metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m583-m584

Bis(μ-L-arginine-κ3N2,O:O′)bis­­(L-arginine-κ2N2,O)tetra-μ-chlorido-tetra­chlorido­tetra­copper(II)

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, professormohan@yahoo.co.in

(Received 30 August 2013; accepted 29 September 2013; online 5 October 2013)

The title compound, [Cu4Cl8(C6H14N4O2)4], contains four mol­ecules in the asymmetric unit. In the mol­ecular structure, each of the four Cu2+ ions binds to three Cl atoms, one N atom and one O atom, resulting in distorted square-pyramidal coordination environments. The molecular structure is stabilized by weak C—H⋯O and N—H⋯Cl hydrogen bonds. The crystal structure exhibit weak inter­molecular N—H⋯O, C—H⋯O and N—H⋯Cl inter­actions, generating a three-dimensional network.

Related literature

For general background of copper derivatives, see: Baran (2004[Baran, E. J. (2004). Mini Rev. Med. Chem. 4, 1-9.]); Sorenson (1976[Sorenson, J. R. J. (1976). J. Med. Chem. 19, 135-148.]). For related structures, see: Ramaswamy et al. (2001[Ramaswamy, S., Sridhar, B., Ramakrishnan, V. & Rajaram, R. K. (2001). Acta Cryst. E57, o872-o874.]); Sridhar et al. (2002[Sridhar, B., Srinivasan, N., Dalhus, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o747-o749.]); Sun et al. (2005[Sun, Y.-X., Gao, Y.-Z., Zhang, H.-L., Kong, D.-S. & Yu, Y. (2005). Acta Cryst. E61, m1055-m1057.]); Wang et al. (2012[Wang, H., Lang, Y. & Wang, S. (2012). Acta Cryst. E68, m540.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4Cl8(C6H14N4O2)4]

  • Mr = 1234.65

  • Monoclinic, P 21

  • a = 11.9315 (8) Å

  • b = 12.8805 (10) Å

  • c = 15.3949 (13) Å

  • β = 99.271 (4)°

  • V = 2335.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.655, Tmax = 0.708

  • 16238 measured reflections

  • 8443 independent reflections

  • 6378 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.112

  • S = 0.98

  • 8443 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2876 Friedel pairs

  • Absolute structure parameter: −0.005 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O4 0.97 2.47 2.805 (7) 100
C22—H22A⋯O8 0.97 2.57 3.229 (8) 125
N13—H13B⋯Cl2 0.90 2.62 3.478 (5) 161
N1—H1A⋯Cl8 0.90 2.52 3.409 (5) 168
N5—H5C⋯Cl5 0.90 2.46 3.341 (5) 165
N2—H2A⋯O8i 0.86 2.02 2.857 (6) 166
N4—H4F⋯O7i 0.86 2.16 2.998 (7) 164
N10—H10⋯O4ii 0.86 1.95 2.791 (7) 167
N12—H12B⋯O3ii 0.86 2.17 2.975 (6) 156
N15—H15C⋯O1iii 0.86 2.02 2.873 (6) 171
N14—H14A⋯O2iii 0.86 2.01 2.873 (6) 176
N6—H6⋯O6iv 0.86 1.99 2.831 (6) 167
N7—H7B⋯O5iv 0.86 2.15 2.969 (7) 160
C20—H20⋯O3v 0.98 2.57 3.426 (7) 145
N3—H3C⋯Cl2vi 0.86 2.38 3.224 (7) 165
N7—H7A⋯Cl4vi 0.86 2.63 3.465 (6) 164
N8—H8B⋯Cl3vi 0.86 2.41 3.269 (6) 173
N11—H11C⋯Cl5vii 0.86 2.28 3.134 (6) 170
N12—H12A⋯Cl6vii 0.86 2.83 3.574 (6) 146
N16—H16F⋯Cl8vii 0.86 2.32 3.159 (6) 166
N11—H11D⋯Cl4viii 0.86 2.71 3.310 (5) 128
C17—H17A⋯Cl5viii 0.97 2.79 3.588 (6) 140
C23—H23A⋯Cl8ix 0.97 2.73 3.624 (7) 154
N16—H16E⋯Cl1ix 0.86 2.59 3.314 (5) 142
N8—H8A⋯Cl6x 0.86 2.69 3.300 (5) 130
N3—H3D⋯Cl7xi 0.86 2.70 3.329 (6) 131
N5—H5D⋯O8xii 0.90 2.33 3.041 (7) 136
C9—H9B⋯O7xii 0.97 2.60 3.460 (7) 148
N13—H13A⋯O4v 0.90 2.54 3.081 (7) 120
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z+2]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+2]; (v) x-1, y, z-1; (vi) x, y+1, z; (vii) x, y-1, z; (viii) [-x+1, y-{\script{1\over 2}}, -z+2]; (ix) [-x, y-{\script{1\over 2}}, -z+1]; (x) [-x+2, y+{\script{1\over 2}}, -z+2]; (xi) [-x+1, y+{\script{1\over 2}}, -z+1]; (xii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Copper complexes exhibit wide spectrum of effects such as anti–inflammatory, anti–cancer, anti–convulsant and anti–tumoral activities (Baran, 2004; Sorenson, 1976).

Four title molecules are present in the asymmetric unit. In the molecular structure a each copper atom binds to three Cl atoms and one N and one O atoms from organic ligand (Fig. 1), resulting in a distorted square-pyramidal coordination environment. In the molecular structure of title compound the bond distances of Cu—O lies in interval 1.954 (4)Å–1.966 (4)Å, Cu—N - 1.978 (5)Å–1.993 (5)Å and Cu—Cl - 2.2383 (17)Å–2.2867 (16)Å, and are in the normal range compared to the reported complexes (Sun et al., 2005; Wang et al., 2012). The geometric parameters of L–arginium moiety in title molecules are agree well with the reported similar structures (Ramaswamy et al., 2001; Sridhar et al., 2002).

The molecular structure is stabilized by weak C—H···O and N—H···Cl hydrogen bonds and the crystal structure is influenced by weak intermolecular N—H···O, C—H···O and N—H···Cl (Table 1) interactions to generate a three dimensional network.

Related literature top

For general background of derivatives, see: Baran (2004); Sorenson (1976). For related structures, see: Ramaswamy et al. (2001); Sridhar et al. (2002); Sun et al. (2005); Wang et al. (2012).

Experimental top

The title salt was synthesized from the starting materials of L–arginine (1.7420 g) and copper dichloride dihydrate (1.7048 g) taken in water solvent system. Single crystals suitable for X–ray diffraction were grown by slow evaporation technique at room temperature.

Refinement top

The H atoms were positioned geometrically, with C—H = 0.97Å–0.98Å and N—H = 0.86Å–0.90Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are presented as a small spheres of arbitrary radius.
Bis(µ-L-arginine-κ3N2,O:O')bis(L-arginine-κ2N2,O)tetra-µ-chlorido-tetrachloridotetracopper(II) top
Crystal data top
[Cu4Cl8(C6H14N4O2)4]F(000) = 1256
Mr = 1234.65Dx = 1.756 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8444 reflections
a = 11.9315 (8) Åθ = 1.3–27.6°
b = 12.8805 (10) ŵ = 2.32 mm1
c = 15.3949 (13) ÅT = 295 K
β = 99.271 (4)°Block, blue
V = 2335.0 (3) Å30.20 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker Kappa APEXII
diffractometer
8443 independent reflections
Radiation source: fine–focus sealed tube6378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω– and ϕ–scansθmax = 27.6°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1115
Tmin = 0.655, Tmax = 0.708k = 1611
16238 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
8443 reflectionsΔρmax = 0.98 e Å3
541 parametersΔρmin = 0.54 e Å3
0 restraintsAbsolute structure: Flack (1983), 2876 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (13)
Crystal data top
[Cu4Cl8(C6H14N4O2)4]V = 2335.0 (3) Å3
Mr = 1234.65Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.9315 (8) ŵ = 2.32 mm1
b = 12.8805 (10) ÅT = 295 K
c = 15.3949 (13) Å0.20 × 0.18 × 0.16 mm
β = 99.271 (4)°
Data collection top
Bruker Kappa APEXII
diffractometer
8443 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6378 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.708Rint = 0.053
16238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.98 e Å3
S = 0.98Δρmin = 0.54 e Å3
8443 reflectionsAbsolute structure: Flack (1983), 2876 Friedel pairs
541 parametersAbsolute structure parameter: 0.005 (13)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5534 (5)0.3535 (5)0.6619 (4)0.0314 (14)
C20.4492 (4)0.4237 (5)0.6536 (4)0.0293 (13)
H20.44490.46100.59770.035*
C30.4546 (5)0.5055 (5)0.7253 (4)0.0338 (14)
H3A0.45400.47070.78110.041*
H3B0.52620.54220.72930.041*
C40.3591 (5)0.5841 (5)0.7117 (5)0.0392 (16)
H4A0.28760.54820.69390.047*
H4B0.35540.61890.76700.047*
C50.3742 (6)0.6641 (7)0.6432 (5)0.054 (2)
H5A0.44320.70310.66240.064*
H5B0.38190.62950.58850.064*
C60.2832 (5)0.8286 (5)0.5938 (4)0.0360 (16)
C71.0311 (5)0.2921 (5)1.1448 (4)0.0287 (13)
C80.9244 (4)0.3595 (5)1.1414 (4)0.0292 (14)
H80.91750.40051.08710.035*
C90.9305 (5)0.4355 (5)1.2162 (4)0.0360 (15)
H9A1.00440.46861.22460.043*
H9B0.92430.39741.26960.043*
C100.8397 (5)0.5195 (5)1.2036 (4)0.0383 (15)
H10A0.77010.49081.17110.046*
H10B0.82420.54161.26070.046*
C110.8748 (5)0.6123 (5)1.1547 (5)0.0391 (16)
H11A0.94660.63901.18500.047*
H11B0.88500.59181.09590.047*
C120.7940 (5)0.7836 (5)1.1116 (4)0.0350 (15)
C130.4773 (5)0.1676 (5)0.7897 (4)0.0327 (14)
C140.5726 (5)0.0932 (5)0.7828 (4)0.0309 (14)
H140.57490.07820.72070.037*
C150.5476 (5)0.0066 (5)0.8300 (4)0.0363 (15)
H15A0.54200.00980.89060.044*
H15B0.47460.03360.80240.044*
C160.6358 (5)0.0892 (6)0.8288 (5)0.0426 (17)
H16A0.70730.06560.86180.051*
H16B0.64680.10150.76860.051*
C170.6010 (5)0.1888 (5)0.8680 (5)0.0414 (16)
H17A0.58290.17530.92620.050*
H17B0.53350.21610.83170.050*
C180.6854 (5)0.3587 (5)0.9072 (4)0.0328 (15)
C190.0012 (5)0.1880 (5)0.3325 (4)0.0293 (14)
C200.1079 (4)0.1333 (5)0.3163 (4)0.0283 (14)
H200.10570.12960.25240.034*
C210.1155 (5)0.0228 (5)0.3515 (4)0.0331 (14)
H21A0.08510.02040.40620.040*
