710.22350.068*
C210.2963 (2)0.3508 (2)0.21183 (9)0.0607 (7)
H210.22520.35890.21350.073*
C220.33054 (19)0.5216 (2)0.17621 (10)0.0660 (7)
H22A0.35600.58470.18730.079*
H22B0.36460.50160.14390.079*
N10.46742 (16)0.22513 (15)0.30539 (8)0.0636 (6)
O10.51791 (14)0.43233 (14)0.30886 (7)0.0734 (6)
O20.30863 (12)0.49008 (12)0.26880 (6)0.0599 (4)
O30.29131 (15)0.47673 (14)0.35530 (7)0.0734 (5)
O50.22688 (12)0.52899 (14)0.16582 (7)0.0674 (5)
O40.32451 (17)0.31189 (15)0.16054 (7)0.0873 (7)
O60.2533 (3)0.5940 (6)0.08779 (18)0.108 (2)0.673 (10)
C230.1979 (6)0.5579 (7)0.1189 (2)0.066 (2)0.673 (10)
C240.0924 (7)0.5520 (13)0.1066 (6)0.082 (3)0.673 (10)
H24A0.08230.56350.06910.123*0.673 (10)
H24B0.05790.60050.12700.123*0.673 (10)
H24C0.06850.48820.11580.123*0.673 (10)
O6'0.2525 (6)0.5122 (12)0.0794 (3)0.101 (4)0.327 (10)
C23'0.1997 (12)0.5354 (18)0.1156 (4)0.073 (4)0.327 (10)
C24'0.0906 (13)0.540 (3)0.1196 (11)0.072 (5)0.327 (10)
H24D0.06250.48290.10390.109*0.327 (10)
H24E0.06740.59730.10090.109*0.327 (10)
H24F0.07180.54440.15660.109*0.327 (10)
O70.1627 (7)0.3021 (9)0.1393 (4)0.114 (3)0.673 (10)
C250.2479 (7)0.2915 (16)0.1279 (5)0.105 (3)0.673 (10)
C260.2787 (9)0.2525 (11)0.0740 (5)0.143 (4)0.673 (10)
H26A0.31580.19360.07870.215*0.673 (10)
H26B0.31820.30030.05600.215*0.673 (10)
H26C0.22170.23880.05280.215*0.673 (10)
O7'0.1851 (18)0.3144 (19)0.1230 (9)0.122 (5)0.327 (10)
C25'0.2665 (17)0.282 (3)0.1209 (12)0.112 (4)0.327 (10)
C26'0.3264 (19)0.2324 (18)0.0783 (9)0.119 (6)0.327 (10)
H26D0.29520.17240.06800.178*0.327 (10)
H26E0.39050.21860.09210.178*0.327 (10)
H26F0.33180.27450.04770.178*0.327 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0599 (16)0.0540 (15)0.0449 (16)0.0000 (11)0.0005 (12)0.0049 (12)
C20.0620 (16)0.0603 (16)0.0476 (16)0.0012 (12)0.0052 (13)0.0022 (12)
C30.0722 (19)0.081 (2)0.065 (2)0.0042 (15)0.0190 (15)0.0035 (15)
C40.093 (2)0.097 (3)0.078 (3)0.0003 (19)0.0338 (19)0.0095 (19)
C50.104 (3)0.095 (2)0.0541 (19)0.026 (2)0.0200 (18)0.0050 (17)
C60.083 (2)0.0668 (17)0.0449 (17)0.0219 (14)0.0037 (15)0.0061 (14)
C70.105 (2)0.084 (2)0.0463 (18)0.0269 (18)0.0066 (18)0.0209 (16)
C80.100 (2)0.0702 (19)0.059 (2)0.0063 (16)0.0176 (17)0.0228 (16)
C90.0806 (19)0.0600 (17)0.0573 (18)0.0029 (13)0.0101 (14)0.0101 (13)
C100.0684 (16)0.0467 (14)0.0416 (15)0.0005 (11)0.0042 (12)0.0068 (11)
C110.0700 (16)0.0531 (14)0.0382 (15)0.0124 (12)0.0000 (12)0.0057 (11)
