organic compounds
(E)-2-[2-(3-Nitrophenyl)ethenyl]quinolin-8-ol
aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de
In the title compound, C17H12N2O3, the mean planes of the benzene ring and the quinoline moiety are inclined to one another by 11.0 (1)°. The nitro substituent is twisted at an angle of 7.9 (2)° with respect to the attached benzene ring. Intramolecular O—H⋯N and C—H⋯N hydrogen bonds occur. The crystal is constructed of molecular stacks without involvement of π-stacking interactions, but showing interstack association via O—H⋯O and C—H⋯O hydrogen bonding. Thus, the supramolecular architecture of the crystal results from stacked molecules stabilized by hydrogen bonding between the stacks.
CCDC reference: 965730
Related literature
For uses of quinolin-8-ol and derivatives as complexants and pharmaceuticals, see: Albrecht et al. (2008); Cacciatore et al. (2013); Desvignes & Leguen (1963); McMaster & Bruner (1935); Vögtle & Weber (1979); Weber & Vögtle (1975). For applications of stilbene and derivatives, see: Butkovic et al. (2011); Ho et al. (2000); Navadiya et al. (2008); Ravikrishnan et al. (2012); Waibel et al. (2009); Zhu et al. (2013). For the preparative method used for the synthesis of the title compound, see: Yuan et al. (2012). For non-classical hydrogen bonds, see: Desiraju & Steiner (1999). For related structures, including intramolecular hydrogen bonding of quinolin-8-ol, see: Fazaeli et al. (2008); Malecki et al. (2010); Yoneda et al. (2002); Zeng et al. (2007).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2007); cell SAINT-NT (Bruker, 2007); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 965730
10.1107/S1600536813027815/rn2119sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027815/rn2119Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813027815/rn2119Isup3.cml
The title compound was synthesized via Knoevenagel type condensation (Yuan et al., 2012) using 8-hydroxyquinaldine (320 mg, 2.0 mmol) and 4-nitrobenzaldehyde (1.21 g, 8.0 mmol) in acetic anhydride (100 ml). The mixture was stirred for 30 h under reflux. After removal of the solvent, the residue was dissolved in 100 ml of pyridine/water (v/v = 4:1) and heated at 100° for 1 h. Evaporation of the solvent under vacuum and purification of the crude product by recrystallization from ethanol yielded 230 mg (40%) of yellow crystals determined as the E configurated compound by 1H NMR analysis (ethenylene protons); m. p. = 449 K. IR (KBr) 3410, 3081, 1526, 1348, 1238, 1196, 829, 735, 593. 1H NMR (500 MHz, CDCl3) 7.20 (d, 3JHH = 7.5 Hz, 1 H), 7.33 (d, 3JHH = 8.2 Hz, 1 H), 7.51 - 7.39 (m, 2 H), 7.59 (t, 3JHH = 7.9 Hz, 1 H), 7.65 (d, 3JHH = 8.5 Hz, 1 H), 7.77 (d, 3JHH = 16.1 Hz, 1 H), 7.92 (d, 3JHH = 7.7 Hz, 1 H), 8.17 (3JHH = 8.0 Hz, 1 H), 8.19 (3JHH = 4.7 Hz, 1 H), 8.49 (s, 1 H). 13C NMR (126 MHz, CDCl3) 110.4, 117.7, 120.61, 121.6, 123.04, 127.8, 127.9, 129.8, 131.0, 131.5, 132.9, 136.8, 138.1, 138.3, 148.8, 152.2, 152.5. MS (ESI) m/z: found 293.0 [M+H]+; calc. for C17H12N2O3 292.08. The melting point (uncorrected) was measured on a hot stage microscope (Büchi 510). The IR spectrum was recorded on a Perkin Elmer FT–IR 1600 spectrometer, 1H and 13C NMR spectra were measured on a Bruker Avance AV-500 spectrometer using (CH3)4Si as internal standard. The ESI
was obtained using a ThermoFisher Scientific Orbitrap XL spectrometer. Crystals of the title compound suitable for X-ray structural analysis were taken from the crystallized product.H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) and O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(O).
