organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Chloro­phen­yl)-3-methyl­imidazo[2,1-b]thia­zole

aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, bDepartment of Organic, Bioorganic and Medicinal Chemistry, Samara State University, 1 Academician Pavlov St, Samara 443011, Russian Federation, and cX-Ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com

(Received 17 October 2013; accepted 20 October 2013; online 26 October 2013)

In the title compound, C12H9ClN2S, the imidazo[2,1-b]thia­zole fragment is planar (r.m.s. deviation = 0.003 Å), and the benzene ring is twisted slightly [by 5.65 (6)°] relative to this moiety. In the crystal, mol­ecules are linked by ππ stacking inter­actions into columns along [010]. The mol­ecules within the columns are arranged alternatively by their planar rotation of 180°. Thus, in the columns, there are the two types of ππ stacking inter­actions, namely, (i) between two imidazo[2,1-b]thia­zole fragments [inter­planar distance = 3.351 (2) Å] and (ii) between an imidazo[2,1-b]thia­zole fragment and the phenyl ring [inter­planar distance = 3.410 (5) Å]. There are no short contacts between the columns.

Related literature

For the synthesis and properties of related compounds containing an imidazo[2,1-b]thia­zole moiety, see: Raeymaekers et al. (1966[Raeymaekers, A. H. M., Allewijn, F. T. N., Vandenberk, J., Demoen, P. J. A., van Offenwert, T. T. T. & Janssen, P. A. (1966). J. Med. Chem. 9, 545-551.]); Metaye et al. (1992[Metaye, T., Millet, C., Kraimps, J. L., Saunier, B., Barbier, J. & Begon, F. (1992). Biochem. Pharmacol. 43, 1507-1511.]); Carpenter et al. (2003[Carpenter, A. J., Cooper, J. P., Handlon, A. L., Hertzog, D. L., Hyman, C. E., Guo, Y. C., Speake, J. D. & Witty, D. R. (2003). Patent WO03033476.]); Milne et al. (2007[Milne, J. C., Lambert, P. D., Schenk, S., Carney, D. P., Smith, J. J., Gagne, D. J., Jin, L., Boss, O., Perni, R. B., Vu, C. B., Bemis, J. E., Xie, R., Disch, J. S., Ng, P. Y., Nunes, J. J., Lynch, A. V., Yang, H. Y., Galonek, H., Israelian, K., Choy, W., Iffland, A., Lavu, S., Medvedik, O., Sinclair, D. A., Olefsky, J. M., Jirousek, M. R., Elliott, P. J. & Westphal, C. H. (2007). Nature, 450, 712-716.]); Scribner et al. (2008[Scribner, A., Meitz, S., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2008). Bioorg. Med. Chem. Lett. 18, 5263-5267.]); Chorell et al. (2010[Chorell, E., Pinkner, J. S., Phan, G., Edvinsson, S., Buelens, F., Remaut, H., Waksman, G., Hultgren, S. J. & Almqvist, F. (2010). J. Med. Chem. 53, 5690-5695.]); Guzeldemirci & Kucukbasmaci (2010[Guzeldemirci, N. U. & Kucukbasmaci, O. (2010). Eur. J. Med. Chem. 45, 63-68.]); Budriesi et al. (2011[Budriesi, R., Ioan, P., Leoni, A., Pedemonte, N., Locatelli, A., Micucci, M., Chiarini, A. & Galietta, L. J. V. (2011). J. Med. Chem. 54, 3885-3894.]); Yousefi et al. (2011[Yousefi, B. H., Manook, A., Drzezga, A., von Reutern, B., Schwaiger, M., Wester, H. J. & Henriksen, G. (2011). J. Med. Chem. 54, 949-956.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9ClN2S

  • Mr = 248.73

  • Triclinic, [P \overline 1]

  • a = 7.0624 (5) Å

  • b = 7.7132 (5) Å

  • c = 10.3460 (7) Å

  • α = 93.353 (1)°

  • β = 90.107 (1)°

  • γ = 98.832 (1)°

  • V = 555.92 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 120 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.864, Tmax = 0.906