C120.0618 (15)0.0496 (14)0.0410 (15)0.0057 (11)0.0025 (11)0.0001 (11)
C130.120 (3)0.066 (2)0.084 (2)0.0018 (17)0.0054 (19)0.0087 (17)
C140.128 (3)0.0651 (19)0.091 (2)0.0087 (19)0.010 (2)0.0184 (18)
C150.113 (3)0.082 (2)0.072 (2)0.0072 (19)0.0118 (18)0.0235 (17)
C160.083 (2)0.0637 (17)0.0446 (17)0.0005 (13)0.0097 (13)0.0034 (12)
C170.0706 (17)0.0619 (16)0.0438 (16)0.0159 (12)0.0010 (12)0.0035 (12)
C180.0568 (15)0.0555 (15)0.0392 (15)0.0135 (10)0.0036 (11)0.0000 (11)
C190.0559 (15)0.0629 (17)0.0409 (16)0.0026 (11)0.0021 (12)0.0011 (13)
C200.0592 (15)0.0716 (17)0.0392 (15)0.0074 (12)0.0031 (11)0.0029 (12)
C210.0710 (17)0.0756 (18)0.0357 (15)0.0145 (14)0.0006 (12)0.0027 (13)
C220.0589 (17)0.0831 (19)0.0559 (17)0.0138 (13)0.0011 (13)0.0119 (14)
N10.0864 (16)0.0562 (14)0.0481 (14)0.0016 (11)0.0048 (11)0.0009 (10)
O10.0849 (13)0.0802 (13)0.0552 (12)0.0292 (10)0.0069 (10)0.0176 (10)
O20.0759 (12)0.0608 (11)0.0430 (10)0.0020 (8)0.0031 (8)0.0035 (8)
O30.1011 (14)0.0731 (12)0.0459 (11)0.0151 (10)0.0021 (9)0.0077 (10)
O50.0635 (12)0.0933 (13)0.0453 (11)0.0059 (9)0.0001 (9)0.0081 (9)
O40.1211 (18)0.1029 (16)0.0377 (12)0.0152 (13)0.0072 (11)0.0139 (11)
O60.092 (3)0.157 (5)0.075 (3)0.024 (3)0.018 (2)0.060 (3)
C230.075 (3)0.080 (5)0.042 (3)0.012 (3)0.002 (3)0.001 (2)
C240.082 (4)0.087 (5)0.076 (7)0.001 (3)0.015 (4)0.002 (6)
O6'0.096 (5)0.158 (9)0.050 (4)0.004 (5)0.015 (4)0.012 (5)
C23'0.069 (6)0.101 (8)0.049 (6)0.010 (5)0.000 (5)0.001 (5)
C24'0.083 (7)0.089 (10)0.046 (8)0.010 (7)0.036 (6)0.015 (8)
O70.144 (5)0.126 (4)0.072 (5)0.050 (3)0.041 (4)0.001 (4)
C250.165 (7)0.095 (6)0.054 (5)0.022 (6)0.024 (6)0.010 (4)
C260.214 (10)0.159 (8)0.056 (5)0.001 (8)0.032 (6)0.027 (5)
O7'0.186 (12)0.110 (8)0.071 (10)0.011 (9)0.041 (8)0.007 (7)
C25'0.179 (8)0.098 (7)0.058 (7)0.028 (7)0.022 (7)0.003 (6)
C26'0.210 (16)0.106 (9)0.040 (7)0.004 (11)0.027 (10)0.021 (6)
Geometric parameters (Å, º) top
C1—O11.212 (3)C17—H170.9800
C1—C21.457 (3)C18—C191.499 (3)
C1—C121.548 (3)C18—H180.9800
C2—C31.375 (4)C19—O31.203 (3)
C2—C111.394 (3)C19—O21.340 (3)
C3—C41.402 (4)C20—O21.454 (3)
C3—H30.9300C20—C221.490 (3)
C4—C51.357 (5)C20—C211.509 (4)
C4—H40.9300C20—H200.9800
C5—C61.401 (4)C21—O41.439 (3)
C5—H50.9300C21—H210.9800
C6—C111.405 (3)C22—O51.445 (3)
C6—C71.412 (4)C22—H22A0.9700
C7—C81.343 (4)C22—H22B0.9700
C7—H70.9300O5—C231.299 (6)
C8—C91.414 (4)O5—C23'1.310 (9)
C8—H80.9300O4—C25'1.333 (10)