H21B0.19450.00180.36380.040*
C220.0497 (5)0.0528 (5)0.2857 (4)0.0392 (15)
H22A0.02610.02560.26680.047*
H22B0.08700.05720.23430.047*
C230.0406 (5)0.1608 (5)0.3228 (5)0.0439 (17)
H23A0.00680.15640.37590.053*
H23B0.00910.20250.28040.053*
C240.1617 (5)0.3054 (5)0.3774 (4)0.0347 (16)
N10.3473 (4)0.3563 (4)0.6459 (3)0.0300 (12)
H1A0.28790.38830.61320.036*
H1B0.32960.34430.69960.036*
N20.2789 (4)0.7344 (4)0.6281 (4)0.0413 (14)
H2A0.21560.71420.64230.050*
N30.3784 (5)0.8669 (5)0.5730 (5)0.064 (2)
H3C0.37900.92820.55080.077*
H3D0.43960.83060.58170.077*
N40.1902 (4)0.8861 (5)0.5797 (4)0.0452 (15)
H4E0.19230.94720.55740.054*
H4F0.12760.86250.59280.054*
N50.8283 (4)0.2870 (4)1.1305 (3)0.0307 (12)
H5C0.76540.31911.10300.037*
H5D0.81500.26581.18360.037*
N60.7884 (4)0.6924 (4)1.1496 (4)0.0381 (14)
H60.72920.67951.17310.046*
N70.7083 (4)0.8488 (4)1.1103 (4)0.0458 (15)
H7A0.71060.90891.08630.055*
H7B0.65010.83101.13330.055*
N80.8835 (4)0.8100 (5)1.0764 (4)0.0498 (16)
H8A0.93940.76751.07810.060*
H8B0.88610.86971.05180.060*
N90.6816 (4)0.1427 (4)0.8237 (3)0.0362 (13)
H9C0.72010.16340.78110.043*
H9D0.72450.09570.85730.043*
N100.6912 (4)0.2646 (4)0.8742 (4)0.0408 (14)
H100.75250.24730.85520.049*
N110.5912 (4)0.3904 (5)0.9308 (4)0.0517 (17)
H11C0.58660.45230.95100.062*
H11D0.53360.34950.92630.062*
N120.7755 (4)0.4191 (4)0.9132 (4)0.0466 (15)
H12A0.77300.48130.93310.056*
H12B0.83680.39630.89720.056*
N130.2093 (4)0.1961 (4)0.3535 (3)0.0330 (13)
H13A0.24180.22190.30930.040*
H13B0.26040.15490.38640.040*
N140.1512 (4)0.2119 (4)0.3432 (3)0.0337 (13)
H14A0.21080.17990.33260.040*
N150.2627 (4)0.3505 (5)0.3923 (4)0.0483 (16)
H15C0.32120.31840.37960.058*
H15D0.26990.41170.41470.058*
N160.0716 (4)0.3562 (5)0.3939 (4)0.0506 (16)
H16E0.00550.32810.38230.061*
H16F0.07900.41750.41630.061*
O10.5368 (3)0.2637 (3)0.6296 (3)0.0353 (10)
O20.6472 (3)0.3859 (4)0.6976 (4)0.0527 (13)
O31.0198 (3)0.2071 (3)1.1024 (3)0.0332 (10)
O41.1221 (3)0.3230 (4)1.1867 (3)0.0389 (11)
O50.4957 (3)0.2445 (4)0.8428 (3)0.0406 (11)
O60.3819 (3)0.1501 (4)0.7468 (3)0.0400 (11)
O70.0126 (3)0.2638 (3)0.3875 (3)0.0335 (10)
O80.0918 (3)0.1595 (4)0.2951 (3)0.0400 (11)
Cl10.19231 (11)0.17251 (13)0.56835 (10)0.0343 (4)
Cl20.43100 (13)0.09564 (13)0.50464 (12)0.0419 (4)
Cl30.91855 (14)0.03289 (13)0.98284 (12)0.0456 (4)
Cl40.67991 (12)0.10661 (13)1.04626 (12)0.0381 (4)
Cl50.60355 (14)0.37797 (13)0.99408 (12)0.0419 (4)
Cl60.83827 (11)0.30953 (14)0.91470 (11)0.0384 (4)
Cl70.34317 (13)0.38180 (14)0.42749 (12)0.0440 (4)
Cl80.11091 (14)0.44053 (13)0.50966 (12)0.0435 (4)
Cu10.37830 (6)0.22228 (5)0.58961 (5)0.03038 (19)
Cu20.86295 (6)0.16497 (6)1.06027 (5)0.03005 (18)
Cu30.65413 (6)0.26337 (6)0.89680 (5)0.0352 (2)
Cu40.16845 (6)0.31178 (6)0.42699 (5)0.03190 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (3)0.031 (4)0.034 (4)0.006 (3)0.005 (3)0.004 (3)
C20.029 (3)0.033 (4)0.026 (3)0.003 (3)0.003 (2)0.001 (3)
C30.032 (3)0.035 (4)0.033 (4)0.001 (3)0.004 (3)0.002 (3)
C40.041 (4)0.036 (4)0.045 (4)0.001 (3)0.020 (3)0.008 (3)
C50.041 (4)0.060 (5)0.066 (5)0.018 (4)0.026 (4)0.020 (4)
C60.035 (3)0.042 (4)0.033 (4)0.000 (3)0.012 (3)0.004 (3)
C70.027 (3)0.030 (4)0.029 (3)0.001 (3)0.004 (2)0.002 (3)
C80.027 (3)0.030 (3)0.031 (3)0.007 (3)0.005 (2)0.003 (3)
C90.044 (4)0.029 (4)0.033 (4)0.007 (3)0.003 (3)0.003 (3)
C100.044 (4)0.035 (4)0.036 (4)0.009 (3)0.009 (3)0.001 (3)
C110.034 (3)0.038 (4)0.047 (4)0.010 (3)0.010 (3)0.002 (3)
C120.036 (3)0.027 (4)0.042 (4)0.001 (3)0.005 (3)0.007 (3)
C130.030 (3)0.035 (4)0.035 (4)0.002 (3)0.008 (3)0.008 (3)
C140.029 (3)0.034 (4)0.030 (3)0.003 (3)0.004 (2)0.002 (3)
C150.031 (3)0.041 (4)0.036 (4)0.004 (3)0.004 (3)0.000 (3)
C160.038 (4)0.044 (4)0.047 (4)0.001 (3)0.010 (3)0.005 (3)
C170.036 (3)0.033 (4)0.056 (5)0.002 (3)0.010 (3)0.005 (4)
C180.027 (3)0.028 (4)0.042 (4)0.003 (3)0.003 (3)0.003 (3)
C190.030 (3)0.030 (4)0.026 (3)0.003 (3)0.001 (3)0.009 (3)
C200.024 (3)0.037 (4)0.023 (3)0.002 (3)0.001 (2)0.002 (3)
C210.029 (3)0.034 (4)0.034 (4)0.005 (3)0.002 (2)0.001 (3)
C220.042 (4)0.036 (4)0.036 (4)0.007 (3)0.008 (3)0.003 (3)
C230.032 (3)0.032 (4)0.066 (5)0.002 (3)0.002 (3)0.006 (3)
C240.031 (3)0.035 (4)0.040 (4)0.001 (3)0.013 (3)0.000 (3)
N10.020 (2)0.035 (3)0.034 (3)0.002 (2)0.002 (2)0.001 (2)
N20.032 (3)0.032 (3)0.064 (4)0.004 (3)0.022 (3)0.008 (3)
N30.047 (4)0.050 (4)0.099 (6)0.001 (3)0.025 (4)0.029 (4)
N40.043 (3)0.038 (3)0.056 (4)0.005 (3)0.014 (3)0.009 (3)
N50.023 (2)0.034 (3)0.034 (3)0.003 (2)0.002 (2)0.001 (2)
N60.032 (3)0.034 (3)0.053 (4)0.010 (2)0.020 (2)0.007 (3)
N70.039 (3)0.032 (3)0.068 (4)0.000 (3)0.013 (3)0.013 (3)
N80.035 (3)0.050 (4)0.067 (4)0.005 (3)0.019 (3)0.020 (3)
N90.024 (2)0.046 (3)0.039 (3)0.002 (2)0.006 (2)0.003 (3)
N100.035 (3)0.028 (3)0.062 (4)0.001 (3)0.015 (3)0.009 (3)
N110.035 (3)0.047 (4)0.075 (5)0.004 (3)0.014 (3)0.025 (3)
N120.042 (3)0.034 (3)0.065 (4)0.004 (3)0.012 (3)0.012 (3)
N130.027 (2)0.038 (3)0.034 (3)0.001 (2)0.003 (2)0.000 (2)
N140.031 (3)0.024 (3)0.047 (3)0.004 (2)0.010 (2)0.003 (2)
N150.038 (3)0.034 (3)0.074 (4)0.004 (3)0.013 (3)0.016 (3)
N160.036 (3)0.050 (4)0.067 (4)0.003 (3)0.012 (3)0.027 (3)
O10.0183 (19)0.029 (2)0.058 (3)0.0028 (19)0.0057 (18)0.004 (2)
O20.027 (2)0.052 (3)0.077 (4)0.001 (2)0.003 (2)0.021 (3)
O30.024 (2)0.032 (3)0.043 (3)0.0044 (19)0.0040 (18)0.004 (2)
O40.030 (2)0.043 (3)0.043 (3)0.002 (2)0.0033 (19)0.002 (2)
O50.028 (2)0.043 (3)0.049 (3)0.008 (2)0.0003 (19)0.006 (2)
O60.028 (2)0.056 (3)0.034 (3)0.001 (2)0.0004 (18)0.003 (2)
O70.0225 (19)0.040 (3)0.037 (3)0.0081 (19)0.0036 (17)0.004 (2)
O80.022 (2)0.045 (3)0.051 (3)0.000 (2)0.0017 (19)0.004 (2)
Cl10.0237 (7)0.0420 (9)0.0365 (9)0.0043 (7)0.0025 (6)0.0038 (8)
Cl20.0402 (9)0.0365 (10)0.0507 (11)0.0044 (7)0.0128 (8)0.0058 (8)
Cl30.0485 (9)0.0363 (10)0.0555 (11)0.0023 (8)0.0191 (8)0.0112 (8)
Cl40.0292 (7)0.0412 (10)0.0442 (10)0.0031 (7)0.0073 (7)0.0018 (8)
Cl50.0430 (9)0.0351 (9)0.0481 (10)0.0085 (8)0.0095 (7)0.0014 (8)
Cl60.0277 (7)0.0470 (10)0.0399 (9)0.0052 (7)0.0037 (6)0.0059 (8)
Cl70.0361 (8)0.0503 (11)0.0461 (10)0.0131 (8)0.0081 (7)0.0052 (8)
Cl80.0498 (10)0.0377 (10)0.0441 (10)0.0107 (8)0.0107 (8)0.0012 (8)
Cu10.0227 (3)0.0310 (4)0.0365 (5)0.0014 (3)0.0020 (3)0.0018 (4)
Cu20.0260 (4)0.0320 (4)0.0321 (4)0.0026 (3)0.0047 (3)0.0005 (4)
Cu30.0248 (4)0.0364 (5)0.0434 (5)0.0027 (3)0.0026 (3)0.0038 (4)
Cu40.0271 (4)0.0336 (4)0.0338 (4)0.0020 (3)0.0015 (3)0.0009 (4)
Geometric parameters (Å, º) top
C1—O21.238 (7)C20—C211.521 (9)
C1—O11.263 (7)C20—H200.9800
C1—C21.526 (8)C21—C221.528 (8)
C2—N11.483 (7)C21—H21A0.9700
C2—C31.518 (8)C21—H21B0.9700
C2—H20.9800C22—C231.515 (9)
C3—C41.515 (8)C22—H22A0.9700
C3—H3A0.9700C22—H22B0.9700
C3—H3B0.9700C23—N141.462 (8)
C4—C51.506 (10)C23—H23A0.9700
C4—H4A0.9700C23—H23B0.9700
C4—H4B0.9700C24—N141.313 (8)
C5—N21.443 (8)C24—N161.317 (8)
C5—H5A0.9700C24—N151.324 (8)
C5—H5B0.9700N1—Cu11.993 (5)
C6—N41.323 (8)N1—H1A0.9000
C6—N31.323 (8)N1—H1B0.9000
C6—N21.328 (8)N2—H2A0.8600
C7—O41.236 (7)N3—H3C0.8600
C7—O31.270 (7)N3—H3D0.8600
C7—C81.535 (8)N4—H4E0.8600
C8—N51.468 (7)N4—H4F0.8600
C8—C91.504 (8)N5—Cu21.988 (5)
C8—H80.9800N5—H5C0.9000
C9—C101.521 (8)N5—H5D0.9000
C9—H9A0.9700N6—H60.8600
C9—H9B0.9700N7—H7A0.8600
C10—C111.507 (9)N7—H7B0.8600
C10—H10A0.9700N8—H8A0.8600
C10—H10B0.9700N8—H8B0.8600
C11—N61.453 (7)N9—Cu31.978 (5)
C11—H11A0.9700N9—H9C0.9000
C11—H11B0.9700N9—H9D0.9000
C12—N81.317 (8)N10—H100.8600
C12—N61.320 (8)N11—H11C0.8600
C12—N71.321 (8)N11—H11D0.8600
C13—O61.241 (7)N12—H12A0.8600
C13—O51.281 (8)N12—H12B0.8600
C13—C141.504 (8)N13—Cu41.978 (5)
C14—N91.493 (7)N13—H13A0.9000
C14—C151.530 (9)N13—H13B0.9000
C14—H140.9800N14—H14A0.8600
C15—C161.498 (9)N15—H15C0.8600
C15—H15A0.9700N15—H15D0.8600
C15—H15B0.9700N16—H16E0.8600
C16—C171.506 (9)N16—H16F0.8600
C16—H16A0.9700O1—Cu11.966 (4)
C16—H16B0.9700O3—Cu21.956 (4)
C17—N101.444 (8)O5—Cu31.954 (4)
C17—H17A0.9700O7—Cu41.960 (4)
C17—H17B0.9700Cl1—Cu12.2823 (15)
C18—N111.301 (8)Cl2—Cu12.2433 (18)
C18—N121.319 (8)Cl3—Cu22.2383 (17)
C18—N101.320 (8)Cl4—Cu22.2867 (16)
C19—O81.221 (7)Cl5—Cu32.2532 (18)
C19—O71.285 (7)Cl6—Cu32.2498 (15)
C19—C201.511 (8)Cl7—Cu42.2704 (16)
C20—N131.491 (7)Cl8—Cu42.2633 (18)
O2—C1—O1123.8 (6)H21A—C21—H21B108.0
O2—C1—C2120.3 (6)C23—C22—C21113.4 (5)
O1—C1—C2115.9 (5)C23—C22—H22A108.9
N1—C2—C3113.8 (4)C21—C22—H22A108.9
N1—C2—C1107.8 (5)C23—C22—H22B108.9
C3—C2—C1114.3 (5)C21—C22—H22B108.9
N1—C2—H2106.8H22A—C22—H22B107.7
C3—C2—H2106.8N14—C23—C22112.1 (5)
C1—C2—H2106.8N14—C23—H23A109.2
C4—C3—C2114.9 (5)C22—C23—H23A109.2
C4—C3—H3A108.6N14—C23—H23B109.2
C2—C3—H3A108.6C22—C23—H23B109.2
C4—C3—H3B108.6H23A—C23—H23B107.9
C2—C3—H3B108.6N14—C24—N16120.4 (6)
H3A—C3—H3B107.5N14—C24—N15119.8 (6)
C5—C4—C3112.5 (5)N16—C24—N15119.8 (6)
C5—C4—H4A109.1C2—N1—Cu1109.6 (3)
C3—C4—H4A109.1C2—N1—H1A109.8
C5—C4—H4B109.1Cu1—N1—H1A109.8
C3—C4—H4B109.1C2—N1—H1B109.8
H4A—C4—H4B107.8Cu1—N1—H1B109.8
N2—C5—C4111.2 (5)H1A—N1—H1B108.2
N2—C5—H5A109.4C6—N2—C5123.9 (6)
C4—C5—H5A109.4C6—N2—H2A118.1
N2—C5—H5B109.4C5—N2—H2A118.1
C4—C5—H5B109.4C6—N3—H3C120.0
H5A—C5—H5B108.0C6—N3—H3D120.0
N4—C6—N3118.8 (6)H3C—N3—H3D120.0
N4—C6—N2119.4 (6)C6—N4—H4E120.0
N3—C6—N2121.8 (6)C6—N4—H4F120.0
O4—C7—O3123.9 (6)H4E—N4—H4F120.0
O4—C7—C8119.3 (6)C8—N5—Cu2109.7 (3)
O3—C7—C8116.8 (5)C8—N5—H5C109.7
N5—C8—C9116.2 (5)Cu2—N5—H5C109.7
N5—C8—C7105.8 (5)C8—N5—H5D109.7
C9—C8—C7113.9 (5)Cu2—N5—H5D109.7
N5—C8—H8106.8H5C—N5—H5D108.2
C9—C8—H8106.8C12—N6—C11124.8 (5)
C7—C8—H8106.8C12—N6—H6117.6
C8—C9—C10114.8 (5)C11—N6—H6117.6
C8—C9—H9A108.6C12—N7—H7A120.0
C10—C9—H9A108.6C12—N7—H7B120.0
C8—C9—H9B108.6H7A—N7—H7B120.0
C10—C9—H9B108.6C12—N8—H8A120.0
H9A—C9—H9B107.5C12—N8—H8B120.0
C11—C10—C9112.2 (5)H8A—N8—H8B120.0
C11—C10—H10A109.2C14—N9—Cu3111.3 (3)
C9—C10—H10A109.2C14—N9—H9C109.4
C11—C10—H10B109.2Cu3—N9—H9C109.4
C9—C10—H10B109.2C14—N9—H9D109.4
H10A—C10—H10B107.9Cu3—N9—H9D109.4
N6—C11—C10109.8 (5)H9C—N9—H9D108.0
N6—C11—H11A109.7C18—N10—C17124.1 (5)
C10—C11—H11A109.7C18—N10—H10117.9
N6—C11—H11B109.7C17—N10—H10117.9
C10—C11—H11B109.7C18—N11—H11C120.0
H11A—C11—H11B108.2C18—N11—H11D120.0
N8—C12—N6121.0 (6)H11C—N11—H11D120.0
N8—C12—N7120.5 (6)C18—N12—H12A120.0
N6—C12—N7118.5 (6)C18—N12—H12B120.0
O6—C13—O5121.9 (6)H12A—N12—H12B120.0
O6—C13—C14119.1 (6)C20—N13—Cu4111.7 (3)
O5—C13—C14118.9 (5)C20—N13—H13A109.3
N9—C14—C13108.4 (5)Cu4—N13—H13A109.3
N9—C14—C15112.4 (5)C20—N13—H13B109.3
C13—C14—C15107.1 (5)Cu4—N13—H13B109.3
N9—C14—H14109.6H13A—N13—H13B107.9
C13—C14—H14109.6C24—N14—C23121.6 (5)
C15—C14—H14109.6C24—N14—H14A119.2
C16—C15—C14113.5 (5)C23—N14—H14A119.2
C16—C15—H15A108.9C24—N15—H15C120.0
C14—C15—H15A108.9C24—N15—H15D120.0
C16—C15—H15B108.9H15C—N15—H15D120.0
C14—C15—H15B108.9C24—N16—H16E120.0
H15A—C15—H15B107.7C24—N16—H16F120.0
C15—C16—C17111.1 (5)H16E—N16—H16F120.0
C15—C16—H16A109.4C1—O1—Cu1117.0 (4)
C17—C16—H16A109.4C7—O3—Cu2115.2 (4)
C15—C16—H16B109.4C13—O5—Cu3115.0 (4)
C17—C16—H16B109.4C19—O7—Cu4116.0 (3)
H16A—C16—H16B108.0O1—Cu1—N182.28 (18)
N10—C17—C16110.6 (5)O1—Cu1—Cl291.94 (13)
N10—C17—H17A109.5N1—Cu1—Cl2166.55 (15)
C16—C17—H17A109.5O1—Cu1—Cl1170.14 (14)
N10—C17—H17B109.5N1—Cu1—Cl193.52 (13)
C16—C17—H17B109.5Cl2—Cu1—Cl193.99 (6)
H17A—C17—H17B108.1O3—Cu2—N582.67 (18)
N11—C18—N12121.8 (6)O3—Cu2—Cl392.15 (13)
N11—C18—N10119.8 (6)N5—Cu2—Cl3174.72 (14)
N12—C18—N10118.4 (6)O3—Cu2—Cl4166.08 (14)
O8—C19—O7122.1 (5)N5—Cu2—Cl491.82 (14)
O8—C19—C20120.5 (6)Cl3—Cu2—Cl493.46 (7)
O7—C19—C20117.4 (5)O5—Cu3—N984.12 (19)
N13—C20—C19109.7 (5)O5—Cu3—Cl6160.68 (15)
N13—C20—C21111.9 (5)N9—Cu3—Cl691.69 (14)
C19—C20—C21112.4 (5)O5—Cu3—Cl591.14 (14)
N13—C20—H20107.6N9—Cu3—Cl5168.54 (16)
C19—C20—H20107.6Cl6—Cu3—Cl596.10 (7)
C21—C20—H20107.6O7—Cu4—N1383.92 (18)
C20—C21—C22111.4 (5)O7—Cu4—Cl892.69 (13)
C20—C21—H21A109.3N13—Cu4—Cl8176.58 (14)
C22—C21—H21A109.3O7—Cu4—Cl7161.90 (13)
C20—C21—H21B109.3N13—Cu4—Cl789.44 (14)
C22—C21—H21B109.3Cl8—Cu4—Cl793.93 (7)
O2—C1—C2—N1155.8 (6)C10—C11—N6—C12179.5 (6)
O1—C1—C2—N125.0 (7)C13—C14—N9—Cu315.5 (6)
O2—C1—C2—C328.3 (8)C15—C14—N9—Cu3102.7 (5)
O1—C1—C2—C3152.5 (6)N11—C18—N10—C174.9 (11)
N1—C2—C3—C463.0 (7)N12—C18—N10—C17176.8 (6)
C1—C2—C3—C4172.6 (5)C16—C17—N10—C18179.0 (7)
C2—C3—C4—C576.2 (7)C19—C20—N13—Cu410.0 (6)
C3—C4—C5—N2176.8 (6)C21—C20—N13—Cu4115.4 (5)
O4—C7—C8—N5151.3 (5)N16—C24—N14—C230.3 (10)
O3—C7—C8—N529.7 (7)N15—C24—N14—C23177.8 (6)
O4—C7—C8—C922.5 (8)C22—C23—N14—C24178.8 (6)
O3—C7—C8—C9158.5 (5)O2—C1—O1—Cu1172.4 (5)
N5—C8—C9—C1070.3 (7)C2—C1—O1—Cu18.4 (7)
C7—C8—C9—C10166.4 (5)O4—C7—O3—Cu2169.3 (5)
C8—C9—C10—C1187.2 (7)C8—C7—O3—Cu211.8 (7)
C9—C10—C11—N6176.3 (5)O6—C13—O5—Cu3175.7 (4)
O6—C13—C14—N9167.7 (5)C14—C13—O5—Cu37.6 (7)
O5—C13—C14—N915.5 (8)O8—C19—O7—Cu4171.0 (5)
O6—C13—C14—C1570.8 (7)C20—C19—O7—Cu49.8 (7)
O5—C13—C14—C15106.1 (6)C1—O1—Cu1—N17.2 (5)
N9—C14—C15—C1661.0 (7)C1—O1—Cu1—Cl2160.6 (4)
C13—C14—C15—C16180.0 (5)C2—N1—Cu1—O120.6 (4)
C14—C15—C16—C17174.3 (6)C2—N1—Cu1—Cl244.5 (9)
C15—C16—C17—N10174.5 (6)C2—N1—Cu1—Cl1168.3 (4)
O8—C19—C20—N13167.8 (5)C7—O3—Cu2—N56.4 (4)
O7—C19—C20—N1313.1 (7)C7—O3—Cu2—Cl3172.6 (4)
O8—C19—C20—C2167.2 (7)C7—O3—Cu2—Cl473.7 (7)
O7—C19—C20—C21112.0 (6)C8—N5—Cu2—O323.0 (4)
N13—C20—C21—C22152.0 (5)C8—N5—Cu2—Cl4169.9 (4)
C19—C20—C21—C2284.1 (6)C13—O5—Cu3—N91.7 (4)
C20—C21—C22—C23171.7 (5)C13—O5—Cu3—Cl680.0 (6)
C21—C22—C23—N1465.3 (7)C13—O5—Cu3—Cl5167.8 (4)
C3—C2—N1—Cu1156.7 (4)C14—N9—Cu3—O510.2 (4)
C1—C2—N1—Cu128.9 (5)C14—N9—Cu3—Cl6171.3 (4)
N4—C6—N2—C5177.7 (7)C14—N9—Cu3—Cl555.8 (10)
N3—C6—N2—C52.3 (11)C19—O7—Cu4—N132.9 (4)
C4—C5—N2—C6158.3 (7)C19—O7—Cu4—Cl8177.6 (4)
C9—C8—N5—Cu2159.9 (4)C19—O7—Cu4—Cl766.2 (6)
C7—C8—N5—Cu232.4 (5)C20—N13—Cu4—O74.6 (4)
N8—C12—N6—C111.9 (11)C20—N13—Cu4—Cl7167.7 (4)
N7—C12—N6—C11178.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O40.972.472.805 (7)100
C22—H22A···O80.972.573.229 (8)125
N13—H13B···Cl20.902.623.478 (5)161
N1—H1A···Cl80.902.523.409 (5)168
N5—H5C···Cl50.902.463.341 (5)165
N2—H2A···O8i0.862.022.857 (6)166
N4—H4F···O7i0.862.162.998 (7)164
N10—H10···O4ii0.861.952.791 (7)167
N12—H12B···O3ii0.862.172.975 (6)156
N15—H15C···O1iii0.862.022.873 (6)171
N14—H14A···O2iii0.862.012.873 (6)176
N6—H6···O6iv0.861.992.831 (6)167
N7—H7B···O5iv0.862.152.969 (7)160
C20—H20···O3v0.982.573.426 (7)145
N3—H3C···Cl2vi0.862.383.224 (7)165
N7—H7A···Cl4vi0.862.633.465 (6)164
N8—H8B···Cl3vi0.862.413.269 (6)173
N11—H11C···Cl5vii0.862.283.134 (6)170
N12—H12A···Cl6vii0.862.833.574 (6)146
N16—H16F···Cl8vii0.862.323.159 (6)166
N11—H11D···Cl4viii0.862.713.310 (5)128
C17—H17A···Cl5viii0.972.793.588 (6)140
C23—H23A···Cl8ix0.972.733.624 (7)154
N16—H16E···Cl1ix0.862.593.314 (5)142
N8—H8A···Cl6x0.862.693.300 (5)130
N3—H3D···Cl7xi0.862.703.329 (6)131
N5—H5D···O8xii0.902.333.041 (7)136
C9—H9B···O7xii0.972.603.460 (7)148
N13—H13A···O4v0.902.543.081 (7)120
Symmetry codes: (i) x, y+1/2, z+1; (ii) x+2, y1/2, z+2; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z+2; (v) x1, y, z1; (vi) x, y+1, z; (vii) x, y1, z; (viii) x+1, y1/2, z+2; (ix) x, y1/2, z+1; (x) x+2, y+1/2, z+2; (xi) x+1, y+1/2, z+1; (xii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O40.972.472.805 (7)100
C22—H22A···O80.972.573.229 (8)125
N13—H13B···Cl20.902.623.478 (5)161
N1—H1A···Cl80.902.523.409 (5)168
N5—H5C···Cl50.902.463.341 (5)165
N2—H2A···O8i0.862.022.857 (6)166
N4—H4F···O7i0.862.162.998 (7)164
N10—H10···O4ii0.861.952.791 (7)167
N12—H12B···O3ii0.862.172.975 (6)156
N15—H15C···O1iii0.862.022.873 (6)171
N14—H14A···O2iii0.862.012.873 (6)176
N6—H6···O6iv0.861.992.831 (6)167
N7—H7B···O5iv0.862.152.969 (7)160
C20—H20···O3v0.982.573.426 (7)145
N3—H3C···Cl2vi0.862.383.224 (7)165
N7—H7A···Cl4vi0.862.633.465 (6)164
N8—H8B···Cl3vi0.862.413.269 (6)173
N11—H11C···Cl5vii0.862.283.134 (6)170
N12—H12A···Cl6vii0.862.833.574 (6)146
N16—H16F···Cl8vii0.862.323.159 (6)166
N11—H11D···Cl4viii0.862.713.310 (5)128
C17—H17A···Cl5viii0.972.793.588 (6)140
C23—H23A···Cl8ix0.972.733.624 (7)154
N16—H16E···Cl1ix0.862.593.314 (5)142
N8—H8A···Cl6x0.862.693.300 (5)130
N3—H3D···Cl7xi0.862.703.329 (6)131
N5—H5D···O8xii0.902.333.041 (7)136
C9—H9B···O7xii0.972.603.460 (7)148
N13—H13A···O4v0.902.543.081 (7)120
Symmetry codes: (i) x, y+1/2, z+1; (ii) x+2, y1/2, z+2; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z+2; (v) x1, y, z1; (vi) x, y+1, z; (vii) x, y1, z; (viii) x+1, y1/2, z+2; (ix) x, y1/2, z+1; (x) x+2, y+1/2, z+2; (xi) x+1, y+1/2, z+1; (xii) x+1, y, z+1.
 

Acknowledgements

The authors wish to acknowledge SAIF, IIT Madras for DATA Collection.

References

First citationBaran, E. J. (2004). Mini Rev. Med. Chem. 4, 1–9.  Web of Science PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRamaswamy, S., Sridhar, B., Ramakrishnan, V. & Rajaram, R. K. (2001). Acta Cryst. E57, o872–o874.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorenson, J. R. J. (1976). J. Med. Chem. 19, 135–148.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B., Srinivasan, N., Dalhus, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o747–o749.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.–X., Gao, Y.–Z., Zhang, H.–L., Kong, D.–S. & Yu, Y. (2005). Acta Cryst. E61, m1055–m1057.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Lang, Y. & Wang, S. (2012). Acta Cryst. E68, m540.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m583-m584
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds