organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1684-o1685

(7-Chloro-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodi­thio­ate

aDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India, and bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 7 August 2013; accepted 13 October 2013; online 23 October 2013)

In the title compound, C15H14ClNO2S2, the 2H-chromene ring system is essentially planar, with a maximum deviation of 0.0133 (10) Å. Three C atoms and their attached H atoms of the pyrrolidine ring are disordered [occupany ratio 0.874 (7):0.126 (7)] with both disorder components adopting a twisted conformation. The dihedral angle between the 2H-chromene ring system and the major occupancy component of the pyrrolidine ring is 89.45 (7)°. In the crystal, inversion dimers linked by pairs of C—H⋯S and C—H⋯O inter­actions generate R22(24) and R22(10) loops, respectively. Further C—H⋯O hydrogen bonds link the dimers into [100] chains. C—H⋯π inter­actions also occur and there is very weak ππ stacking [inter­planar spacing = 3.650 (5) Å; centroid–centroid distance = 4.095 (7) Å] between inversion-related chloro­benzene rings.

Related literature

For biological applications of coumarins and di­thio­carbamates, see: Brillon (1992[Brillon, D. (1992). Sulfur Rep. 12, 297-332.]); Burns et al. (2010[Burns, M., Lloyd-Jones, G. C., Moseley, J. D. & Renny, J. S. (2010). J. Org. Chem. 75, 6347-6353.]); Kawaii et al. (2001[Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M. & Yoshizawa, Y. (2001). Anticancer Res. 21, 917-923.]); Khan et al. (2004[Khan, K. M., Saify, Z. S., Khan, M. Z., Zia-Ullah, Choudhary, M. I., Atta-Ur-Rahman, Perveen, S., Chohan, Z. H. & Supuran, C. T. (2004). J. Enzyme Inhib. Med. Chem. 19, 373-379.]); Yu et al. (2003[Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322-345.]). For details of the synthesis and a related structure with comparison bond lengths, see: Mahabaleshwaraiah et al. (2012[Mahabaleshwaraiah, N. M., Kumar, K. M., Kotresh, O., Al-eryani, W. F. A. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o1566.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClNO2S2

  • Mr = 339.84

  • Triclinic, [P \overline 1]

  • a = 7.9073 (2) Å

  • b = 9.2891 (2) Å

  • c = 10.8865 (2) Å

  • α = 84.474 (1)°

  • β = 79.798 (1)°

  • γ = 72.437 (1)°

  • V = 749.52 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 1.000

  • 16446 measured reflections

  • 3417 independent reflections

  • 3136 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.102

  • S = 1.18

  • 3417 reflections

  • 201 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯S3i 0.93 2.87 3.7910 (16) 170
C21—H21B⋯O5ii 0.97 2.60 3.3434 (19) 134
C16—H16BCg4ii 0.97 2.93 3.761 (1) 144
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarin derivatives are an interesting class of heterocyclic systems, since the coumarin ring is an essential core moiety for a variety of natural and synthetic biologically active compounds. The biological activities include anticoagulation, antibiotic, antifungal, antipsoriasis, antitumor, anti-HIV, anti-inflammatory properties (Khan et al., 2004; Kawaii et al., 2001; Yu et al., 2003). For a number of years, due to their important biological, biomedical and laser dye properties, coumarins have been the subject of a number of investigations, particularly on their photophysical characteristics, solvent effects on electronic absorption, structural properties and fluorescence spectra. The molecular manipulation of promising lead compounds is still a major line of approach to develop new drugs. It involves an effort to combine the separate pharmacophoric groups of similar activity into one compound, thereby affecting biological activity. The functionalization of the carbamate moiety is an effective technique for preparation of derivatives, which may have important therapeutic and biological properties (Brillon, 1992). In this regard, the introduction of new strategies to prepare dithiocarbamate derivatives with different substitution patterns at the thiol group has become a field of increasing interest in synthetic organic chemistry. There are several publications illustrating intramolecular or intermolecular oxygen sulfur exchange (Burns et al., 2010).

The asymmetric unit of (7-chloro-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate is shown in Fig. 1. The 2H- chromene (O4/C7–C15) ring system is planar, with a maximum deviation of 0.0133 (10) Å for atom C10, and the pyrrolidine ring adopts a twisted conformation. The dihedral angle between the 2H-chromene ring (O4/C7–C15) and the pyrrolidine ring (N6/C18–C21) is 89.45 (7)°. In the crystal, inversion dimers linked by pairs of C13—H13···S2 and C9—H9···O5 interactions generate R22(24) and R22(10) loops, respectively. Further C9—H9···O5 hydrogen bonds link the dimers into [100] chains. C16—H16B···π Cg4(C7–C12) (Table 1) interactions also occur and there is π-π Cg4 (C7–C12) stacking of inversion-related molecules, with interplanar spacings of 3.650 (5) Å and chlorobenzene ring centroid–centroid distances of 4.095 (7) Å. The packing of the molecules is depicted in Fig. 2. Disorder is observed at the pyrrolidine flap carbon (C20, C20') atom [occupancy ratio 0.876 (5):0.124 (5)].

Related literature top

For biological applications of coumarins and dithiocarbamates, see: Brillon (1992); Burns et al. (2010); Kawaii et al. (2001); Khan et al. (2004); Yu et al. (2003). For details of the synthesis and a related structure with comparison bond lengths, see: Mahabaleshwaraiah et al. (2012).

Experimental top

All the chemicals used were of analytical reagent grade and were used directly without further purification. The title compound was synthesized according to the reported method (Mahabaleshwaraiah et al., 2012). The compound is recrystallized by ethanol-chloroform mixture. Colourless needles of the title compound were grown from a mixed solution of Ethanol/Chloroform (V/V = 2/1) by slow evaporation at room temperature. Yield = 74%, m.p. 445–447 K.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Only the major conformation of disorder at atom C20 is shown.
[Figure 2] Fig. 2. A packing diagram of the title compound.
(7-Chloro-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate top
Crystal data top
C15H14ClNO2S2Z = 2
Mr = 339.84F(000) = 352
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Melting point: 447 K
a = 7.9073 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2891 (2) ÅCell parameters from 3417 reflections
c = 10.8865 (2) Åθ = 1.9–27.5°
α = 84.474 (1)°µ = 0.54 mm1
β = 79.798 (1)°T = 296 K
γ = 72.437 (1)°Plate, colourless
V = 749.52 (3) Å30.22 × 0.18 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3417 independent reflections
Radiation source: fine-focus sealed tube3136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1010
Tmin = 0.770, Tmax = 1.000k = 1212
16446 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.0857P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.004
3417 reflectionsΔρmax = 0.28 e Å3
201 parametersΔρmin = 0.31 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (5)
Crystal data top
C15H14ClNO2S2γ = 72.437 (1)°
Mr = 339.84V = 749.52 (3) Å3
Triclinic, P1Z = 2
a = 7.9073 (2) ÅMo Kα radiation
b = 9.2891 (2) ŵ = 0.54 mm1
c = 10.8865 (2) ÅT = 296 K
α = 84.474 (1)°0.22 × 0.18 × 0.12 mm
β = 79.798 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3417 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3136 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.023
16446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.18Δρmax = 0.28 e Å3
3417 reflectionsΔρmin = 0.31 e Å3
201 parameters
Special details top