C9—C101.362 (3)O4—C251.356 (7)
C9—H90.9300O6—C231.192 (7)
C10—C111.400 (3)C23—C241.477 (7)
C10—C121.514 (3)C24—H24A0.9600
C12—N11.462 (3)C24—H24B0.9600
C12—C181.567 (3)C24—H24C0.9600
C13—N11.429 (4)O6'—C23'1.199 (9)
C13—C141.529 (4)C23'—C24'1.498 (10)
C13—H13A0.9700C24'—H24D0.9600
C13—H13B0.9700C24'—H24E0.9600
C14—C151.505 (4)C24'—H24F0.9600
C14—H14A0.9700O7—C251.210 (8)
C14—H14B0.9700C25—C261.508 (8)
C15—C161.537 (4)C26—H26A0.9600
C15—H15A0.9700C26—H26B0.9600
C15—H15B0.9700C26—H26C0.9600
C16—N11.465 (3)O7'—C25'1.199 (10)
C16—C171.527 (4)C25'—C26'1.504 (10)
C16—H160.9800C26'—H26D0.9600
C17—C211.513 (3)C26'—H26E0.9600
C17—C181.542 (3)C26'—H26F0.9600
O1—C1—C2128.0 (2)C16—C17—C18104.6 (2)
O1—C1—C12123.5 (2)C21—C17—H17108.3
C2—C1—C12108.5 (2)C16—C17—H17108.3
C3—C2—C11120.5 (2)C18—C17—H17108.3
C3—C2—C1132.4 (3)C19—C18—C17118.1 (2)
C11—C2—C1107.0 (2)C19—C18—C12111.59 (18)
C2—C3—C4116.9 (3)C17—C18—C12105.41 (19)
C2—C3—H3121.5C19—C18—H18107.1
C4—C3—H3121.5C17—C18—H18107.1
C5—C4—C3123.0 (3)C12—C18—H18107.1
C5—C4—H4118.5O3—C19—O2117.9 (2)
C3—C4—H4118.5O3—C19—C18121.9 (2)
C4—C5—C6121.3 (3)O2—C19—C18120.2 (2)
C4—C5—H5119.4O2—C20—C22107.3 (2)
C6—C5—H5119.4O2—C20—C21107.08 (18)
C5—C6—C11115.7 (3)C22—C20—C21116.0 (2)
C5—C6—C7128.8 (3)O2—C20—H20108.8
C11—C6—C7115.5 (3)C22—C20—H20108.8
C8—C7—C6120.6 (3)C21—C20—H20108.8
C8—C7—H7119.7O4—C21—C20108.5 (2)
C6—C7—H7119.7O4—C21—C17108.0 (2)
C7—C8—C9122.9 (3)C20—C21—C17109.7 (2)
C7—C8—H8118.5O4—C21—H21110.2
C9—C8—H8118.5C20—C21—H21110.2
C10—C9—C8118.7 (3)C17—C21—H21110.2
C10—C9—H9120.6O5—C22—C20108.6 (2)
C8—C9—H9120.6O5—C22—H22A110.0
C9—C10—C11118.2 (2)C20—C22—H22A110.0
C9—C10—C12133.3 (2)O5—C22—H22B110.0
C11—C10—C12108.51 (19)C20—C22—H22B110.0
C2—C11—C10113.4 (2)H22A—C22—H22B108.3
C2—C11—C6122.6 (2)C13—N1—C12120.3 (2)
C10—C11—C6124.0 (2)C13—N1—C16106.8 (2)
N1—C12—C10114.91 (19)C12—N1—C16107.92 (19)
N1—C12—C1103.87 (19)C19—O2—C20119.44 (19)
C10—C12—C1102.06 (19)C23—O5—C23'14.1 (14)
N1—C12—C18106.01 (17)C23—O5—C22118.9 (4)
C10—C12—C18116.43 (19)C23'—O5—C22117.1 (7)
C1—C12—C18113.00 (19)C25'—O4—C2514.2 (14)
N1—C13—C14102.0 (2)C25'—O4—C21127.9 (12)
N1—C13—H13A111.4C25—O4—C21113.8 (5)
C14—C13—H13A111.4O6—C23—O5121.3 (7)
N1—C13—H13B111.4O6—C23—C24120.6 (7)
C14—C13—H13B111.4O5—C23—C24117.9 (7)
H13A—C13—H13B109.2O6'—C23'—O5122.1 (12)
C15—C14—C13102.6 (3)O6'—C23'—C24'131.5 (16)
C15—C14—H14A111.2O5—C23'—C24'102.8 (13)
C13—C14—H14A111.2C23'—C24'—H24D109.5
C15—C14—H14B111.2C23'—C24'—H24E109.5
C13—C14—H14B111.2H24D—C24'—H24E109.5
H14A—C14—H14B109.2C23'—C24'—H24F109.5
C14—C15—C16105.0 (2)H24D—C24'—H24F109.5
C14—C15—H15A110.7H24E—C24'—H24F109.5
C16—C15—H15A110.7O7—C25—O4125.4 (8)
C14—C15—H15B110.7O7—C25—C26121.5 (8)
C16—C15—H15B110.7O4—C25—C26113.2 (8)
H15A—C15—H15B108.8O7'—C25'—O4114 (2)
N1—C16—C17105.9 (2)O7'—C25'—C26'134.7 (18)
N1—C16—C15104.8 (2)O4—C25'—C26'109.8 (16)
C17—C16—C15117.1 (2)C25'—C26'—H26D109.5
N1—C16—H16109.6C25'—C26'—H26E109.5
C17—C16—H16109.6H26D—C26'—H26E109.5
C15—C16—H16109.6C25'—C26'—H26F109.5
C21—C17—C16116.3 (2)H26D—C26'—H26F109.5
C21—C17—C18110.6 (2)H26E—C26'—H26F109.5
O1—C1—C2—C33.5 (5)N1—C12—C18—C176.9 (2)
C12—C1—C2—C3176.4 (3)C10—C12—C18—C17136.1 (2)
O1—C1—C2—C11173.5 (3)C1—C12—C18—C17106.2 (2)
C12—C1—C2—C116.6 (3)C17—C18—C19—O3171.5 (2)
C11—C2—C3—C40.7 (4)C12—C18—C19—O366.2 (3)
C1—C2—C3—C4176.0 (3)C17—C18—C19—O25.7 (3)
C2—C3—C4—C50.5 (5)C12—C18—C19—O2116.7 (2)
C3—C4—C5—C60.8 (5)O2—C20—C21—O4174.2 (2)
C4—C5—C6—C110.1 (4)C22—C20—C21—O454.5 (3)
C4—C5—C6—C7179.0 (3)O2—C20—C21—C1767.9 (3)
C5—C6—C7—C8179.5 (3)C22—C20—C21—C17172.3 (2)
C11—C6—C7—C81.5 (4)C16—C17—C21—O448.0 (3)
C6—C7—C8—C91.5 (5)C18—C17—C21—O4167.1 (2)
C7—C8—C9—C101.0 (4)C16—C17—C21—C2070.2 (3)
C8—C9—C10—C110.5 (4)C18—C17—C21—C2049.0 (3)
C8—C9—C10—C12179.6 (3)O2—C20—C22—O569.4 (3)
C3—C2—C11—C10179.3 (2)C21—C20—C22—O550.2 (3)
C1—C2—C11—C103.3 (3)C14—C13—N1—C12165.8 (2)
C3—C2—C11—C61.6 (4)C14—C13—N1—C1642.5 (3)
C1—C2—C11—C6175.8 (2)C10—C12—N1—C1332.2 (3)
C9—C10—C11—C2178.4 (2)C1—C12—N1—C13142.8 (3)
C12—C10—C11—C21.5 (3)C18—C12—N1—C1397.9 (3)
C9—C10—C11—C60.7 (4)C10—C12—N1—C16154.9 (2)
C12—C10—C11—C6179.4 (2)C1—C12—N1—C1694.5 (2)
C5—C6—C11—C21.3 (4)C18—C12—N1—C1624.9 (2)
C7—C6—C11—C2177.9 (2)C17—C16—N1—C1397.3 (2)
C5—C6—C11—C10179.7 (3)C15—C16—N1—C1327.0 (3)
C7—C6—C11—C101.1 (4)C17—C16—N1—C1233.3 (2)
C9—C10—C12—N173.7 (4)C15—C16—N1—C12157.7 (2)
C11—C10—C12—N1106.4 (2)O3—C19—O2—C20168.5 (2)
C9—C10—C12—C1174.6 (3)C18—C19—O2—C2014.3 (3)
C11—C10—C12—C15.3 (3)C22—C20—O2—C19175.71 (19)
C9—C10—C12—C1851.1 (4)C21—C20—O2—C1950.5 (3)
C11—C10—C12—C18128.8 (2)C20—C22—O5—C23154.5 (5)
O1—C1—C12—N167.3 (3)C20—C22—O5—C23'138.6 (12)
C2—C1—C12—N1112.6 (2)C20—C21—O4—C25'126 (3)
O1—C1—C12—C10173.0 (2)C17—C21—O4—C25'115 (3)
C2—C1—C12—C107.2 (3)C20—C21—O4—C25123.5 (11)
O1—C1—C12—C1847.1 (3)C17—C21—O4—C25117.6 (11)
C2—C1—C12—C18133.0 (2)C23'—O5—C23—O699 (4)
N1—C13—C14—C1541.0 (3)C22—O5—C23—O613.0 (10)
C13—C14—C15—C1624.4 (3)C23'—O5—C23—C2485 (5)
C14—C15—C16—N10.1 (3)C22—O5—C23—C24171.8 (9)
C14—C15—C16—C17116.8 (3)C23—O5—C23'—O6'119 (6)
N1—C16—C17—C21149.9 (2)C22—O5—C23'—O6'18 (3)
C15—C16—C17—C2193.8 (3)C23—O5—C23'—C24'80 (4)
N1—C16—C17—C1827.6 (2)C22—O5—C23'—C24'179.3 (14)
C15—C16—C17—C18143.9 (2)C25'—O4—C25—O7171 (15)
C21—C17—C18—C1912.9 (3)C21—O4—C25—O71 (3)
C16—C17—C18—C19113.0 (2)C25'—O4—C25—C269 (12)
C21—C17—C18—C12138.4 (2)C21—O4—C25—C26178.9 (10)
C16—C17—C18—C1212.4 (2)C25—O4—C25'—O7'12 (9)
N1—C12—C18—C19136.3 (2)C21—O4—C25'—O7'20 (6)
C10—C12—C18—C1994.5 (2)C25—O4—C25'—C26'180 (16)
C1—C12—C18—C1923.2 (3)C21—O4—C25'—C26'171.1 (14)

Experimental details

Crystal data
Chemical formulaC26H25NO7
Mr463.47
Crystal system, space groupTetragonal, P43212
Temperature (K)295
a, c (Å)13.6792 (3), 24.9625 (13)
V3)4671.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.902, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
21173, 4010, 2923
Rint0.034
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 1.06
No. of reflections4010
No. of parameters367
No. of restraints138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.12

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoido, A., Vazzana, I. & Sparatore, F. (1994). Il Farmaco, 49, 97–104.  CAS PubMed Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447–8453.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGershbein, L. L. (1975). Res. Commun. Chem. Pathol. Pharmacol. 11, 445–466.  PubMed CAS Web of Science Google Scholar
First citationGovind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E59, o1680–o1681.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJellimann, C., Allainmat, M., Andrieux, J., Kloubert, S., Boutin, J. A., Nicolas, J. P., Bennejean, C., Delagrange, P. & Langlois, M. (2000). J. Med. Chem. 43, 4051–4062.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishimura, Y., Kondo, S. & Umezawa, H. (1985). J. Org. Chem. 50, 5210–5214.  CrossRef CAS Web of Science Google Scholar
First citationSelvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J., Durga, R. R. & Raghunathan, R. (2004). Acta Cryst. E60, o2216–o2218.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Durga, R. R. & Raghunathan, R. (2005). Acta Cryst. E61, o2267–o2269.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds