organic compounds
(7-Chloro-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate
aDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India, and bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com
In the title compound, C15H14ClNO2S2, the 2H-chromene ring system is essentially planar, with a maximum deviation of 0.0133 (10) Å. Three C atoms and their attached H atoms of the pyrrolidine ring are disordered [occupany ratio 0.874 (7):0.126 (7)] with both disorder components adopting a twisted conformation. The dihedral angle between the 2H-chromene ring system and the major occupancy component of the pyrrolidine ring is 89.45 (7)°. In the crystal, inversion dimers linked by pairs of C—H⋯S and C—H⋯O interactions generate R22(24) and R22(10) loops, respectively. Further C—H⋯O hydrogen bonds link the dimers into [100] chains. C—H⋯π interactions also occur and there is very weak π–π stacking [interplanar spacing = 3.650 (5) Å; centroid–centroid distance = 4.095 (7) Å] between inversion-related chlorobenzene rings.
CCDC reference: 966208
Related literature
For biological applications of ); Burns et al. (2010); Kawaii et al. (2001); Khan et al. (2004); Yu et al. (2003). For details of the synthesis and a related structure with comparison bond lengths, see: Mahabaleshwaraiah et al. (2012).
and dithiocarbamates, see: Brillon (1992Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 966208
10.1107/S1600536813028080/pk2494sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028080/pk2494Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813028080/pk2494Isup3.cml
All the chemicals used were of analytical reagent grade and were used directly without further purification. The title compound was synthesized according to the reported method (Mahabaleshwaraiah et al., 2012). The compound is recrystallized by ethanol-chloroform mixture. Colourless needles of the title compound were grown from a mixed solution of Ethanol/Chloroform (V/V = 2/1) by slow evaporation at room temperature. Yield = 74%, m.p. 445–447 K.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Only the major conformation of disorder at atom C20 is shown. | |
Fig. 2. A packing diagram of the title compound. |
C15H14ClNO2S2 | Z = 2 |
Mr = 339.84 | F(000) = 352 |
Triclinic, P1 | Dx = 1.506 Mg m−3 |
Hall symbol: -P 1 | Melting point: 447 K |
a = 7.9073 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2891 (2) Å | Cell parameters from 3417 reflections |
c = 10.8865 (2) Å | θ = 1.9–27.5° |
α = 84.474 (1)° | µ = 0.54 mm−1 |
β = 79.798 (1)° | T = 296 K |
γ = 72.437 (1)° | Plate, colourless |
V = 749.52 (3) Å3 | 0.22 × 0.18 × 0.12 mm |
Bruker SMART CCD area-detector diffractometer | 3417 independent reflections |
Radiation source: fine-focus sealed tube | 3136 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω and ϕ scans | θmax = 27.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | h = −10→10 |
Tmin = 0.770, Tmax = 1.000 | k = −12→12 |
16446 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0617P)2 + 0.0857P] where P = (Fo2 + 2Fc2)/3 |
S = 1.18 | (Δ/σ)max = 0.004 |
3417 reflections | Δρmax = 0.28 e Å−3 |
201 parameters | Δρmin = −0.31 e Å−3 |
6 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.049 (5) |
C15H14ClNO2S2 | γ = 72.437 (1)° |
Mr = 339.84 | V = 749.52 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9073 (2) Å | Mo Kα radiation |
b = 9.2891 (2) Å | µ = 0.54 mm−1 |
c = 10.8865 (2) Å | T = 296 K |
α = 84.474 (1)° | 0.22 × 0.18 × 0.12 mm |
β = 79.798 (1)° |
Bruker SMART CCD area-detector diffractometer | 3417 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 3136 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 1.000 | Rint = 0.023 |
16446 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 6 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.18 | Δρmax = 0.28 e Å−3 |
3417 reflections | Δρmin = −0.31 e Å−3 |
201 parameters |
Experimental. IR (KBr, cm-1): 1731 (C=O), 1374 (C=S), 866(C—N). GCMS: m/e:339. 1H NMR (400 MHz, CDCl3, \?, p.p.m): 1.89 (m, 2H, CH2), 2.00 (m, 2H, CH2), 3.63(m, 2H, N—CH2), 3.77 (m, 2H, N—CH2), 4.81 (s,2H, C4—CH2),6.60 (s,1H, C3—H, Ar—H), 7.46 (m, H, Ar—H), 7.62 (m, 1H, Ar—H), 7.91 (s, 1H, Ar—H). Mol. Formula: C15H14Cl N O2S2. Elemental analysis: C, 53.01; H, 4.15; N, 4.12 (calculated); C, 52.98; H, 4.10; N, 4.09 (found). |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | −0.28700 (7) | 1.07931 (5) | −0.14180 (5) | 0.06885 (16) | |
S2 | 0.38730 (4) | 0.30580 (4) | 0.21169 (3) | 0.04235 (13) | |
S3 | 0.54060 (5) | 0.56231 (4) | 0.24009 (4) | 0.04455 (13) | |
O4 | −0.19899 (13) | 0.79324 (11) | 0.26803 (9) | 0.0409 (2) | |
O5 | −0.17968 (15) | 0.68451 (13) | 0.45600 (9) | 0.0526 (3) | |
N6 | 0.61026 (14) | 0.29726 (11) | 0.36235 (10) | 0.0338 (2) | |
C7 | −0.1734 (2) | 0.92725 (17) | −0.05374 (14) | 0.0459 (3) | |
C8 | −0.0243 (2) | 0.8208 (2) | −0.11117 (14) | 0.0520 (4) | |
H8 | 0.0130 | 0.8294 | −0.1968 | 0.062* | |
C9 | 0.06851 (19) | 0.70194 (18) | −0.04044 (13) | 0.0461 (3) | |
H9 | 0.1686 | 0.6303 | −0.0791 | 0.055* | |
C10 | 0.01464 (16) | 0.68708 (14) | 0.08890 (11) | 0.0334 (3) | |
C11 | −0.13752 (16) | 0.79680 (14) | 0.14228 (12) | 0.0345 (3) | |
C12 | −0.23300 (19) | 0.91664 (16) | 0.07278 (14) | 0.0427 (3) | |
H12 | −0.3345 | 0.9880 | 0.1103 | 0.051* | |
C13 | 0.10823 (15) | 0.56837 (14) | 0.17036 (11) | 0.0324 (2) | |
C14 | 0.04298 (16) | 0.56563 (14) | 0.29272 (12) | 0.0354 (3) | |
H14 | 0.1019 | 0.4881 | 0.3444 | 0.043* | |
C15 | −0.11598 (17) | 0.67905 (15) | 0.34721 (12) | 0.0370 (3) | |
C16 | 0.27739 (18) | 0.45665 (17) | 0.11144 (13) | 0.0425 (3) | |
H16A | 0.3621 | 0.5117 | 0.0751 | 0.051* | |
H16B | 0.2488 | 0.4124 | 0.0435 | 0.051* | |
C17 | 0.52248 (15) | 0.38901 (13) | 0.27966 (11) | 0.0327 (2) | |
C18 | 0.73425 (19) | 0.33810 (16) | 0.42944 (14) | 0.0418 (3) | |
H18A | 0.6702 | 0.4194 | 0.4850 | 0.050* | |
H18B | 0.8263 | 0.3692 | 0.3714 | 0.050* | |
C19 | 0.8152 (2) | 0.1946 (2) | 0.50227 (18) | 0.0558 (4) | 0.874 (7) |
H19A | 0.8384 | 0.2173 | 0.5817 | 0.067* | 0.874 (7) |
H19B | 0.9270 | 0.1359 | 0.4555 | 0.067* | 0.874 (7) |
C20 | 0.6762 (3) | 0.1094 (2) | 0.5219 (2) | 0.0480 (6) | 0.874 (7) |
H20A | 0.7317 | 0.0016 | 0.5335 | 0.058* | 0.874 (7) |
H20B | 0.5860 | 0.1442 | 0.5941 | 0.058* | 0.874 (7) |
C21 | 0.59481 (19) | 0.14500 (14) | 0.40330 (14) | 0.0413 (3) | 0.874 (7) |
H21A | 0.6606 | 0.0722 | 0.3409 | 0.050* | 0.874 (7) |
H21B | 0.4702 | 0.1451 | 0.4192 | 0.050* | 0.874 (7) |
C19' | 0.8152 (2) | 0.1946 (2) | 0.50227 (18) | 0.0558 (4) | 0.126 (7) |
H19C | 0.9449 | 0.1723 | 0.4892 | 0.067* | 0.126 (7) |
H19D | 0.7715 | 0.2069 | 0.5908 | 0.067* | 0.126 (7) |
C20' | 0.765 (2) | 0.0709 (13) | 0.4603 (17) | 0.052 (4) | 0.126 (7) |
H20C | 0.7430 | 0.0024 | 0.5301 | 0.062* | 0.126 (7) |
H20D | 0.8604 | 0.0147 | 0.3986 | 0.062* | 0.126 (7) |
C21' | 0.59481 (19) | 0.14500 (14) | 0.40330 (14) | 0.0413 (3) | 0.126 (7) |
H21C | 0.5907 | 0.0899 | 0.3331 | 0.050* | 0.126 (7) |
H21D | 0.4883 | 0.1506 | 0.4648 | 0.050* | 0.126 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0754 (3) | 0.0589 (3) | 0.0702 (3) | −0.0126 (2) | −0.0342 (2) | 0.0265 (2) |
S2 | 0.0401 (2) | 0.0358 (2) | 0.0502 (2) | −0.00229 (14) | −0.01778 (15) | −0.00600 (14) |
S3 | 0.0498 (2) | 0.03124 (19) | 0.0489 (2) | −0.00884 (14) | −0.00686 (15) | 0.00535 (14) |
O4 | 0.0416 (5) | 0.0369 (5) | 0.0365 (5) | −0.0022 (4) | −0.0011 (4) | −0.0042 (4) |
O5 | 0.0544 (6) | 0.0595 (7) | 0.0336 (5) | −0.0059 (5) | 0.0024 (4) | −0.0043 (5) |
N6 | 0.0334 (5) | 0.0290 (5) | 0.0396 (5) | −0.0082 (4) | −0.0089 (4) | −0.0002 (4) |
C7 | 0.0503 (8) | 0.0430 (7) | 0.0463 (8) | −0.0135 (6) | −0.0197 (6) | 0.0118 (6) |
C8 | 0.0541 (8) | 0.0620 (10) | 0.0353 (7) | −0.0124 (7) | −0.0084 (6) | 0.0084 (6) |
C9 | 0.0411 (7) | 0.0555 (8) | 0.0344 (7) | −0.0050 (6) | −0.0044 (5) | 0.0005 (6) |
C10 | 0.0314 (6) | 0.0366 (6) | 0.0319 (6) | −0.0091 (5) | −0.0064 (4) | −0.0009 (5) |
C11 | 0.0342 (6) | 0.0342 (6) | 0.0348 (6) | −0.0092 (5) | −0.0062 (5) | −0.0012 (5) |
C12 | 0.0413 (7) | 0.0355 (6) | 0.0483 (8) | −0.0050 (5) | −0.0109 (6) | 0.0000 (5) |
C13 | 0.0281 (5) | 0.0350 (6) | 0.0337 (6) | −0.0069 (4) | −0.0074 (4) | −0.0023 (5) |
C14 | 0.0336 (6) | 0.0368 (6) | 0.0343 (6) | −0.0070 (5) | −0.0074 (5) | −0.0001 (5) |
C15 | 0.0373 (6) | 0.0393 (6) | 0.0329 (6) | −0.0100 (5) | −0.0036 (5) | −0.0027 (5) |
C16 | 0.0351 (6) | 0.0494 (8) | 0.0343 (6) | 0.0026 (5) | −0.0071 (5) | −0.0051 (5) |
C17 | 0.0295 (5) | 0.0298 (6) | 0.0342 (6) | −0.0028 (4) | −0.0015 (4) | −0.0042 (4) |
C18 | 0.0424 (7) | 0.0397 (7) | 0.0484 (7) | −0.0152 (5) | −0.0158 (6) | 0.0004 (6) |
C19 | 0.0535 (9) | 0.0533 (9) | 0.0678 (10) | −0.0193 (7) | −0.0311 (8) | 0.0153 (8) |
C20 | 0.0510 (12) | 0.0429 (10) | 0.0519 (12) | −0.0158 (9) | −0.0173 (10) | 0.0130 (8) |
C21 | 0.0450 (7) | 0.0286 (6) | 0.0521 (8) | −0.0107 (5) | −0.0153 (6) | 0.0037 (5) |
C19' | 0.0535 (9) | 0.0533 (9) | 0.0678 (10) | −0.0193 (7) | −0.0311 (8) | 0.0153 (8) |
C20' | 0.045 (8) | 0.042 (6) | 0.062 (10) | −0.002 (5) | −0.018 (7) | 0.011 (6) |
C21' | 0.0450 (7) | 0.0286 (6) | 0.0521 (8) | −0.0107 (5) | −0.0153 (6) | 0.0037 (5) |
Cl1—C7 | 1.7320 (14) | C13—C14 | 1.3413 (17) |
S2—C17 | 1.7822 (13) | C13—C16 | 1.5047 (17) |
S2—C16 | 1.7934 (14) | C14—C15 | 1.4487 (17) |
S3—C17 | 1.6678 (12) | C14—H14 | 0.9300 |
O4—C11 | 1.3699 (15) | C16—H16A | 0.9700 |
O4—C15 | 1.3796 (16) | C16—H16B | 0.9700 |
O5—C15 | 1.2015 (16) | C18—C19 | 1.509 (2) |
N6—C17 | 1.3172 (16) | C18—H18A | 0.9700 |
N6—C18 | 1.4731 (16) | C18—H18B | 0.9700 |
N6—C21 | 1.4757 (16) | C19—C20 | 1.513 (2) |
C7—C12 | 1.379 (2) | C19—H19A | 0.9700 |
C7—C8 | 1.383 (2) | C19—H19B | 0.9700 |
C8—C9 | 1.377 (2) | C20—C21 | 1.508 (2) |
C8—H8 | 0.9300 | C20—H20A | 0.9700 |
C9—C10 | 1.4031 (18) | C20—H20B | 0.9700 |
C9—H9 | 0.9300 | C21—H21A | 0.9700 |
C10—C11 | 1.3966 (17) | C21—H21B | 0.9700 |
C10—C13 | 1.4498 (16) | C20'—H20C | 0.9700 |
C11—C12 | 1.3837 (18) | C20'—H20D | 0.9700 |
C12—H12 | 0.9300 | ||
C17—S2—C16 | 102.76 (7) | C13—C16—H16A | 108.1 |
C11—O4—C15 | 121.50 (10) | S2—C16—H16A | 108.1 |
C17—N6—C18 | 123.15 (11) | C13—C16—H16B | 108.1 |
C17—N6—C21 | 125.66 (11) | S2—C16—H16B | 108.1 |
C18—N6—C21 | 111.16 (10) | H16A—C16—H16B | 107.3 |
C12—C7—C8 | 121.59 (13) | N6—C17—S3 | 123.58 (10) |
C12—C7—Cl1 | 118.87 (12) | N6—C17—S2 | 112.65 (9) |
C8—C7—Cl1 | 119.53 (12) | S3—C17—S2 | 123.75 (7) |
C9—C8—C7 | 119.44 (13) | N6—C18—C19 | 103.94 (11) |
C9—C8—H8 | 120.3 | N6—C18—H18A | 111.0 |
C7—C8—H8 | 120.3 | C19—C18—H18A | 111.0 |
C8—C9—C10 | 121.17 (14) | N6—C18—H18B | 111.0 |
C8—C9—H9 | 119.4 | C19—C18—H18B | 111.0 |
C10—C9—H9 | 119.4 | H18A—C18—H18B | 109.0 |
C11—C10—C9 | 117.20 (12) | C18—C19—C20 | 105.04 (12) |
C11—C10—C13 | 118.25 (11) | C18—C19—H19A | 110.7 |
C9—C10—C13 | 124.53 (12) | C20—C19—H19A | 110.7 |
O4—C11—C12 | 115.98 (11) | C18—C19—H19B | 110.7 |
O4—C11—C10 | 121.51 (11) | C20—C19—H19B | 110.7 |
C12—C11—C10 | 122.50 (12) | H19A—C19—H19B | 108.8 |
C7—C12—C11 | 118.08 (13) | C21—C20—C19 | 103.84 (14) |
C7—C12—H12 | 121.0 | C21—C20—H20A | 111.0 |
C11—C12—H12 | 121.0 | C19—C20—H20A | 111.0 |
C14—C13—C10 | 119.02 (11) | C21—C20—H20B | 111.0 |
C14—C13—C16 | 123.85 (11) | C19—C20—H20B | 111.0 |
C10—C13—C16 | 117.11 (11) | H20A—C20—H20B | 109.0 |
C13—C14—C15 | 122.38 (12) | N6—C21—C20 | 103.91 (11) |
C13—C14—H14 | 118.8 | N6—C21—H21A | 111.0 |
C15—C14—H14 | 118.8 | C20—C21—H21A | 111.0 |
O5—C15—O4 | 116.97 (12) | N6—C21—H21B | 111.0 |
O5—C15—C14 | 125.72 (13) | C20—C21—H21B | 111.0 |
O4—C15—C14 | 117.28 (11) | H21A—C21—H21B | 109.0 |
C13—C16—S2 | 116.78 (9) | H20C—C20'—H20D | 108.7 |
C12—C7—C8—C9 | −0.7 (2) | C11—O4—C15—O5 | −179.57 (12) |
Cl1—C7—C8—C9 | 178.41 (13) | C11—O4—C15—C14 | 2.14 (17) |
C7—C8—C9—C10 | −0.1 (3) | C13—C14—C15—O5 | −178.77 (14) |
C8—C9—C10—C11 | 0.6 (2) | C13—C14—C15—O4 | −0.64 (19) |
C8—C9—C10—C13 | −177.89 (13) | C14—C13—C16—S2 | 3.91 (18) |
C15—O4—C11—C12 | 179.60 (12) | C10—C13—C16—S2 | −177.56 (9) |
C15—O4—C11—C10 | −1.62 (18) | C17—S2—C16—C13 | −84.97 (11) |
C9—C10—C11—O4 | −179.01 (12) | C18—N6—C17—S3 | 0.16 (17) |
C13—C10—C11—O4 | −0.43 (18) | C21—N6—C17—S3 | 178.05 (10) |
C9—C10—C11—C12 | −0.31 (19) | C18—N6—C17—S2 | 178.53 (10) |
C13—C10—C11—C12 | 178.27 (12) | C21—N6—C17—S2 | −3.57 (16) |
C8—C7—C12—C11 | 1.0 (2) | C16—S2—C17—N6 | 177.14 (9) |
Cl1—C7—C12—C11 | −178.15 (10) | C16—S2—C17—S3 | −4.49 (9) |
O4—C11—C12—C7 | 178.31 (12) | C17—N6—C18—C19 | −174.43 (12) |
C10—C11—C12—C7 | −0.5 (2) | C21—N6—C18—C19 | 7.40 (16) |
C11—C10—C13—C14 | 1.87 (18) | N6—C18—C19—C20 | −26.24 (19) |
C9—C10—C13—C14 | −179.66 (13) | C18—C19—C20—C21 | 35.3 (2) |
C11—C10—C13—C16 | −176.73 (11) | C17—N6—C21—C20 | −163.79 (15) |
C9—C10—C13—C16 | 1.74 (19) | C18—N6—C21—C20 | 14.32 (17) |
C10—C13—C14—C15 | −1.34 (18) | C19—C20—C21—N6 | −30.1 (2) |
C16—C13—C14—C15 | 177.16 (12) |
Cg4 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···S3i | 0.93 | 2.87 | 3.7910 (16) | 170 |
C21—H21B···O5ii | 0.97 | 2.60 | 3.3434 (19) | 134 |
C16—H16B···Cg4ii | 0.97 | 2.93 | 3.761 (1) | 144 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z+1. |
Cg4 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···S3i | 0.93 | 2.87 | 3.7910 (16) | 170 |
C21—H21B···O5ii | 0.97 | 2.60 | 3.3434 (19) | 134 |
C16—H16B···Cg4ii | 0.97 | 2.93 | 3.761 (1) | 144 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z+1. |
Acknowledgements
The authors acknowledge the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for CCD X-ray facilities, single-crystal X-ray diffractometer, GCMS, IR, CHNS and NMR data. NMM is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities. He is also thankful to P. C. Jabin Science College, Hubli and UGC for permission to do research under FIP.
References
Brillon, D. (1992). Sulfur Rep. 12, 297–332. CrossRef CAS Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burns, M., Lloyd-Jones, G. C., Moseley, J. D. & Renny, J. S. (2010). J. Org. Chem. 75, 6347–6353. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M. & Yoshizawa, Y. (2001). Anticancer Res. 21, 917–923. Web of Science PubMed CAS Google Scholar
Khan, K. M., Saify, Z. S., Khan, M. Z., Zia-Ullah, Choudhary, M. I., Atta-Ur-Rahman, Perveen, S., Chohan, Z. H. & Supuran, C. T. (2004). J. Enzyme Inhib. Med. Chem. 19, 373–379. Web of Science CrossRef PubMed CAS Google Scholar
Mahabaleshwaraiah, N. M., Kumar, K. M., Kotresh, O., Al-eryani, W. F. A. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o1566. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322–345. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarin derivatives are an interesting class of heterocyclic systems, since the coumarin ring is an essential core moiety for a variety of natural and synthetic biologically active compounds. The biological activities include anticoagulation, antibiotic, antifungal, antipsoriasis, antitumor, anti-HIV, anti-inflammatory properties (Khan et al., 2004; Kawaii et al., 2001; Yu et al., 2003). For a number of years, due to their important biological, biomedical and laser dye properties, coumarins have been the subject of a number of investigations, particularly on their photophysical characteristics, solvent effects on electronic absorption, structural properties and fluorescence spectra. The molecular manipulation of promising lead compounds is still a major line of approach to develop new drugs. It involves an effort to combine the separate pharmacophoric groups of similar activity into one compound, thereby affecting biological activity. The functionalization of the carbamate moiety is an effective technique for preparation of derivatives, which may have important therapeutic and biological properties (Brillon, 1992). In this regard, the introduction of new strategies to prepare dithiocarbamate derivatives with different substitution patterns at the thiol group has become a field of increasing interest in synthetic organic chemistry. There are several publications illustrating intramolecular or intermolecular oxygen sulfur exchange (Burns et al., 2010).
The asymmetric unit of (7-chloro-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate is shown in Fig. 1. The 2H- chromene (O4/C7–C15) ring system is planar, with a maximum deviation of 0.0133 (10) Å for atom C10, and the pyrrolidine ring adopts a twisted conformation. The dihedral angle between the 2H-chromene ring (O4/C7–C15) and the pyrrolidine ring (N6/C18–C21) is 89.45 (7)°. In the crystal, inversion dimers linked by pairs of C13—H13···S2 and C9—H9···O5 interactions generate R22(24) and R22(10) loops, respectively. Further C9—H9···O5 hydrogen bonds link the dimers into [100] chains. C16—H16B···π Cg4(C7–C12) (Table 1) interactions also occur and there is π-π Cg4 (C7–C12) stacking of inversion-related molecules, with interplanar spacings of 3.650 (5) Å and chlorobenzene ring centroid–centroid distances of 4.095 (7) Å. The packing of the molecules is depicted in Fig. 2. Disorder is observed at the pyrrolidine flap carbon (C20, C20') atom [occupancy ratio 0.876 (5):0.124 (5)].