Data collection: SMART (Bruker, 2007); cell
SAINT-NT (Bruker, 2007); data reduction: SAINT-NT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H12N2O3 | F(000) = 608 |
Mr = 292.29 | Dx = 1.377 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.3346 (7) Å | Cell parameters from 6524 reflections |
b = 4.7167 (1) Å | θ = 2.6–24.8° |
c = 15.5674 (6) Å | µ = 0.10 mm−1 |
β = 109.255 (2)° | T = 298 K |
V = 1409.58 (8) Å3 | Plate, colourless |
Z = 4 | 0.54 × 0.24 × 0.06 mm |
Bruker X8 APEXII CCD detector diffractometer | 2655 independent reflections |
Radiation source: fine-focus sealed tube | 1768 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
phi and ω scans | θmax = 25.6°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −24→24 |
Tmin = 0.950, Tmax = 0.994 | k = −4→5 |
22418 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.226 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1192P)2 + 0.8405P] where P = (Fo2 + 2Fc2)/3 |
2655 reflections | (Δ/σ)max < 0.001 |
200 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C17H12N2O3 | V = 1409.58 (8) Å3 |
Mr = 292.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 20.3346 (7) Å | µ = 0.10 mm−1 |
b = 4.7167 (1) Å | T = 298 K |
c = 15.5674 (6) Å | 0.54 × 0.24 × 0.06 mm |
β = 109.255 (2)° |
Bruker X8 APEXII CCD detector diffractometer | 2655 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1768 reflections with I > 2σ(I) |
Tmin = 0.950, Tmax = 0.994 | Rint = 0.028 |
22418 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.226 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.42 e Å−3 |
2655 reflections | Δρmin = −0.24 e Å−3 |
200 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27846 (16) | 0.0783 (7) | 0.15082 (15) | 0.1029 (10) | |
H1 | 0.2582 | 0.1861 | 0.1750 | 0.154* | |
O2 | 0.14581 (19) | 1.0322 (8) | 0.62596 (19) | 0.1228 (12) | |
O3 | 0.0587 (2) | 1.2936 (9) | 0.5668 (2) | 0.1474 (16) | |
N2 | 0.10391 (17) | 1.1402 (7) | 0.5616 (2) | 0.0830 (9) | |
C1 | 0.33187 (19) | −0.0492 (8) | 0.2157 (2) | 0.0714 (9) | |
C2 | 0.3740 (2) | −0.2379 (8) | 0.1950 (3) | 0.0846 (11) | |
H2 | 0.3665 | −0.2812 | 0.1342 | 0.101* | |
C3 | 0.4278 (2) | −0.3683 (8) | 0.2610 (3) | 0.0865 (11) | |
H3 | 0.4555 | −0.4993 | 0.2444 | 0.104* | |
C4 | 0.44097 (17) | −0.3063 (7) | 0.3524 (3) | 0.0744 (9) | |
H4 | 0.4776 | −0.3938 | 0.3969 | 0.089* | |
C5 | 0.39863 (14) | −0.1111 (6) | 0.3769 (2) | 0.0566 (7) | |
C6 | 0.40520 (16) | −0.0303 (6) | 0.4665 (2) | 0.0616 (8) | |
H6 | 0.4400 | −0.1100 | 0.5153 | 0.074* | |
C7 | 0.36152 (15) | 0.1611 (6) | 0.48187 (18) | 0.0565 (7) | |
H7 | 0.3666 | 0.2139 | 0.5413 | 0.068* | |
C8 | 0.30746 (14) | 0.2841 (6) | 0.40839 (16) | 0.0489 (7) | |
N1 | 0.29937 (12) | 0.2128 (5) | 0.32357 (14) | 0.0517 (6) | |
C9 | 0.34298 (14) | 0.0229 (6) | 0.30808 (17) | 0.0517 (7) | |
C10 | 0.26019 (14) | 0.4869 (6) | 0.42662 (17) | 0.0501 (7) | |
H10 | 0.2641 | 0.5191 | 0.4870 | 0.060* | |
C11 | 0.21158 (14) | 0.6305 (6) | 0.36290 (17) | 0.0519 (7) | |
H11 | 0.2087 | 0.5966 | 0.3029 | 0.062* | |
C12 | 0.16274 (13) | 0.8338 (6) | 0.37686 (17) | 0.0488 (6) | |
C13 | 0.15702 (14) | 0.8923 (6) | 0.46277 (17) | 0.0547 (7) | |
H13 | 0.1858 | 0.8007 | 0.5144 | 0.066* | |
C14 | 0.10879 (15) | 1.0851 (7) | 0.4697 (2) | 0.0602 (7) | |
C15 | 0.06455 (16) | 1.2257 (7) | 0.3969 (2) | 0.0671 (8) | |
H15 | 0.0317 | 1.3532 | 0.4036 | 0.081* | |
C16 | 0.07075 (16) | 1.1703 (7) | 0.3126 (2) | 0.0664 (8) | |
H16 | 0.0421 | 1.2653 | 0.2617 | 0.080* | |
C17 | 0.11795 (15) | 0.9795 (6) | 0.30281 (18) | 0.0577 (7) | |
H17 | 0.1204 | 0.9455 | 0.2451 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.130 (2) | 0.125 (2) | 0.0489 (13) | 0.0300 (19) | 0.0224 (14) | −0.0120 (14) |
O2 | 0.145 (3) | 0.165 (3) | 0.0645 (16) | 0.054 (2) | 0.0430 (18) | 0.0067 (18) |
O3 | 0.154 (3) | 0.200 (4) | 0.101 (2) | 0.091 (3) | 0.058 (2) | −0.015 (2) |
N2 | 0.088 (2) | 0.100 (2) | 0.0637 (18) | 0.0185 (19) | 0.0287 (16) | −0.0100 (17) |
C1 | 0.086 (2) | 0.076 (2) | 0.0586 (18) | −0.0004 (18) | 0.0330 (17) | −0.0096 (16) |
C2 | 0.109 (3) | 0.080 (2) | 0.080 (2) | 0.000 (2) | 0.051 (2) | −0.0205 (19) |
C3 | 0.094 (3) | 0.061 (2) | 0.128 (3) | −0.0008 (19) | 0.068 (3) | −0.019 (2) |
C4 | 0.0660 (19) | 0.0581 (18) | 0.105 (3) | 0.0024 (15) | 0.0357 (18) | 0.0008 (18) |
C5 | 0.0559 (15) | 0.0470 (15) | 0.0735 (19) | −0.0086 (13) | 0.0305 (14) | −0.0034 (13) |
C6 | 0.0623 (17) | 0.0632 (17) | 0.0550 (16) | −0.0050 (15) | 0.0138 (14) | 0.0103 (14) |
C7 | 0.0643 (17) | 0.0605 (16) | 0.0432 (14) | −0.0020 (14) | 0.0157 (12) | 0.0030 (13) |
C8 | 0.0577 (15) | 0.0509 (14) | 0.0379 (13) | −0.0130 (12) | 0.0155 (11) | 0.0006 (11) |
N1 | 0.0581 (13) | 0.0520 (12) | 0.0461 (12) | −0.0026 (11) | 0.0187 (10) | −0.0005 (10) |
C9 | 0.0590 (16) | 0.0519 (15) | 0.0479 (14) | −0.0108 (13) | 0.0226 (13) | −0.0018 (12) |
C10 | 0.0565 (15) | 0.0559 (15) | 0.0389 (13) | −0.0047 (12) | 0.0170 (12) | −0.0016 (11) |
C11 | 0.0623 (15) | 0.0545 (15) | 0.0370 (12) | −0.0124 (13) | 0.0139 (12) | −0.0015 (12) |
C12 | 0.0520 (14) | 0.0475 (14) | 0.0474 (14) | −0.0085 (12) | 0.0174 (11) | −0.0020 (11) |
C13 | 0.0598 (16) | 0.0580 (16) | 0.0425 (14) | −0.0071 (13) | 0.0117 (12) | 0.0031 (12) |
C14 | 0.0607 (16) | 0.0646 (17) | 0.0587 (17) | 0.0003 (14) | 0.0242 (14) | −0.0087 (14) |
C15 | 0.0585 (17) | 0.0667 (19) | 0.071 (2) | 0.0029 (15) | 0.0138 (15) | −0.0071 (16) |
C16 | 0.0622 (17) | 0.0694 (19) | 0.0592 (18) | 0.0031 (16) | 0.0085 (14) | −0.0013 (15) |
C17 | 0.0622 (16) | 0.0618 (17) | 0.0430 (14) | −0.0091 (14) | 0.0094 (13) | 0.0013 (13) |
O1—C1 | 1.356 (4) | C7—H7 | 0.9300 |
O1—H1 | 0.8200 | C8—N1 | 1.319 (3) |
O2—N2 | 1.195 (4) | C8—C10 | 1.449 (4) |
O3—N2 | 1.194 (4) | N1—C9 | 1.337 (3) |
N2—C14 | 1.488 (4) | C10—C11 | 1.332 (4) |
C1—C2 | 1.346 (5) | C10—H10 | 0.9300 |
C1—C9 | 1.421 (4) | C11—C12 | 1.447 (4) |
C2—C3 | 1.375 (6) | C11—H11 | 0.9300 |
C2—H2 | 0.9300 | C12—C17 | 1.392 (4) |
C3—C4 | 1.390 (5) | C12—C13 | 1.408 (4) |
C3—H3 | 0.9300 | C13—C14 | 1.368 (4) |
C4—C5 | 1.396 (4) | C13—H13 | 0.9300 |
C4—H4 | 0.9300 | C14—C15 | 1.365 (4) |
C5—C6 | 1.410 (4) | C15—C16 | 1.384 (4) |
C5—C9 | 1.424 (4) | C15—H15 | 0.9300 |
C6—C7 | 1.342 (4) | C16—C17 | 1.361 (4) |
C6—H6 | 0.9300 | C16—H16 | 0.9300 |
C7—C8 | 1.423 (4) | C17—H17 | 0.9300 |
C1—O1—H1 | 109.5 | C8—N1—C9 | 118.7 (2) |
O3—N2—O2 | 123.6 (3) | N1—C9—C1 | 116.7 (3) |
O3—N2—C14 | 117.9 (3) | N1—C9—C5 | 124.8 (2) |
O2—N2—C14 | 118.5 (3) | C1—C9—C5 | 118.5 (3) |
C2—C1—O1 | 122.1 (3) | C11—C10—C8 | 124.6 (2) |
C2—C1—C9 | 120.0 (3) | C11—C10—H10 | 117.7 |
O1—C1—C9 | 118.0 (3) | C8—C10—H10 | 117.7 |
C1—C2—C3 | 121.9 (3) | C10—C11—C12 | 127.1 (2) |
C1—C2—H2 | 119.1 | C10—C11—H11 | 116.5 |
C3—C2—H2 | 119.1 | C12—C11—H11 | 116.5 |
C2—C3—C4 | 120.6 (3) | C17—C12—C13 | 117.0 (3) |
C2—C3—H3 | 119.7 | C17—C12—C11 | 119.8 (2) |
C4—C3—H3 | 119.7 | C13—C12—C11 | 123.3 (2) |
C3—C4—C5 | 119.3 (3) | C14—C13—C12 | 119.5 (3) |
C3—C4—H4 | 120.3 | C14—C13—H13 | 120.3 |
C5—C4—H4 | 120.3 | C12—C13—H13 | 120.3 |
C4—C5—C6 | 125.6 (3) | C15—C14—C13 | 123.4 (3) |
C4—C5—C9 | 119.7 (3) | C15—C14—N2 | 118.6 (3) |
C6—C5—C9 | 114.6 (3) | C13—C14—N2 | 118.0 (3) |
C7—C6—C5 | 120.4 (3) | C14—C15—C16 | 117.0 (3) |
C7—C6—H6 | 119.8 | C14—C15—H15 | 121.5 |
C5—C6—H6 | 119.8 | C16—C15—H15 | 121.5 |
C6—C7—C8 | 120.8 (3) | C17—C16—C15 | 121.3 (3) |
C6—C7—H7 | 119.6 | C17—C16—H16 | 119.3 |
C8—C7—H7 | 119.6 | C15—C16—H16 | 119.3 |
N1—C8—C7 | 120.6 (3) | C16—C17—C12 | 121.8 (3) |
N1—C8—C10 | 119.5 (2) | C16—C17—H17 | 119.1 |
C7—C8—C10 | 119.9 (2) | C12—C17—H17 | 119.1 |
O1—C1—C2—C3 | −179.5 (4) | C4—C5—C9—C1 | 0.5 (4) |
C9—C1—C2—C3 | 0.8 (6) | C6—C5—C9—C1 | −179.1 (3) |
C1—C2—C3—C4 | −0.7 (6) | N1—C8—C10—C11 | −6.3 (4) |
C2—C3—C4—C5 | 0.5 (5) | C7—C8—C10—C11 | 174.4 (3) |
C3—C4—C5—C6 | 179.2 (3) | C8—C10—C11—C12 | 179.6 (2) |
C3—C4—C5—C9 | −0.4 (4) | C10—C11—C12—C17 | 175.9 (3) |
C4—C5—C6—C7 | 179.7 (3) | C10—C11—C12—C13 | −4.9 (4) |
C9—C5—C6—C7 | −0.7 (4) | C17—C12—C13—C14 | 0.1 (4) |
C5—C6—C7—C8 | 0.6 (4) | C11—C12—C13—C14 | −179.2 (2) |
C6—C7—C8—N1 | −0.2 (4) | C12—C13—C14—C15 | 0.5 (4) |
C6—C7—C8—C10 | 179.0 (2) | C12—C13—C14—N2 | 179.6 (3) |
C7—C8—N1—C9 | 0.0 (4) | O3—N2—C14—C15 | 4.2 (5) |
C10—C8—N1—C9 | −179.2 (2) | O2—N2—C14—C15 | −174.8 (4) |
C8—N1—C9—C1 | 179.4 (2) | O3—N2—C14—C13 | −175.0 (4) |
C8—N1—C9—C5 | −0.1 (4) | O2—N2—C14—C13 | 6.0 (5) |
C2—C1—C9—N1 | 179.6 (3) | C13—C14—C15—C16 | −1.2 (5) |
O1—C1—C9—N1 | 0.0 (4) | N2—C14—C15—C16 | 179.7 (3) |
C2—C1—C9—C5 | −0.7 (5) | C14—C15—C16—C17 | 1.3 (5) |
O1—C1—C9—C5 | 179.6 (3) | C15—C16—C17—C12 | −0.8 (5) |