Experimental. IR (KBr, cm-1): 1731 (C=O), 1374 (C=S), 866(C—N). GCMS: m/e:339. 1H NMR (400 MHz, CDCl3, \?, p.p.m): 1.89 (m, 2H, CH2), 2.00 (m, 2H, CH2), 3.63(m, 2H, N—CH2), 3.77 (m, 2H, N—CH2), 4.81 (s,2H, C4—CH2),6.60 (s,1H, C3—H, Ar—H), 7.46 (m, H, Ar—H), 7.62 (m, 1H, Ar—H), 7.91 (s, 1H, Ar—H). Mol. Formula: C15H14Cl N O2S2. Elemental analysis: C, 53.01; H, 4.15; N, 4.12 (calculated); C, 52.98; H, 4.10; N, 4.09 (found).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.28700 (7)1.07931 (5)0.14180 (5)0.06885 (16)
S20.38730 (4)0.30580 (4)0.21169 (3)0.04235 (13)
S30.54060 (5)0.56231 (4)0.24009 (4)0.04455 (13)
O40.19899 (13)0.79324 (11)0.26803 (9)0.0409 (2)
O50.17968 (15)0.68451 (13)0.45600 (9)0.0526 (3)
N60.61026 (14)0.29726 (11)0.36235 (10)0.0338 (2)
C70.1734 (2)0.92725 (17)0.05374 (14)0.0459 (3)
C80.0243 (2)0.8208 (2)0.11117 (14)0.0520 (4)
H80.01300.82940.19680.062*
C90.06851 (19)0.70194 (18)0.04044 (13)0.0461 (3)
H90.16860.63030.07910.055*
C100.01464 (16)0.68708 (14)0.08890 (11)0.0334 (3)
C110.13752 (16)0.79680 (14)0.14228 (12)0.0345 (3)
C120.23300 (19)0.91664 (16)0.07278 (14)0.0427 (3)
H120.33450.98800.11030.051*
C130.10823 (15)0.56837 (14)0.17036 (11)0.0324 (2)
C140.04298 (16)0.56563 (14)0.29272 (12)0.0354 (3)
H140.10190.48810.34440.043*
C150.11598 (17)0.67905 (15)0.34721 (12)0.0370 (3)
C160.27739 (18)0.45665 (17)0.11144 (13)0.0425 (3)
H16A0.36210.51170.07510.051*
H16B0.24880.41240.04350.051*
C170.52248 (15)0.38901 (13)0.27966 (11)0.0327 (2)
C180.73425 (19)0.33810 (16)0.42944 (14)0.0418 (3)
H18A0.67020.41940.48500.050*
H18B0.82630.36920.37140.050*
C190.8152 (2)0.1946 (2)0.50227 (18)0.0558 (4)0.874 (7)
H19A0.83840.21730.58170.067*0.874 (7)
H19B0.92700.13590.45550.067*0.874 (7)
C200.6762 (3)0.1094 (2)0.5219 (2)0.0480 (6)0.874 (7)
H20A0.73170.00160.53350.058*0.874 (7)
H20B0.58600.14420.59410.058*0.874 (7)
C210.59481 (19)0.14500 (14)0.40330 (14)0.0413 (3)0.874 (7)
H21A0.66060.07220.34090.050*0.874 (7)
H21B0.47020.14510.41920.050*0.874 (7)
C19'0.8152 (2)0.1946 (2)0.50227 (18)0.0558 (4)0.126 (7)
H19C0.94490.17230.48920.067*0.126 (7)
H19D0.77150.20690.59080.067*0.126 (7)
C20'0.765 (2)0.0709 (13)0.4603 (17)0.052 (4)0.126 (7)
H20C0.74300.00240.53010.062*0.126 (7)
H20D0.86040.01470.39860.062*0.126 (7)
C21'0.59481 (19)0.14500 (14)0.40330 (14)0.0413 (3)0.126 (7)
H21C0.59070.08990.33310.050*0.126 (7)
H21D0.48830.15060.46480.050*0.126 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0754 (3)0.0589 (3)0.0702 (3)0.0126 (2)0.0342 (2)0.0265 (2)
S20.0401 (2)0.0358 (2)0.0502 (2)0.00229 (14)0.01778 (15)0.00600 (14)
S30.0498 (2)0.03124 (19)0.0489 (2)0.00884 (14)0.00686 (15)0.00535 (14)
O40.0416 (5)0.0369 (5)0.0365 (5)0.0022 (4)0.0011 (4)0.0042 (4)
O50.0544 (6)0.0595 (7)0.0336 (5)0.0059 (5)0.0024 (4)0.0043 (5)
N60.0334 (5)0.0290 (5)0.0396 (5)0.0082 (4)0.0089 (4)0.0002 (4)
C70.0503 (8)0.0430 (7)0.0463 (8)0.0135 (6)0.0197 (6)0.0118 (6)
C80.0541 (8)0.0620 (10)0.0353 (7)0.0124 (7)0.0084 (6)0.0084 (6)
C90.0411 (7)0.0555 (8)0.0344 (7)0.0050 (6)0.0044 (5)0.0005 (6)
C100.0314 (6)0.0366 (6)0.0319 (6)0.0091 (5)0.0064 (4)0.0009 (5)
C110.0342 (6)0.0342 (6)0.0348 (6)0.0092 (5)0.0062 (5)0.0012 (5)
C120.0413 (7)0.0355 (6)0.0483 (8)0.0050 (5)0.0109 (6)0.0000 (5)
C130.0281 (5)0.0350 (6)0.0337 (6)0.0069 (4)0.0074 (4)0.0023 (5)
C140.0336 (6)0.0368 (6)0.0343 (6)0.0070 (5)0.0074 (5)0.0001 (5)
C150.0373 (6)0.0393 (6)0.0329 (6)0.0100 (5)0.0036 (5)0.0027 (5)
C160.0351 (6)0.0494 (8)0.0343 (6)0.0026 (5)0.0071 (5)0.0051 (5)
C170.0295 (5)0.0298 (6)0.0342 (6)0.0028 (4)0.0015 (4)0.0042 (4)
C180.0424 (7)0.0397 (7)0.0484 (7)0.0152 (5)0.0158 (6)0.0004 (6)
C190.0535 (9)0.0533 (9)0.0678 (10)0.0193 (7)0.0311 (8)0.0153 (8)
C200.0510 (12)0.0429 (10)0.0519 (12)0.0158 (9)0.0173 (10)0.0130 (8)
C210.0450 (7)0.0286 (6)0.0521 (8)0.0107 (5)0.0153 (6)0.0037 (5)
C19'0.0535 (9)0.0533 (9)0.0678 (10)0.0193 (7)0.0311 (8)0.0153 (8)
C20'0.045 (8)0.042 (6)0.062 (10)0.002 (5)0.018 (7)0.011 (6)
C21'0.0450 (7)0.0286 (6)0.0521 (8)0.0107 (5)0.0153 (6)0.0037 (5)
Geometric parameters (Å, º) top
Cl1—C71.7320 (14)C13—C141.3413 (17)
S2—C171.7822 (13)C13—C161.5047 (17)
S2—C161.7934 (14)C14—C151.4487 (17)
S3—C171.6678 (12)C14—H140.9300
O4—C111.3699 (15)C16—H16A0.9700
O4—C151.3796 (16)C16—H16B0.9700
O5—C151.2015 (16)C18—C191.509 (2)
N6—C171.3172 (16)C18—H18A0.9700
N6—C181.4731 (16)C18—H18B0.9700
N6—C211.4757 (16)C19—C201.513 (2)
C7—C121.379 (2)C19—H19A0.9700
C7—C81.383 (2)C19—H19B0.9700
C8—C91.377 (2)C20—C211.508 (2)
C8—H80.9300C20—H20A0.9700
C9—C101.4031 (18)C20—H20B0.9700
C9—H90.9300C21—H21A0.9700
C10—C111.3966 (17)C21—H21B0.9700
C10—C131.4498 (16)C20'—H20C0.9700
C11—C121.3837 (18)C20'—H20D0.9700
C12—H120.9300
C17—S2—C16102.76 (7)C13—C16—H16A108.1
C11—O4—C15121.50 (10)S2—C16—H16A108.1
C17—N6—C18123.15 (11)C13—C16—H16B108.1
C17—N6—C21125.66 (11)S2—C16—H16B108.1
C18—N6—C21111.16 (10)H16A—C16—H16B107.3
C12—C7—C8121.59 (13)N6—C17—S3123.58 (10)
C12—C7—Cl1118.87 (12)N6—C17—S2112.65 (9)
C8—C7—Cl1119.53 (12)S3—C17—S2123.75 (7)
C9—C8—C7119.44 (13)N6—C18—C19103.94 (11)
C9—C8—H8120.3N6—C18—H18A111.0
C7—C8—H8120.3C19—C18—H18A111.0
C8—C9—C10121.17 (14)N6—C18—H18B111.0
C8—C9—H9119.4C19—C18—H18B111.0
C10—C9—H9119.4H18A—C18—H18B109.0
C11—C10—C9117.20 (12)C18—C19—C20105.04 (12)
C11—C10—C13118.25 (11)C18—C19—H19A110.7
C9—C10—C13124.53 (12)C20—C19—H19A110.7
O4—C11—C12115.98 (11)C18—C19—H19B110.7
O4—C11—C10121.51 (11)C20—C19—H19B110.7
C12—C11—C10122.50 (12)H19A—C19—H19B108.8
C7—C12—C11118.08 (13)C21—C20—C19103.84 (14)
C7—C12—H12121.0C21—C20—H20A111.0
C11—C12—H12121.0C19—C20—H20A111.0
C14—C13—C10119.02 (11)C21—C20—H20B111.0
C14—C13—C16123.85 (11)C19—C20—H20B111.0
C10—C13—C16117.11 (11)H20A—C20—H20B109.0
C13—C14—C15122.38 (12)N6—C21—C20103.91 (11)
C13—C14—H14118.8N6—C21—H21A111.0
C15—C14—H14118.8C20—C21—H21A111.0
O5—C15—O4116.97 (12)N6—C21—H21B111.0
O5—C15—C14125.72 (13)C20—C21—H21B111.0
O4—C15—C14117.28 (11)H21A—C21—H21B109.0
C13—C16—S2116.78 (9)H20C—C20'—H20D108.7
C12—C7—C8—C90.7 (2)C11—O4—C15—O5179.57 (12)
Cl1—C7—C8—C9178.41 (13)C11—O4—C15—C142.14 (17)
C7—C8—C9—C100.1 (3)C13—C14—C15—O5178.77 (14)
C8—C9—C10—C110.6 (2)C13—C14—C15—O40.64 (19)
C8—C9—C10—C13177.89 (13)C14—C13—C16—S23.91 (18)
C15—O4—C11—C12179.60 (12)C10—C13—C16—S2177.56 (9)
C15—O4—C11—C101.62 (18)C17—S2—C16—C1384.97 (11)
C9—C10—C11—O4179.01 (12)C18—N6—C17—S30.16 (17)
C13—C10—C11—O40.43 (18)C21—N6—C17—S3178.05 (10)
C9—C10—C11—C120.31 (19)C18—N6—C17—S2178.53 (10)
C13—C10—C11—C12178.27 (12)C21—N6—C17—S23.57 (16)
C8—C7—C12—C111.0 (2)C16—S2—C17—N6177.14 (9)
Cl1—C7—C12—C11178.15 (10)C16—S2—C17—S34.49 (9)
O4—C11—C12—C7178.31 (12)C17—N6—C18—C19174.43 (12)
C10—C11—C12—C70.5 (2)C21—N6—C18—C197.40 (16)
C11—C10—C13—C141.87 (18)N6—C18—C19—C2026.24 (19)
C9—C10—C13—C14179.66 (13)C18—C19—C20—C2135.3 (2)
C11—C10—C13—C16176.73 (11)C17—N6—C21—C20163.79 (15)
C9—C10—C13—C161.74 (19)C18—N6—C21—C2014.32 (17)
C10—C13—C14—C151.34 (18)C19—C20—C21—N630.1 (2)
C16—C13—C14—C15177.16 (12)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···S3i0.932.873.7910 (16)170
C21—H21B···O5ii0.972.603.3434 (19)134
C16—H16B···Cg4ii0.972.933.761 (1)144
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···S3i0.932.873.7910 (16)170
C21—H21B···O5ii0.972.603.3434 (19)134
C16—H16B···Cg4ii0.972.933.761 (1)144
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for CCD X-ray facilities, single-crystal X-ray diffractometer, GCMS, IR, CHNS and NMR data. NMM is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities. He is also thankful to P. C. Jabin Science College, Hubli and UGC for permission to do research under FIP.

References

First citationBrillon, D. (1992). Sulfur Rep. 12, 297–332.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurns, M., Lloyd-Jones, G. C., Moseley, J. D. & Renny, J. S. (2010). J. Org. Chem. 75, 6347–6353.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M. & Yoshizawa, Y. (2001). Anticancer Res. 21, 917–923.  Web of Science PubMed CAS Google Scholar
First citationKhan, K. M., Saify, Z. S., Khan, M. Z., Zia-Ullah, Choudhary, M. I., Atta-Ur-Rahman, Perveen, S., Chohan, Z. H. & Supuran, C. T. (2004). J. Enzyme Inhib. Med. Chem. 19, 373–379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMahabaleshwaraiah, N. M., Kumar, K. M., Kotresh, O., Al-eryani, W. F. A. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o1566.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322–345.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1684-o1685
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds