metal-organic compounds
Bis[(5-bromopyridin-2-yl)methanolato-κ2N,O]copper(II) monohydrate
aDepartment of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
*Correspondence e-mail: thama@fukuoka-u.ac.jp
In the title compound, [Cu(C6H5BrNO)2]·H2O, the CuII ion has a square-planer N2O2 coordination environment. Slipped π–π stackings [centroid-centroid distances: 3.625 (3), 3.767 (3), 3.935 (3) and 4.255 (3) Å] between pyridine rings and Cu⋯π interactions (centroid-to-CuII distance: 3.56 Å) between Cu2+ ions and pyridine rings lead to a layered arrangement parallel to (010). Intermolecular Br⋯O interactions [Br⋯O distances: 2.904 (3) and 3.042 (3) Å] and O—H⋯O hydrogen bonds form a three-dimensional network structure.
CCDC reference: 963946
Related literature
For bis(pyridin-2-ylmethanolato) complexes with four-coordinate CuII, see: Antonioli et al. (2007); Boyle et al. (2010)
Experimental
Crystal data
|
|
|
Data collection: RAPID-AUTO (Rigaku, 2002); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Yadokari-XG 2009 and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 963946
10.1107/S1600536813026974/ru2055sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813026974/ru2055Isup2.hkl
A solution of triethylamine (0.125 mmol) in MeOH (0.5 ml) was added to a solution of 5-bromo-pyridin-2-ylmethanol (0.125 mmol) in MeOH (0.5 ml). A solution of CuSO4·5H2O (0.0625 mmol) in H2O (0.25 ml) was added to the mixture. After several hours, purple crystals crystallized from the purple solution.
H atoms of OH were placed in a difference map and were refined coordinates only with restraints of O—H bond length (0.82 (2) Å) and Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on the parent C atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: RAPID-AUTO (Rigaku, 2002); cell
RAPID-AUTO (Rigaku, 2002); data reduction: RAPID-AUTO (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), Mercury (Bruno et al., 2002) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).[Cu(C6H5BrNO)2]·H2O | V = 670.41 (14) Å3 |
Mr = 455.60 | Z = 2 |
Triclinic, P1 | F(000) = 442 |
Hall symbol: -P 1 | Dx = 2.257 Mg m−3 |
a = 7.1892 (9) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 7.5438 (9) Å | µ = 7.60 mm−1 |
c = 13.2195 (15) Å | T = 100 K |
α = 99.338 (3)° | Needle, purple |
β = 103.334 (3)° | 0.15 × 0.06 × 0.04 mm |
γ = 100.400 (3)° |
Rigaku R-AXIS RAPID diffractometer | 2305 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | h = −9→9 |
Tmin = 0.395, Tmax = 0.751 | k = −9→9 |
6697 measured reflections | l = −17→17 |
3074 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: mixed |
wR(F2) = 0.077 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0208P)2 + 0.8098P] where P = (Fo2 + 2Fc2)/3 |
3074 reflections | (Δ/σ)max = 0.001 |
187 parameters | Δρmax = 1.24 e Å−3 |
2 restraints | Δρmin = −1.05 e Å−3 |
[Cu(C6H5BrNO)2]·H2O | γ = 100.400 (3)° |
Mr = 455.60 | V = 670.41 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1892 (9) Å | Mo Kα radiation |
b = 7.5438 (9) Å | µ = 7.60 mm−1 |
c = 13.2195 (15) Å | T = 100 K |
α = 99.338 (3)° | 0.15 × 0.06 × 0.04 mm |
β = 103.334 (3)° |
Rigaku R-AXIS RAPID diffractometer | 3074 independent reflections |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | 2305 reflections with I > 2σ(I) |
Tmin = 0.395, Tmax = 0.751 | Rint = 0.039 |
6697 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 2 restraints |
wR(F2) = 0.077 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.20 | Δρmax = 1.24 e Å−3 |
3074 reflections | Δρmin = −1.05 e Å−3 |
187 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.54156 (8) | 0.45571 (7) | 0.28991 (4) | 0.01103 (13) | |
N1 | 0.6758 (5) | 0.4606 (5) | 0.4385 (3) | 0.0113 (8) | |
N2 | 0.3724 (5) | 0.4527 (5) | 0.1470 (3) | 0.0108 (7) | |
O1 | 0.6975 (4) | 0.6960 (4) | 0.3169 (2) | 0.0158 (7) | |
O2 | 0.4262 (4) | 0.2003 (4) | 0.2603 (2) | 0.0133 (6) | |
C1 | 0.7898 (6) | 0.7701 (6) | 0.4241 (3) | 0.0113 (9) | |
H1 | 0.7220 | 0.8632 | 0.4510 | 0.014* | |
H2 | 0.9269 | 0.8337 | 0.4315 | 0.014* | |
C2 | 0.7909 (6) | 0.6272 (6) | 0.4907 (3) | 0.0101 (8) | |
C3 | 0.8947 (7) | 0.6571 (6) | 0.5958 (4) | 0.0149 (9) | |
H3 | 0.9752 | 0.7751 | 0.6315 | 0.018* | |
C4 | 0.8804 (7) | 0.5124 (6) | 0.6494 (3) | 0.0146 (9) | |
H4 | 0.9514 | 0.5299 | 0.7218 | 0.017* | |
C5 | 0.7603 (6) | 0.3425 (6) | 0.5946 (3) | 0.0128 (9) | |
C6 | 0.6600 (6) | 0.3186 (6) | 0.4895 (3) | 0.0115 (9) | |
H5 | 0.5788 | 0.2016 | 0.4523 | 0.014* | |
C7 | 0.2809 (6) | 0.1401 (6) | 0.1650 (3) | 0.0133 (9) | |
H6 | 0.1520 | 0.1080 | 0.1804 | 0.016* | |
H7 | 0.3032 | 0.0268 | 0.1249 | 0.016* | |
C8 | 0.2743 (6) | 0.2825 (6) | 0.0962 (3) | 0.0117 (9) | |
C9 | 0.1745 (6) | 0.2415 (6) | −0.0109 (3) | 0.0126 (9) | |
H8 | 0.1095 | 0.1182 | −0.0460 | 0.015* | |
C10 | 0.1710 (6) | 0.3826 (6) | −0.0657 (4) | 0.0149 (9) | |
H9 | 0.1049 | 0.3582 | −0.1393 | 0.018* | |
C11 | 0.2666 (6) | 0.5611 (6) | −0.0107 (3) | 0.0119 (9) | |
C12 | 0.3689 (6) | 0.5935 (6) | 0.0947 (3) | 0.0140 (10) | |
H10 | 0.4377 | 0.7152 | 0.1312 | 0.017* | |
Br1 | 0.72814 (7) | 0.13936 (6) | 0.66098 (3) | 0.01408 (12) | |
Br2 | 0.26359 (6) | 0.75716 (6) | −0.08331 (3) | 0.01288 (12) | |
O3 | 0.7243 (5) | 1.0111 (4) | 0.2380 (3) | 0.0190 (7) | |
H11 | 0.709 (8) | 0.913 (4) | 0.254 (4) | 0.029* | |
H12 | 0.638 (6) | 1.061 (7) | 0.250 (4) | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0139 (3) | 0.0090 (3) | 0.0090 (3) | 0.0016 (2) | 0.0019 (2) | 0.0016 (2) |
N1 | 0.0058 (18) | 0.0174 (19) | 0.0100 (19) | 0.0017 (15) | 0.0021 (15) | 0.0018 (17) |
N2 | 0.0138 (19) | 0.0119 (17) | 0.0065 (18) | 0.0035 (15) | 0.0013 (15) | 0.0032 (15) |
O1 | 0.0173 (17) | 0.0136 (16) | 0.0147 (17) | −0.0008 (13) | 0.0010 (13) | 0.0075 (14) |
O2 | 0.0165 (17) | 0.0100 (14) | 0.0112 (16) | −0.0008 (12) | 0.0018 (13) | 0.0036 (13) |
C1 | 0.008 (2) | 0.011 (2) | 0.013 (2) | −0.0007 (17) | 0.0015 (18) | 0.0038 (19) |
C2 | 0.009 (2) | 0.010 (2) | 0.010 (2) | 0.0011 (16) | 0.0032 (17) | −0.0027 (18) |
C3 | 0.017 (2) | 0.012 (2) | 0.015 (2) | 0.0028 (18) | 0.0054 (19) | 0.000 (2) |
C4 | 0.020 (2) | 0.015 (2) | 0.010 (2) | 0.0040 (19) | 0.0053 (19) | 0.003 (2) |
C5 | 0.013 (2) | 0.015 (2) | 0.015 (2) | 0.0045 (18) | 0.0074 (19) | 0.009 (2) |
C6 | 0.014 (2) | 0.009 (2) | 0.013 (2) | 0.0048 (17) | 0.0062 (19) | 0.0014 (19) |
C7 | 0.013 (2) | 0.012 (2) | 0.011 (2) | 0.0014 (18) | −0.0016 (18) | 0.0031 (19) |
C8 | 0.008 (2) | 0.010 (2) | 0.015 (2) | 0.0002 (16) | 0.0024 (18) | 0.0007 (19) |
C9 | 0.009 (2) | 0.014 (2) | 0.015 (2) | 0.0014 (17) | 0.0026 (18) | 0.0044 (19) |
C10 | 0.013 (2) | 0.019 (2) | 0.010 (2) | 0.0011 (18) | 0.0019 (18) | 0.000 (2) |
C11 | 0.015 (2) | 0.015 (2) | 0.010 (2) | 0.0060 (18) | 0.0066 (18) | 0.0070 (19) |
C12 | 0.016 (2) | 0.013 (2) | 0.016 (2) | 0.0065 (18) | 0.008 (2) | 0.003 (2) |
Br1 | 0.0183 (2) | 0.0142 (2) | 0.0112 (2) | 0.00372 (17) | 0.00498 (18) | 0.00535 (19) |
Br2 | 0.0155 (2) | 0.0128 (2) | 0.0122 (2) | 0.00431 (17) | 0.00462 (17) | 0.00519 (18) |
O3 | 0.023 (2) | 0.0137 (16) | 0.0228 (19) | 0.0039 (14) | 0.0071 (15) | 0.0083 (16) |
Cu1—O1 | 1.882 (3) | C4—H4 | 0.9500 |
Cu1—O2 | 1.892 (3) | C5—C6 | 1.375 (6) |
Cu1—N1 | 1.970 (3) | C5—Br1 | 1.891 (4) |
Cu1—N2 | 1.991 (3) | C6—H5 | 0.9500 |
N1—C2 | 1.349 (5) | C7—C8 | 1.516 (5) |
N1—C6 | 1.356 (5) | C7—H6 | 0.9900 |
N2—C8 | 1.331 (5) | C7—H7 | 0.9900 |
N2—C12 | 1.359 (5) | C8—C9 | 1.387 (6) |
O1—C1 | 1.391 (5) | C9—C10 | 1.383 (6) |
O2—C7 | 1.385 (5) | C9—H8 | 0.9500 |
C1—C2 | 1.499 (5) | C10—C11 | 1.390 (6) |
C1—H1 | 0.9900 | C10—H9 | 0.9500 |
C1—H2 | 0.9900 | C11—C12 | 1.376 (6) |
C2—C3 | 1.378 (6) | C11—Br2 | 1.890 (4) |
C3—C4 | 1.396 (6) | C12—H10 | 0.9500 |
C3—H3 | 0.9500 | O3—H11 | 0.797 (19) |
C4—C5 | 1.387 (6) | O3—H12 | 0.817 (19) |
O1—Cu1—O2 | 169.72 (13) | C6—C5—C4 | 120.2 (4) |
O1—Cu1—N1 | 84.45 (13) | C6—C5—Br1 | 118.3 (3) |
O2—Cu1—N1 | 93.40 (13) | C4—C5—Br1 | 121.6 (3) |
O1—Cu1—N2 | 98.13 (13) | N1—C6—C5 | 120.6 (4) |
O2—Cu1—N2 | 85.38 (13) | N1—C6—H5 | 119.7 |
N1—Cu1—N2 | 171.91 (14) | C5—C6—H5 | 119.7 |
C2—N1—C6 | 120.1 (4) | O2—C7—C8 | 113.1 (3) |
C2—N1—Cu1 | 113.1 (3) | O2—C7—H6 | 109.0 |
C6—N1—Cu1 | 126.8 (3) | C8—C7—H6 | 109.0 |
C8—N2—C12 | 119.8 (4) | O2—C7—H7 | 109.0 |
C8—N2—Cu1 | 111.6 (3) | C8—C7—H7 | 109.0 |
C12—N2—Cu1 | 127.9 (3) | H6—C7—H7 | 107.8 |
C1—O1—Cu1 | 113.9 (2) | N2—C8—C9 | 122.0 (4) |
C7—O2—Cu1 | 113.5 (2) | N2—C8—C7 | 114.5 (4) |
O1—C1—C2 | 112.8 (3) | C9—C8—C7 | 123.5 (4) |
O1—C1—H1 | 109.0 | C10—C9—C8 | 119.1 (4) |
C2—C1—H1 | 109.0 | C10—C9—H8 | 120.5 |
O1—C1—H2 | 109.0 | C8—C9—H8 | 120.5 |
C2—C1—H2 | 109.0 | C9—C10—C11 | 118.4 (4) |
H1—C1—H2 | 107.8 | C9—C10—H9 | 120.8 |
N1—C2—C3 | 121.3 (4) | C11—C10—H9 | 120.8 |
N1—C2—C1 | 113.6 (4) | C12—C11—C10 | 120.2 (4) |
C3—C2—C1 | 125.1 (4) | C12—C11—Br2 | 120.4 (3) |
C2—C3—C4 | 119.4 (4) | C10—C11—Br2 | 119.4 (3) |
C2—C3—H3 | 120.3 | N2—C12—C11 | 120.5 (4) |
C4—C3—H3 | 120.3 | N2—C12—H10 | 119.7 |
C5—C4—C3 | 118.5 (4) | C11—C12—H10 | 119.7 |
C5—C4—H4 | 120.8 | H11—O3—H12 | 109 (5) |
C3—C4—H4 | 120.8 | ||
O1—Cu1—N1—C2 | 6.8 (3) | C2—C3—C4—C5 | −0.4 (6) |
O2—Cu1—N1—C2 | 176.7 (3) | C3—C4—C5—C6 | 0.6 (6) |
N2—Cu1—N1—C2 | −102.2 (10) | C3—C4—C5—Br1 | −178.9 (3) |
O1—Cu1—N1—C6 | −174.2 (3) | C2—N1—C6—C5 | 0.1 (6) |
O2—Cu1—N1—C6 | −4.3 (3) | Cu1—N1—C6—C5 | −178.9 (3) |
N2—Cu1—N1—C6 | 76.8 (11) | C4—C5—C6—N1 | −0.5 (6) |
O1—Cu1—N2—C8 | 165.7 (3) | Br1—C5—C6—N1 | 179.1 (3) |
O2—Cu1—N2—C8 | −4.6 (3) | Cu1—O2—C7—C8 | 11.3 (4) |
N1—Cu1—N2—C8 | −86.3 (10) | C12—N2—C8—C9 | 3.0 (6) |
O1—Cu1—N2—C12 | −5.0 (4) | Cu1—N2—C8—C9 | −168.5 (3) |
O2—Cu1—N2—C12 | −175.2 (3) | C12—N2—C8—C7 | −176.8 (3) |
N1—Cu1—N2—C12 | 103.1 (10) | Cu1—N2—C8—C7 | 11.7 (4) |
O2—Cu1—O1—C1 | −91.0 (7) | O2—C7—C8—N2 | −15.4 (5) |
N1—Cu1—O1—C1 | −12.7 (3) | O2—C7—C8—C9 | 164.8 (4) |
N2—Cu1—O1—C1 | 159.6 (3) | N2—C8—C9—C10 | −2.3 (6) |
O1—Cu1—O2—C7 | −114.6 (7) | C7—C8—C9—C10 | 177.5 (4) |
N1—Cu1—O2—C7 | 167.8 (3) | C8—C9—C10—C11 | −0.6 (6) |
N2—Cu1—O2—C7 | −4.2 (3) | C9—C10—C11—C12 | 2.8 (6) |
Cu1—O1—C1—C2 | 15.9 (4) | C9—C10—C11—Br2 | −179.8 (3) |
C6—N1—C2—C3 | 0.2 (6) | C8—N2—C12—C11 | −0.7 (6) |
Cu1—N1—C2—C3 | 179.3 (3) | Cu1—N2—C12—C11 | 169.2 (3) |
C6—N1—C2—C1 | −178.9 (3) | C10—C11—C12—N2 | −2.2 (6) |
Cu1—N1—C2—C1 | 0.2 (4) | Br2—C11—C12—N2 | −179.6 (3) |
O1—C1—C2—N1 | −10.3 (5) | N1—O1—N2—O2 | −12.82 (13) |
O1—C1—C2—C3 | 170.6 (4) | O1—N1—O2—N2 | −13.32 (14) |
N1—C2—C3—C4 | 0.0 (6) | N1—O2—N2—O1 | 11.80 (12) |
C1—C2—C3—C4 | 179.0 (4) | O2—N1—O1—N2 | 11.96 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H11···O1 | 0.80 (2) | 1.95 (2) | 2.740 (4) | 170 (6) |
O3—H12···O2i | 0.82 (2) | 2.01 (2) | 2.825 (4) | 171 (5) |
Symmetry code: (i) x, y+1, z. |
References
Antonioli, B., Bray, D. J., Clegg, J. K., Jolliffe, K. A., Gloe, K., Gloe, K. & Lindoy, L. F. (2007). Polyhedron, 26, 673–678. Web of Science CSD CrossRef CAS Google Scholar
Boyle, T. J., Ottley, L. M. & Raymond, R. (2010). J. Coord. Chem. 63, 545–557. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224. CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari . Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
pyridin-2-ylmethanol is popular bidentate ligand, and many bis(pyridin-2-ylmethanolato) copper complexes are reported. The central copper ions of these complexes are mainly six- or five-coordinated; however, four-coordinated structure is few even in derivatives of pyridin-2-ylmethanol (Antonioli et al. (2007); Boyle et al. (2010)). Here, we report the crystal structure of [CuII(5-bromo-pyridin-2-ylmethanolato)2]H2O which has a square planner CuII ion. As depicted in Fig. 1, the CuII ion is coordinated by two bidentated 5-bromo-pyridin-2-ylmethanolato ligands. A torsion angle of N1—O1—N2—O2 is -12.8 (1) ° and the CuII ion is located at -0.013 (2) Å from N1—O1—N2—O2 mean plane; therefore, the CuII has a slightly distorted square planer coordination environment. The complexes are connected via slipped π-π stackings between pyridine ring and pyridine ring [centroid-to-centroid distances: 3.625 (3), 3.767 (3), 3.935 (3) and 4.255 (3) Å; interplanar distances: 3.425 (2), 3.319 (2), 3.303 (2) and 3.594 (2) Å] and Cu···π interaction (centroid-to-CuII distance: 3.56 Å). These connections make this complex two-dimensional layered structure along with a c plane. (Fig. 2) Intermolecular Br···O halogen interaction [Br···O distances: 2.904 (3) and 3.042 (3) Å] and OH···O hydrogen bondings [O···O distances: 2.740 (4) and 2.825 (4) Å] make this two-dimensional layer to three-dimensional structure. (Fig. 3)