C4—C5—C9—N1 | −179.9 (3) | C13—C12—C17—C16 | 0.1 (4) |
C6—C5—C9—N1 | 0.5 (4) | C11—C12—C17—C16 | 179.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 2.19 | 2.657 (3) | 117 |
O1—H1···O2i | 0.82 | 2.53 | 3.180 (5) | 137 |
C10—H10···O1ii | 0.93 | 2.51 | 3.400 (3) | 160 |
C11—H11···N1 | 0.93 | 2.53 | 2.857 (4) | 101 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 2.19 | 2.657 (3) | 116.5 |
O1—H1···O2i | 0.82 | 2.53 | 3.180 (5) | 136.6 |
C10—H10···O1ii | 0.93 | 2.51 | 3.400 (3) | 160.0 |
C11—H11···N1 | 0.93 | 2.53 | 2.857 (4) | 101.2 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z+1/2. |
References
Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812–824. Web of Science CrossRef CAS Google Scholar
Bruker (2007). SAINT-NT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butkovic, K., Marinic, Z., Molcanov, K., Kojic-Prodic, B. & Sindler-Kulyk, M. (2011). Beilstein J. Org. Chem. 7, 1663–1670. Web of Science CAS PubMed Google Scholar
Cacciatore, I., Fornasari, E., Baldassarre, L., Cornacchia, C., Fulle, S., Di Filippo, E. S., Pietrangelo, T. & Pinnen, F. (2013). Pharmaceuticals, 6, 54–69. CrossRef CAS PubMed Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press. Google Scholar
Desvignes, A. & Leguen, P. (1963). Ann. Pharm. Fr. 21, 803–808. PubMed CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fazaeli, Y., Amini, M. M., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, o97. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ho, T.-J., Ho, J.-H. & Wu, J. Y. (2000). J. Am. Chem. Soc. 122, 8575–8576. Web of Science CrossRef CAS Google Scholar
Malecki, G., Nycz, J. E., Ryrych, E., Pomikiewski, L., Nowak, M., Kusz, J. & Pikies, J. (2010). J. Mol. Struct. 969, 130–138. Web of Science CSD CrossRef CAS Google Scholar
McMaster, L. & Bruner, W. M. (1935). J. Am. Chem. Soc. 57, 1997–1998. CrossRef Google Scholar
Navadiya, H. D., Undavia, N. K. & Patwa, B. S. (2008). Int. J. Chem. Sci. 6, 2224–2232. CAS Google Scholar
Ravikrishnan, A., Sudhakara, P. & Kannan, P. (2012). J. Mater. Sci. 45, 435–442. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vögtle, F. & Weber, E. (1979). Angew. Chem. Int. Ed. 18, 753–776. Google Scholar
Waibel, M., De Angelis, M., Stossi, F., Kieser, K. J., Carlson, K. E., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2009). Eur. J. Med. Chem. 44, 3412–3424. Web of Science CrossRef PubMed CAS Google Scholar
Weber, E. & Vögtle, F. (1975). Tetrahedron Lett. pp. 2415–2418. CrossRef Google Scholar
Yoneda, S., Ohfuchi, S., Hashimoto, A. & Kitamura, C. (2002). Kenkyu Hokuku Himeji Kogyo Daigaku, 54, 60–67. Google Scholar
Yuan, G.-Z., Rong, L.-L., Huo, Y.-P., Nie, X.-L. & Fang, X.-M. (2012). Inorg. Chem. Commun. 23, 90–94. Web of Science CSD CrossRef CAS Google Scholar
Zeng, H.-P., Wang, T.-T., Xu, D.-F., Cai, Y.-P. & Chen, D.-F. (2007). J. Appl. Cryst. 40, 471–475. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zhu, Y.-C., Lu, H.-X., He, D. H. & Yang, Z.-R. (2013). J. Photochem. Photobiol. B, 125, 8–12. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinolin-8-ol (8-hydroxyquinoline) is a well known complexant for a variety of transition metal ions forming quantitatively precipitable internal complexes thus playing an important role in analytical chemistry (Albrecht et al., 2008). Derivatives of quinolin-8-ol have also been used as an active component in the design of alkali and alkaline earth metal ion complexing ligands (Vögtle & Weber, 1979; Weber & Vögtle, 1975). Moreover, quinolin-8-ol shows strong fungicidal and antiseptic effects (Desvignes & Leguen, 1963) and derivatives of which are drugs for the successful treatment of different diseases (Cacciatore et al., 2013; McMaster & Bruner, 1935). On the other hand, stilbene and its derivatives are starting materials for the preparation of various dyes, optical brighteners, liquid crystalline compounds and synthetic estrogens (Navadiya et al., 2008; Ravikrishnan et al., 2012; Waibel et al., 2009; Zhu et al., 2013). They are also of interest due to their particular stereochemistry including photochemical rearrangement and reactions (Butkovic et al., 2011; Ho et al., 2000). The structure of the title compound comprises both these specific construction elements, quinolin-8-ol and stilbene. In the structure of the compound (Fig. 1), the dihedral angle formed by the least-squares planes of the phenyl ring and the quinoline moiety is 11.0 (1)°, while the nitro substituent is twisted at an angle of 7.9 (2)° with reference to the phenyl ring. The bond lengths within the quinoline fragment are in the range of expected values and agree well with those found in the crystal structures of related compounds (Yoneda et al., 2002; Zeng et al., 2007). The torsion angle along the atomic sequence N(1)—C(8)—C(10)—C(11) is 6.3 (4)°. Within the quinolin-8-ol part, the hydroxyl hydrogen is connected to the nitrogen by a strained hydrogen bond [O(1)—H(1)···N(1) 2.19Å, 117°] which is typical for this kind of compounds (Fazaeli et al., 2008; Malecki et al., 2010; Zeng et al., 2007). Moreover, there is a hydrogen bond type contact between H(11) and N(1) [d(H···N) 2.53Å]. The crystal (Fig. 2) is constructed of molecular stacks extending along the b-axis. The closest centroid-centroid distance between the phenol and pyridine ring of consecutive molecules is 4.02Å thus indicating, however, no π-stacking interaction between those groups. Moreover, the ethenylene fragment of a given molecule is sandwiched in a distance of ca. 3.45Å between the electron deficient aromatic rings of adjacent molecules. Interstack association is accomplished by a close network of O—H···O [d(O···O) 3.180 (5)Å] and C—H···O hydrogen bonds [d(C···O) 3.400 (3)Å] (Desiraju & Steiner, 1999).