  • 6927 measured reflections

  • 2963 independent reflections

  • 2306 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.05

  • 2963 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many natural products and biologically active compounds containing imidazo[2,1-b]thiazole moieties have been discovered and synthesized so far (Metaye et al., 1992; Guzeldemirci & Kucukbasmaci, 2010; Budriesi et al., 2011). As some typical examples, anthelmintics tetramisole (Raeymaekers et al., 1966), thieno(3,2-d)pyrimidinone (Carpenter et al., 2003), 5,6-diarylimidazo[2,1-b](1,3)thiazoles (Scribner et al., 2008), C-2 aryl-substituted pilicides (Chorell et al., 2010), and 11C-labeled imidazo[2,1-b]benzothiazoles (Yousefi et al., 2011) all showed effective biological and medicinal activity. Milne and co-authors (Milne et al., 2007) described the identification and characterization of a molecule bearing imidazo[2,1-b]thiazole as an activator of SIRT1, which was structurally unrelated to, and 1000-fold more potent than, resveratrol. And it can bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates.

In this work, a 6-(4-chlorophenyl)-3-methylimidazo[2,1-b]thiazole, C12H9ClN2S, I, was prepared by the reaction of 4-methyl-2-aminothiazole with 2-bromo-1-(4-chlorophenyl)ethanone (Fig. 1), and its structure was unambiguously established by the X-ray diffraction study (Fig. 2).

The imidazo[2,1-b]thiazole fragment in I is planar (r.m.s. deviation is 0.003Å), and the phenyl ring is slightly twisted in relative to this fragment by 5.65 (6)°.

In the crystal, the molecules of I are linked by the intermolecular π···π-stacking interactions into columns along [010] (Fig. 3). The molecules within the columns are arranged alternatively by their planar rotation of 180° (Fig. 3). Thus, in the columns of I, there are the two types of π···π-stacking interactions, namely, (i) between two imidazo[2,1-b]thiazole fragments (the interplane distance is 3.351 (2)Å) and (ii) between imidazo[2,1-b]thiazole fragment and phenyl ring (the interplane distance is 3.410 (5)Å). There are no any short contacts between the columns (Fig. 4).

Related literature top

For the synthesis and properties of related compounds containing an imidazo[2,1-b]thiazole moiety, see: Raeymaekers et al. (1966); Metaye et al. (1992); Carpenter et al. (2003); Milne et al. (2007); Scribner et al. (2008); Chorell et al. (2010); Guzeldemirci & Kucukbasmaci (2010); Budriesi et al. (2011); Yousefi et al. (2011).

Experimental top

A mixture of 4-methyl-2-aminothiazole (5.0 g, 43.8 mmol) and 2-bromo-1-(4-chlorophenyl)ethanone (10.2 g, 43.8 mmol) was dissolved in acetone (40 mL). The reaction mixture was stirred for 24 h. The resulting precipitate was collected, suspended in 2N HCl (70 mL) and heated under reflux. The warm solution basified with 20% NH4OH yielded the expected imidazo[2,1-b]thiazole after cooling upto room temperature. The residue crystallized from N,N-dimethylformamide. Yield is 78%. The single crystal of the product was obtained by slow crystallization from N,N-dimethylformamide. M.p. = 397-399 K. IR (KBr), ν/cm-1: 1H NMR (500 MHz, DMSO-d6, 304 K): 2.43 (s, 3H, CH3), 6.91 (s, 1H, H5), 7.46 (d, 2H, J = 8.55, H11,13), 7.87 (d, 2H, J = 8.55, H10,14), 8.31 (s, 1H, H2) . Anal. Calcd for C12H9ClN2S: C, 57.95; H, 3.65. Found: C, 57.91; H, 3.59.

Refinement top

All hydrogen atoms were placed in the calculated positions with C–H = 0.95Å (for CH-groups) and 0.98Å (for CH3-group) and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for the CH3-group and Uiso(H) = 1.2Ueq(C) for the other CH-groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction of 4-methyl-2-aminothiazole with 2-bromo-1-(4-chlorophenyl)ethanone.
[Figure 2] Fig. 2. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are presented at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius.
[Figure 3] Fig. 3. The π···π-bonded column of I along [010].
[Figure 4] Fig. 4. The crystal packing of I along the b axis.
6-(4-Chlorophenyl)-3-methylimidazo[2,1-b]thiazole top
Crystal data top
C12H9ClN2SZ = 2
Mr = 248.73F(000) = 256
Triclinic, P1Dx = 1.486 Mg m3
Hall symbol: -P 1Melting point = 397–399 K
a = 7.0624 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7132 (5) ÅCell parameters from 2226 reflections
c = 10.3460 (7) Åθ = 2.7–30.6°
α = 93.353 (1)°µ = 0.50 mm1
β = 90.107 (1)°T = 120 K
γ = 98.832 (1)°Prism, colourless
V = 555.92 (7) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
2963 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 29.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.864, Tmax = 0.906k = 1010
6927 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.0291P]
where P = (Fo2 + 2Fc2)/3
2963 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H9ClN2Sγ = 98.832 (1)°
Mr = 248.73V = 555.92 (7) Å3
Triclinic, P1Z = 2
a = 7.0624 (5) ÅMo Kα radiation
b = 7.7132 (5) ŵ = 0.50 mm1
c = 10.3460 (7) ÅT = 120 K
α = 93.353 (1)°0.30 × 0.20 × 0.20 mm
β = 90.107 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2963 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2306 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.906Rint = 0.032
6927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
2963 reflectionsΔρmin = 0.22 e Å3
146 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38211 (8)0.73973 (6)1.00250 (4)0.04269 (15)
S10.13039 (6)0.04797 (6)0.19530 (4)0.02548 (12)
C20.1162 (2)0.0288 (2)0.18876 (16)0.0239 (3)
H20.17680.10110.11840.029*
C30.2120 (2)0.0238 (2)0.29218 (15)0.0203 (3)
N40.08638 (17)0.12958 (16)0.37993 (12)0.0180 (3)
C50.0956 (2)0.21865 (19)0.49862 (14)0.0189 (3)
H50.20630.22550.54950.023*
C60.0896 (2)0.29557 (19)0.52765 (14)0.0190 (3)
N70.21503 (18)0.25589 (17)0.42952 (12)0.0204 (3)
C7A0.1018 (2)0.1576 (2)0.34408 (15)0.0201 (3)
C80.4178 (2)0.0182 (2)0.32472 (17)0.0258 (3)
H8A0.48750.08630.25180.039*
H8B0.47040.09110.34220.039*
H8C0.43140.08730.40170.039*
C90.1606 (2)0.40574 (19)0.64315 (14)0.0188 (3)
C100.0334 (2)0.4576 (2)0.73671 (15)0.0230 (3)
H100.10060.42200.72460.028*
C110.1012 (3)0.5600 (2)0.84631 (16)0.0272 (4)
H110.01420.59550.90870.033*
C120.2971 (3)0.6103 (2)0.86436 (15)0.0271 (4)
C130.4260 (2)0.5626 (2)0.77325 (16)0.0265 (4)
H130.55980.59850.78600.032*
C140.3567 (2)0.4617 (2)0.66341 (15)0.0222 (3)
H140.44450.42980.60020.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0636 (3)0.0379 (3)0.0254 (2)0.0095 (2)0.0140 (2)0.01208 (19)
S10.0251 (2)0.0306 (2)0.0207 (2)0.00669 (17)0.00010 (15)0.00563 (16)
C20.0266 (8)0.0227 (8)0.0224 (8)0.0048 (7)0.0059 (6)0.0019 (6)
C30.0214 (7)0.0173 (7)0.0225 (8)0.0040 (6)0.0064 (6)0.0014 (6)
N40.0190 (6)0.0166 (6)0.0190 (6)0.0045 (5)0.0015 (5)0.0008 (5)
C50.0220 (7)0.0181 (7)0.0172 (7)0.0053 (6)0.0011 (6)0.0017 (6)
C60.0230 (8)0.0173 (7)0.0176 (7)0.0054 (6)0.0003 (6)0.0019 (6)
N70.0199 (6)0.0221 (6)0.0191 (6)0.0034 (5)0.0004 (5)0.0007 (5)
C7A0.0211 (7)0.0215 (7)0.0187 (7)0.0064 (6)0.0011 (6)0.0007 (6)
C80.0212 (8)0.0263 (8)0.0292 (9)0.0027 (7)0.0041 (6)0.0027 (7)
C90.0253 (8)0.0142 (7)0.0172 (7)0.0028 (6)0.0018 (6)0.0031 (6)
C100.0275 (8)0.0190 (7)0.0230 (8)0.0049 (6)0.0014 (6)0.0027 (6)
C110.0417 (10)0.0228 (8)0.0192 (8)0.0107 (7)0.0030 (7)0.0021 (6)
C120.0438 (10)0.0193 (7)0.0178 (7)0.0047 (7)0.0072 (7)0.0019 (6)
C130.0321 (9)0.0218 (8)0.0249 (8)0.0010 (7)0.0067 (7)0.0027 (7)
C140.0262 (8)0.0199 (7)0.0200 (7)0.0019 (6)0.0000 (6)0.0022 (6)
Geometric parameters (Å, º) top
Cl1—C121.7450 (17)C8—H8A0.9800
S1—C7A1.7399 (16)C8—H8B0.9800
S1—C21.7512 (17)C8—H8C0.9800
C2—C31.343 (2)C9—C141.397 (2)
C2—H20.9500C9—C101.404 (2)
C3—N41.4018 (19)C10—C111.384 (2)
C3—C81.483 (2)C10—H100.9500
N4—C7A1.3685 (19)C11—C121.388 (2)
N4—C51.3782 (19)C11—H110.9500
C5—C61.376 (2)C12—C131.385 (2)
C5—H50.9500C13—C141.383 (2)
C6—N71.3996 (18)C13—H130.9500
C6—C91.466 (2)C14—H140.9500
N7—C7A1.315 (2)
C7A—S1—C289.68 (7)H8A—C8—H8B109.5
C3—C2—S1113.96 (12)C3—C8—H8C109.5
C3—C2—H2123.0H8A—C8—H8C109.5
S1—C2—H2123.0H8B—C8—H8C109.5
C2—C3—N4110.46 (14)C14—C9—C10118.13 (14)
C2—C3—C8130.15 (15)C14—C9—C6120.96 (14)
N4—C3—C8119.35 (13)C10—C9—C6120.91 (14)
C7A—N4—C5106.48 (12)C11—C10—C9120.71 (16)
C7A—N4—C3115.56 (13)C11—C10—H10119.6
C5—N4—C3137.96 (13)C9—C10—H10119.6
C6—C5—N4105.33 (12)C10—C11—C12119.54 (15)
C6—C5—H5127.3C10—C11—H11120.2
N4—C5—H5127.3C12—C11—H11120.2
C5—C6—N7111.17 (13)C13—C12—C11121.06 (15)
C5—C6—C9128.03 (14)C13—C12—Cl1119.50 (14)
N7—C6—C9120.79 (14)C11—C12—Cl1119.43 (13)
C7A—N7—C6103.37 (12)C14—C13—C12118.94 (16)
N7—C7A—N4113.65 (13)C14—C13—H13120.5
N7—C7A—S1136.01 (12)C12—C13—H13120.5
N4—C7A—S1110.33 (11)C13—C14—C9121.60 (15)
C3—C8—H8A109.5C13—C14—H14119.2
C3—C8—H8B109.5C9—C14—H14119.2
C7A—S1—C2—C30.51 (13)C3—N4—C7A—S10.54 (16)
S1—C2—C3—N40.30 (17)C2—S1—C7A—N7179.01 (17)
S1—C2—C3—C8177.40 (14)C2—S1—C7A—N40.57 (12)
C2—C3—N4—C7A0.17 (19)C5—C6—C9—C14174.39 (15)
C8—C3—N4—C7A178.15 (13)N7—C6—C9—C145.4 (2)
C2—C3—N4—C5179.57 (16)C5—C6—C9—C105.4 (2)
C8—C3—N4—C51.6 (3)N7—C6—C9—C10174.78 (14)
C7A—N4—C5—C60.14 (16)C14—C9—C10—C110.6 (2)
C3—N4—C5—C6179.61 (16)C6—C9—C10—C11179.28 (14)
N4—C5—C6—N70.20 (17)C9—C10—C11—C120.7 (2)
N4—C5—C6—C9179.99 (14)C10—C11—C12—C131.2 (2)
C5—C6—N7—C7A0.46 (16)C10—C11—C12—Cl1179.89 (12)
C9—C6—N7—C7A179.73 (13)C11—C12—C13—C140.6 (2)
C6—N7—C7A—N40.56 (17)Cl1—C12—C13—C14179.23 (12)
C6—N7—C7A—S1178.95 (14)C12—C13—C14—C90.7 (2)
C5—N4—C7A—N70.46 (17)C10—C9—C14—C131.2 (2)
C3—N4—C7A—N7179.35 (12)C6—C9—C14—C13178.60 (14)
C5—N4—C7A—S1179.27 (10)

Experimental details

Crystal data
Chemical formulaC12H9ClN2S
Mr248.73
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.0624 (5), 7.7132 (5), 10.3460 (7)
α, β, γ (°)93.353 (1), 90.107 (1), 98.832 (1)
V3)555.92 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.864, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
6927, 2963, 2306
Rint0.032
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.05
No. of reflections2963
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 3.1168.2011).

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudriesi, R., Ioan, P., Leoni, A., Pedemonte, N., Locatelli, A., Micucci, M., Chiarini, A. & Galietta, L. J. V. (2011). J. Med. Chem. 54, 3885–3894.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCarpenter, A. J., Cooper, J. P., Handlon, A. L., Hertzog, D. L., Hyman, C. E., Guo, Y. C., Speake, J. D. & Witty, D. R. (2003). Patent WO03033476.  Google Scholar
First citationChorell, E., Pinkner, J. S., Phan, G., Edvinsson, S., Buelens, F., Remaut, H., Waksman, G., Hultgren, S. J. & Almqvist, F. (2010). J. Med. Chem. 53, 5690–5695.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuzeldemirci, N. U. & Kucukbasmaci, O. (2010). Eur. J. Med. Chem. 45, 63–68.  Web of Science PubMed CAS Google Scholar
First citationMetaye, T., Millet, C., Kraimps, J. L., Saunier, B., Barbier, J. & Begon, F. (1992). Biochem. Pharmacol. 43, 1507–1511.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMilne, J. C., Lambert, P. D., Schenk, S., Carney, D. P., Smith, J. J., Gagne, D. J., Jin, L., Boss, O., Perni, R. B., Vu, C. B., Bemis, J. E., Xie, R., Disch, J. S., Ng, P. Y., Nunes, J. J., Lynch, A. V., Yang, H. Y., Galonek, H., Israelian, K., Choy, W., Iffland, A., Lavu, S., Medvedik, O., Sinclair, D. A., Olefsky, J. M., Jirousek, M. R., Elliott, P. J. & Westphal, C. H. (2007). Nature, 450, 712–716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaeymaekers, A. H. M., Allewijn, F. T. N., Vandenberk, J., Demoen, P. J. A., van Offenwert, T. T. T. & Janssen, P. A. (1966). J. Med. Chem. 9, 545–551.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScribner, A., Meitz, S., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2008). Bioorg. Med. Chem. Lett. 18, 5263–5267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousefi, B. H., Manook, A., Drzezga, A., von Reutern, B., Schwaiger, M., Wester, H. J. & Henriksen, G. (2011). J. Med. Chem. 54, 949–956.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds