organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1643-o1644

N,N′-Bis(2-amino­benz­yl)ethane-1,2-diaminium dinitrate

aUniversidad Regiomontana A.C., 15 de Mayo 567 Pte., Monterrey, Nuevo León CP 64000, Mexico, and bUniversidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León CP 66451, Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 13 September 2013; accepted 7 October 2013; online 16 October 2013)

In the title salt, C16H24N42+·2NO3, both the cation and anion are placed in general positions, although the cation displays non-crystallographic inversion symmetry, with the aliphatic chain extended in an all-trans conformation. The benzene rings are almost parallel, with a dihedral angle between their mean planes of 3.3 (6)°. The nitrate ions are placed in the vicinity of the protonated amine groups, forming efficient N—H⋯O inter-ion hydrogen bonds. Each nitrate ion in the asymmetric unit bridges two symmetry-related cations, forming an R44(18) ring, a common motif in organic ammonium nitrate salts. This results in the formation of chains along [010] with alternating cations and anions. The neutral amine groups are involved in slightly weaker N—H⋯O hydrogen bonds with the nitrate O atoms, and there are also a number of C—H⋯O hydrogen bonds present. The resulting supra­molecular structure is based on a two-dimensional network extending in the ab plane.

Related literature

For the structure of the free neutral amine, see: Rodríguez de Barbarín et al. (2007[Rodríguez de Barbarín, C., Bernès, S., Nájera, B., Elizondo, P. & Cerda, P. (2007). Acta Cryst. E63, o549-o550.]). For the p-toluene­sulfonate salt of the title cation, see: Garza Rodríguez et al. (2011[Garza Rodríguez, L. Á., Bernès, S., Elizondo Martínez, P., Nájera Martínez, B. & Rodríguez de Luna, S. L. (2011). Acta Cryst. E67, o3235-o3236.]). For related di­ammonium nitrate salts featuring R44(18) motifs, see: Liu et al. (2007[Liu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, o3836.]); Yang et al. (2007[Yang, S.-P., Han, L.-J., Wang, D.-Q. & Xia, H.-T. (2007). Acta Cryst. E63, o3880.]). For supra­molecular motifs nomenclature, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For the synthesis of the title salt, see: Garza Rodríguez (2010[Garza Rodríguez, L. Á. (2010). PhD thesis, Universidad Autónoma de Nuevo León, Mexico.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24N42+·2NO3

  • Mr = 396.41

  • Orthorhombic, P n a 21

  • a = 11.041 (5) Å

  • b = 5.760 (4) Å

  • c = 30.069 (13) Å

  • V = 1912.1 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.60 × 0.20 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • 4371 measured reflections

  • 2473 independent reflections

  • 1501 reflections with I > 2σ(I)

  • Rint = 0.053

  • 3 standard reflections every 97 reflections intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.180

  • S = 1.61

  • 2473 reflections

  • 278 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9A⋯O23i 0.94 (4) 1.87 (3) 2.794 (8) 167 (7)
N9—H9B⋯O24 0.95 (5) 1.96 (5) 2.879 (7) 164 (5)
N12—H12A⋯O27 0.92 (3) 1.88 (3) 2.787 (8) 168 (8)
N12—H12B⋯O28i 0.91 (5) 1.95 (5) 2.862 (8) 176 (9)
N1—H1B⋯O22ii 0.90 (7) 2.55 (8) 3.290 (11) 141 (9)
N1—H1B⋯O24ii 0.90 (7) 2.40 (7) 3.272 (10) 166 (9)
N9—H9A⋯O22i 0.94 (4) 2.38 (6) 3.050 (8) 128 (5)
N12—H12A⋯O26 0.92 (3) 2.36 (5) 3.046 (8) 132 (4)
N12—H12B⋯O27i 0.91 (5) 2.49 (5) 3.096 (8) 125 (4)
N20—H20B⋯O26iii 0.91 (7) 2.56 (8) 3.246 (12) 133 (8)
N20—H20B⋯O28iii 0.91 (7) 2.32 (8) 3.204 (11) 165 (8)
C8—H8B⋯O24ii 0.97 2.46 3.327 (9) 149
C10—H10A⋯O24ii 0.97 2.41 3.258 (8) 145
C10—H10B⋯O22iv 0.97 2.58 3.291 (9) 130
C11—H11A⋯O27i 0.97 2.56 3.147 (9) 119
C11—H11A⋯O26v 0.97 2.57 3.285 (9) 131
C11—H11B⋯O28iii 0.97 2.41 3.249 (9) 145
C13—H13A⋯O28iii 0.97 2.46 3.315 (10) 147
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

The title salt crystallized unexpectedly, when attempting the crystallization of a macrocyclic molecule, resulting from the Schiff condensation between 2,6-diacetylpyridine and N,N'-bis(2-aminobenzyl)ethane-1,2-diamine (Garza Rodríguez, 2010). The synthesis was carried out via a template reaction, using Mn2+ as metal center, and analytical data showed that the Mn2+ complex was formed, with nitrate as counter ions. However, this compound is almost insoluble in organic solvents, like MeOH, EtOH, acetone and ethyl acetate, impeding the preparation of single crystals. Only slight solubility was obtained in hot acetonitrile. Slow evaporation of MeCN over 3 weeks afforded a mixture of amorphous brown solids and colourless needle-shaped crystals. We assume that the brown solids should be a mixture of manganese oxides, resulting from the hydrolysis of the complex induced by trace amounts of water and dissolved O2. Minutes amounts of H3O+ are then released, which promote the formation, and finally the crystallization of the nitrate salt of the protonated amine.

Title compound (Fig. 1) crystallizes in a non-centrosymmetric space group, with all atoms placed in general positions. However, the dication (C16H24N4)2+ presents a non-crystallographic inversion center, with the central aliphatic chain extended in the all-trans conformation. This conformation was previously obtained for the same cation crystallized as p-toluenesulfonate salt, although in that case, the dication was placed on a crystallographic inversion center (Garza Rodríguez et al., 2011). The free amine, for which the X-ray structure is also known (Rodríguez de Barbarín et al., 2007) has a different solid state conformation, although preserving the centrosymmetric character. For the nitrate salt reported here, departure from centrosymmetry is small, as reflected, for example, by the dihedral angle between benzene rings, limited to 3.3 (6)°.

Nitrate ions positions are determined by the formation of hydrogen bonds with ammonium NH2+ groups in the cation. All N—H···O angles for these contacts are close to 180°, and H···O separations are in the range 1.87 (3)Å to 1.96 (3)Å. Each independent anion, N21 and N25, bridges two cations related by cell translation in the [0 1 0] direction, forming a R44(18) ring motif (Etter, 1990; Fig. 2). This arrangement seems actually to be common in crystal structures involving ammonium and nitrate species, and R44(18) motifs are also formed in salts closely related to the title compound, for example with N,N'-dibenzylethane-1,2-diammonium (Liu et al., 2007) or N,N'-bis(4-chlorobenzyl)ethane-1,2-diammonium (Yang et al., 2007). For such salts, the crystal structure is invariably based on edge-fused R44(18) rings, which afford a one-dimensional linear supramolecular structure. In the case of the title compound, chains run along the short b axis, and no significant interchain interactions are observed (Fig. 2).

Related literature top

For the structure of the free neutral amine, see: Rodríguez de Barbarín et al. (2007). For the p-toluenesulfonate salt of the title cation, see: Garza Rodríguez et al. (2011). For related diammonium nitrate salts featuring R44(18) motifs, see: Liu et al. (2007); Yang et al. (2007). For supramolecular motifs nomenclature, see: Etter (1990). For the synthesis of the title salt, see: Garza Rodríguez (2010).

Experimental top

An amount of 2,6-diacetylpyridine (735 mg, 4.50 mmol) in ethanol (180 ml) was mixed with the templating reagent Mn(NO3)2·xH2O (1.130 g) and refluxed for 30 min. Then, N,N'-bis(2-aminobenzyl)ethane-1,2-diamine (1.302 g, 4.80 mmol, dissolved in 25 ml of ethanol) was slowly added, and the mixture further refluxed for 1 h. The resulting solid was filtered from hot ethanol, washed with cold ethanol, and dried under reduced pressure. A solution of the solid in hot CH3CN was left to crystallize for 3 weeks. After this time, only one product was obtained as single crystals, in low yield, which was identified by X-ray diffraction as the title nitrate salt.

Refinement top

H atoms for aromatic CH and methylene CH2 groups were placed in idealized positions, and refined with C—H bond lengths fixed to 0.93Å and 0.97Å, respectively, and Uiso(H) = 1.2Ueq(C). Amine and ammonium H atoms were found in a difference map, and refined freely, although the geometry for NH2 group was restrained to sensible target values: bond lengths N—H were restrained to 0.90 (2)Å and H···H separations were restrained to 1.54 (3)Å. Isotropic displacement parameters were computed in this case as Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are presented at the 50% probability level. H atoms are shown as stick.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing N—H···O(nitrate) H bonds as dashed lines. Two supramolecular R(18)-based chains are shown, which are related by the n glide plane perpendicular to [1 0 0]. No significant contacts are observed between chains.
N,N'-Bis(2-aminobenzyl)ethane-1,2-diaminium dinitrate top
Crystal data top
C16H24N42+·2NO3Dx = 1.377 Mg m3
Mr = 396.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 75 reflections
a = 11.041 (5) Åθ = 4.9–11.7°
b = 5.760 (4) ŵ = 0.11 mm1
c = 30.069 (13) ÅT = 298 K
V = 1912.1 (18) Å3Needle, colourless
Z = 40.60 × 0.20 × 0.20 mm
F(000) = 840
Data collection top
Siemens P4
diffractometer
Rint = 0.053
Radiation source: fine-focus sealed tube, FN4θmax = 25.5°, θmin = 2.7°
Graphite monochromatorh = 1313
2θ/ω–scansk = 36
4371 measured reflectionsl = 3636
2473 independent reflections3 standard reflections every 97 reflections
1501 reflections with I > 2σ(I) intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.61(Δ/σ)max < 0.001
2473 reflectionsΔρmax = 0.34 e Å3
278 parametersΔρmin = 0.31 e Å3
13 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.010 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H24N42+·2NO3V = 1912.1 (18) Å3
Mr = 396.41Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.041 (5) ŵ = 0.11 mm1
b = 5.760 (4) ÅT = 298 K
c = 30.069 (13) Å0.60 × 0.20 × 0.20 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.053
4371 measured reflections3 standard reflections every 97 reflections
2473 independent reflections intensity decay: 1.5%
1501 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.06113 restraints
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.61Δρmax = 0.34 e Å3
2473 reflectionsΔρmin = 0.31 e Å3
278 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9978 (7)1.1615 (13)0.1913 (3)0.083 (2)
H1A1.023 (9)1.261 (14)0.171 (2)0.124*
H1B1.038 (8)1.148 (19)0.2170 (18)0.124*
C20.9002 (7)1.0332 (13)0.1770 (3)0.0616 (19)
C30.8321 (9)1.1154 (15)0.1408 (3)0.077 (2)
H3A0.85411.25430.12720.092*
C40.7348 (9)0.9958 (16)0.1251 (3)0.087 (3)
H4A0.69021.05420.10140.104*
C50.7024 (8)0.7886 (18)0.1444 (3)0.080 (2)
H5A0.63640.70490.13390.096*
C60.7699 (7)0.7072 (16)0.1797 (2)0.067 (2)
H6A0.74850.56670.19280.080*
C70.8672 (7)0.8267 (13)0.1961 (2)0.0564 (18)
C80.9347 (6)0.7329 (14)0.2354 (2)0.0545 (18)
H8A0.94380.56620.23220.065*
H8B1.01500.80100.23630.065*
N90.8705 (4)0.7843 (10)0.27754 (19)0.0485 (13)
H9A0.846 (6)0.937 (5)0.284 (3)0.073*
H9B0.795 (4)0.706 (10)0.276 (3)0.073*
C100.9427 (5)0.7325 (13)0.3181 (2)0.0492 (15)
H10A1.01240.83460.31950.059*
H10B0.97150.57340.31710.059*
C110.8645 (5)0.7674 (13)0.3583 (2)0.0474 (14)
H11A0.83720.92740.35970.057*
H11B0.79370.66790.35660.057*
N120.9349 (4)0.7109 (11)0.39831 (19)0.0489 (13)
H12A0.960 (5)0.559 (5)0.398 (3)0.073*
H12B0.999 (4)0.810 (9)0.397 (3)0.073*
C130.8723 (7)0.7589 (13)0.4415 (2)0.0559 (18)
H13A0.79050.69760.44060.067*
H13B0.86740.92520.44630.067*
C140.9406 (7)0.6483 (14)0.4791 (2)0.056 (2)
C151.0413 (8)0.7526 (16)0.4955 (2)0.073 (2)
H15A1.06520.89410.48350.087*
C161.1096 (9)0.658 (2)0.5293 (3)0.093 (3)
H16A1.17980.73000.53920.112*
C171.0704 (10)0.451 (2)0.5479 (3)0.094 (3)
H17A1.11370.38440.57110.113*
C180.9691 (9)0.3471 (17)0.5323 (3)0.085 (3)
H18A0.94390.20830.54510.102*
C190.9016 (7)0.4411 (14)0.4977 (3)0.066 (2)
N200.7978 (8)0.3323 (14)0.4831 (3)0.086 (2)
H20A0.786 (10)0.185 (8)0.493 (3)0.128*
H20B0.764 (9)0.363 (17)0.4563 (19)0.128*
N210.7142 (5)0.2743 (11)0.2797 (2)0.0550 (14)
O220.6509 (5)0.1048 (10)0.2738 (2)0.093 (2)
O230.8219 (4)0.2579 (8)0.28670 (19)0.0729 (15)
O240.6674 (4)0.4708 (9)0.27685 (19)0.0735 (15)
N251.0910 (5)0.2211 (10)0.3951 (2)0.0556 (14)
O261.1542 (5)0.3900 (10)0.3991 (3)0.099 (2)
O270.9825 (4)0.2383 (9)0.38897 (19)0.0702 (16)
O281.1372 (5)0.0215 (9)0.3989 (2)0.0750 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.097 (5)0.055 (5)0.095 (5)0.021 (4)0.007 (4)0.007 (4)
C20.077 (5)0.041 (4)0.066 (4)0.003 (4)0.006 (4)0.001 (4)
C30.110 (7)0.055 (5)0.066 (4)0.006 (5)0.004 (5)0.010 (4)
C40.104 (7)0.085 (7)0.071 (5)0.002 (7)0.015 (5)0.011 (5)
C50.074 (5)0.100 (7)0.067 (4)0.016 (5)0.012 (4)0.002 (5)
C60.063 (4)0.069 (6)0.068 (5)0.007 (4)0.006 (4)0.000 (4)
C70.061 (4)0.051 (5)0.057 (4)0.001 (4)0.005 (3)0.006 (4)
C80.060 (4)0.047 (4)0.057 (4)0.003 (4)0.009 (3)0.002 (4)
N90.051 (3)0.036 (3)0.058 (3)0.005 (3)0.006 (3)0.002 (3)
C100.048 (4)0.039 (4)0.061 (4)0.000 (3)0.003 (3)0.002 (4)
C110.048 (3)0.040 (4)0.054 (3)0.003 (3)0.005 (3)0.003 (4)
N120.053 (3)0.037 (3)0.056 (3)0.006 (3)0.003 (3)0.003 (3)
C130.064 (4)0.042 (4)0.062 (4)0.001 (4)0.005 (3)0.008 (4)
C140.066 (5)0.047 (5)0.054 (4)0.000 (4)0.001 (3)0.004 (4)
C150.080 (5)0.079 (6)0.059 (4)0.002 (5)0.005 (4)0.007 (5)
C160.089 (6)0.119 (9)0.071 (5)0.003 (6)0.009 (5)0.016 (6)
C170.102 (7)0.120 (9)0.060 (5)0.040 (7)0.005 (5)0.006 (6)
C180.114 (7)0.077 (7)0.062 (5)0.026 (6)0.015 (5)0.014 (5)
C190.082 (5)0.050 (5)0.065 (4)0.010 (4)0.012 (4)0.002 (4)
N200.096 (6)0.057 (5)0.103 (5)0.015 (5)0.002 (5)0.009 (4)
N210.050 (3)0.041 (4)0.074 (3)0.005 (3)0.001 (3)0.005 (4)
O220.077 (4)0.049 (3)0.151 (6)0.016 (3)0.005 (4)0.003 (4)
O230.051 (3)0.043 (3)0.125 (4)0.000 (3)0.014 (3)0.004 (4)
O240.063 (3)0.047 (3)0.111 (4)0.015 (3)0.002 (3)0.004 (3)
N250.054 (3)0.037 (4)0.075 (3)0.005 (3)0.003 (3)0.001 (4)
O260.074 (4)0.050 (4)0.174 (6)0.023 (3)0.001 (4)0.005 (5)
O270.055 (3)0.039 (3)0.116 (4)0.004 (3)0.013 (3)0.008 (4)
O280.067 (3)0.045 (3)0.113 (4)0.014 (3)0.001 (3)0.005 (3)
Geometric parameters (Å, º) top
N1—C21.376 (10)N12—C131.498 (9)
N1—H1A0.89 (2)N12—H12A0.92 (2)
N1—H1B0.90 (2)N12—H12B0.91 (2)
C2—C71.371 (9)C13—C141.500 (10)
C2—C31.405 (11)C13—H13A0.9700
C3—C41.360 (12)C13—H13B0.9700
C3—H3A0.9300C14—C151.356 (11)
C4—C51.374 (12)C14—C191.386 (11)
C4—H4A0.9300C15—C161.378 (12)
C5—C61.379 (11)C15—H15A0.9300
C5—H5A0.9300C16—C171.382 (15)
C6—C71.368 (10)C16—H16A0.9300
C6—H6A0.9300C17—C181.354 (12)
C7—C81.497 (10)C17—H17A0.9300
C8—N91.482 (8)C18—C191.389 (12)
C8—H8A0.9700C18—H18A0.9300
C8—H8B0.9700C19—N201.378 (11)
N9—C101.486 (8)N20—H20A0.91 (2)
N9—H9A0.94 (2)N20—H20B0.91 (2)
N9—H9B0.95 (2)N21—O231.212 (6)
C10—C111.501 (8)N21—O221.213 (7)
C10—H10A0.9700N21—O241.247 (7)
C10—H10B0.9700N25—O261.203 (7)
C11—N121.468 (9)N25—O271.215 (7)
C11—H11A0.9700N25—O281.263 (7)
C11—H11B0.9700
C2—N1—H1A112 (6)N12—C11—H11B109.9
C2—N1—H1B128 (6)C10—C11—H11B109.9
H1A—N1—H1B120 (5)H11A—C11—H11B108.3
C7—C2—N1122.8 (7)C11—N12—C13115.1 (5)
C7—C2—C3118.4 (7)C11—N12—H12A112 (5)
N1—C2—C3118.8 (8)C13—N12—H12A109 (5)
C4—C3—C2121.3 (8)C11—N12—H12B104 (5)
C4—C3—H3A119.3C13—N12—H12B106 (5)
C2—C3—H3A119.3H12A—N12—H12B111 (4)
C3—C4—C5120.0 (8)N12—C13—C14110.1 (6)
C3—C4—H4A120.0N12—C13—H13A109.6
C5—C4—H4A120.0C14—C13—H13A109.6
C4—C5—C6118.7 (9)N12—C13—H13B109.6
C4—C5—H5A120.7C14—C13—H13B109.6
C6—C5—H5A120.7H13A—C13—H13B108.2
C7—C6—C5122.0 (9)C15—C14—C19119.3 (8)
C7—C6—H6A119.0C15—C14—C13119.9 (7)
C5—C6—H6A119.0C19—C14—C13120.8 (7)
C6—C7—C2119.6 (7)C14—C15—C16122.7 (9)
C6—C7—C8119.6 (7)C14—C15—H15A118.6
C2—C7—C8120.8 (7)C16—C15—H15A118.6
N9—C8—C7111.4 (5)C15—C16—C17117.9 (10)
N9—C8—H8A109.3C15—C16—H16A121.1
C7—C8—H8A109.3C17—C16—H16A121.1
N9—C8—H8B109.3C18—C17—C16120.0 (9)
C7—C8—H8B109.3C18—C17—H17A120.0
H8A—C8—H8B108.0C16—C17—H17A120.0
C8—N9—C10113.9 (5)C17—C18—C19121.9 (9)
C8—N9—H9A120 (5)C17—C18—H18A119.0
C10—N9—H9A100 (5)C19—C18—H18A119.0
C8—N9—H9B107 (5)N20—C19—C14121.5 (8)
C10—N9—H9B114 (5)N20—C19—C18120.4 (9)
H9A—N9—H9B102 (4)C14—C19—C18118.1 (8)
N9—C10—C11109.0 (4)C19—N20—H20A116 (6)
N9—C10—H10A109.9C19—N20—H20B122 (6)
C11—C10—H10A109.9H20A—N20—H20B115 (5)
N9—C10—H10B109.9O23—N21—O22121.8 (6)
C11—C10—H10B109.9O23—N21—O24119.3 (6)
H10A—C10—H10B108.3O22—N21—O24118.8 (6)
N12—C11—C10109.0 (4)O26—N25—O27121.4 (6)
N12—C11—H11A109.9O26—N25—O28119.5 (6)
C10—C11—H11A109.9O27—N25—O28119.1 (6)
C7—C2—C3—C40.8 (12)C10—C11—N12—C13174.5 (5)
N1—C2—C3—C4179.9 (9)C11—N12—C13—C14167.8 (7)
C2—C3—C4—C51.0 (14)N12—C13—C14—C1579.3 (9)
C3—C4—C5—C60.4 (14)N12—C13—C14—C19101.3 (7)
C4—C5—C6—C70.2 (13)C19—C14—C15—C162.1 (12)
C5—C6—C7—C20.4 (12)C13—C14—C15—C16178.5 (7)
C5—C6—C7—C8178.2 (7)C14—C15—C16—C172.2 (13)
N1—C2—C7—C6179.2 (7)C15—C16—C17—C181.2 (13)
C3—C2—C7—C60.1 (11)C16—C17—C18—C190.0 (13)
N1—C2—C7—C82.2 (11)C15—C14—C19—N20177.9 (8)
C3—C2—C7—C8178.7 (7)C13—C14—C19—N201.6 (11)
C6—C7—C8—N979.6 (9)C15—C14—C19—C180.8 (11)
C2—C7—C8—N999.1 (7)C13—C14—C19—C18179.8 (7)
C7—C8—N9—C10169.9 (6)C17—C18—C19—N20178.9 (8)
C8—N9—C10—C11174.2 (6)C17—C18—C19—C140.2 (12)
N9—C10—C11—N12178.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···O23i0.94 (4)1.87 (3)2.794 (8)167 (7)
N9—H9B···O240.95 (5)1.96 (5)2.879 (7)164 (5)
N12—H12A···O270.92 (3)1.88 (3)2.787 (8)168 (8)
N12—H12B···O28i0.91 (5)1.95 (5)2.862 (8)176 (9)
N1—H1B···O22ii0.90 (7)2.55 (8)3.290 (11)141 (9)
N1—H1B···O24ii0.90 (7)2.40 (7)3.272 (10)166 (9)
N9—H9A···O22i0.94 (4)2.38 (6)3.050 (8)128 (5)
N12—H12A···O260.92 (3)2.36 (5)3.046 (8)132 (4)
N12—H12B···O27i0.91 (5)2.49 (5)3.096 (8)125 (4)
N20—H20B···O26iii0.91 (7)2.56 (8)3.246 (12)133 (8)
N20—H20B···O28iii0.91 (7)2.32 (8)3.204 (11)165 (8)
C8—H8B···O24ii0.972.463.327 (9)149
C10—H10A···O24ii0.972.413.258 (8)145
C10—H10B···O22iv0.972.583.291 (9)130
C11—H11A···O27i0.972.563.147 (9)119
C11—H11A···O26v0.972.573.285 (9)131
C11—H11B···O28iii0.972.413.249 (9)145
C13—H13A···O28iii0.972.463.315 (10)147
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···O23i0.94 (4)1.87 (3)2.794 (8)167 (7)
N9—H9B···O240.95 (5)1.96 (5)2.879 (7)164 (5)
N12—H12A···O270.92 (3)1.88 (3)2.787 (8)168 (8)
N12—H12B···O28i0.91 (5)1.95 (5)2.862 (8)176 (9)
N1—H1B···O22ii0.90 (7)2.55 (8)3.290 (11)141 (9)
N1—H1B···O24ii0.90 (7)2.40 (7)3.272 (10)166 (9)
N9—H9A···O22i0.94 (4)2.38 (6)3.050 (8)128 (5)
N12—H12A···O260.92 (3)2.36 (5)3.046 (8)132 (4)
N12—H12B···O27i0.91 (5)2.49 (5)3.096 (8)125 (4)
N20—H20B···O26iii0.91 (7)2.56 (8)3.246 (12)133 (8)
N20—H20B···O28iii0.91 (7)2.32 (8)3.204 (11)165 (8)
C8—H8B···O24ii0.972.463.327 (9)149
C10—H10A···O24ii0.972.413.258 (8)145
C10—H10B···O22iv0.972.583.291 (9)130
C11—H11A···O27i0.972.563.147 (9)119
C11—H11A···O26v0.972.573.285 (9)131
C11—H11B···O28iii0.972.413.249 (9)145
C13—H13A···O28iii0.972.463.315 (10)147
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y+3/2, z.
 

Acknowledgements

The authors thank the FCQ–UANL (project No. 03-6375-QMT-08-005) and PAICyT (Project No. IT164-09) for financial support. LAGR acknowledges a grant from the CONACyT program "Dirección de Tesis entre la UANL y la University of Texas at Austin y/o Instituciones de Educación Superior de la ANUIES" (grant N.L.-2006-C09 32658).

References

First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGarza Rodríguez, L. Á. (2010). PhD thesis, Universidad Autónoma de Nuevo León, Mexico.  Google Scholar
First citationGarza Rodríguez, L. Á., Bernès, S., Elizondo Martínez, P., Nájera Martínez, B. & Rodríguez de Luna, S. L. (2011). Acta Cryst. E67, o3235–o3236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, o3836.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRodríguez de Barbarín, C., Bernès, S., Nájera, B., Elizondo, P. & Cerda, P. (2007). Acta Cryst. E63, o549–o550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYang, S.-P., Han, L.-J., Wang, D.-Q. & Xia, H.-T. (2007). Acta Cryst. E63, o3880.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1643-o1644
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds