metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(5-bromo­pyridin-2-yl)methano­lato-κ2N,O]copper(II) monohydrate

aDepartment of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
*Correspondence e-mail: thama@fukuoka-u.ac.jp

(Received 22 September 2013; accepted 1 October 2013; online 5 October 2013)

In the title compound, [Cu(C6H5BrNO)2]·H2O, the CuII ion has a square-planer N2O2 coordination environment. Slipped ππ stackings [centroid-centroid distances: 3.625 (3), 3.767 (3), 3.935 (3) and 4.255 (3) Å] between pyridine rings and Cu⋯π inter­actions (centroid-to-CuII distance: 3.56 Å) between Cu2+ ions and pyridine rings lead to a layered arrangement parallel to (010). Inter­molecular Br⋯O inter­actions [Br⋯O distances: 2.904 (3) and 3.042 (3) Å] and O—H⋯O hydrogen bonds form a three-dimensional network structure.

Related literature

For bis(pyridin-2-ylmethanolato) complexes with four-coordinate CuII, see: Antonioli et al. (2007[Antonioli, B., Bray, D. J., Clegg, J. K., Jolliffe, K. A., Gloe, K., Gloe, K. & Lindoy, L. F. (2007). Polyhedron, 26, 673-678.]); Boyle et al. (2010[Boyle, T. J., Ottley, L. M. & Raymond, R. (2010). J. Coord. Chem. 63, 545-557.])

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H5BrNO)2]·H2O

  • Mr = 455.60

  • Triclinic, [P \overline 1]

  • a = 7.1892 (9) Å

  • b = 7.5438 (9) Å

  • c = 13.2195 (15) Å

  • α = 99.338 (3)°

  • β = 103.334 (3)°

  • γ = 100.400 (3)°

  • V = 670.41 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.60 mm−1

  • T = 100 K

  • 0.15 × 0.06 × 0.04 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.395, Tmax = 0.751

  • 6697 measured reflections

  • 3074 independent reflections

  • 2305 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.20

  • 3074 reflections

  • 187 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.24 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.882 (3)
Cu1—O2 1.892 (3)
Cu1—N1 1.970 (3)
Cu1—N2 1.991 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H11⋯O1 0.80 (2) 1.95 (2) 2.740 (4) 170 (6)
O3—H12⋯O2i 0.82 (2) 2.01 (2) 2.825 (4) 171 (5)
Symmetry code: (i) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 2002[Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG 2009 (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari .]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: Yadokari-XG 2009 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

pyridin-2-ylmethanol is popular bidentate ligand, and many bis(pyridin-2-ylmethanolato) copper complexes are reported. The central copper ions of these complexes are mainly six- or five-coordinated; however, four-coordinated structure is few even in derivatives of pyridin-2-ylmethanol (Antonioli et al. (2007); Boyle et al. (2010)). Here, we report the crystal structure of [CuII(5-bromo-pyridin-2-ylmethanolato)2]H2O which has a square planner CuII ion. As depicted in Fig. 1, the CuII ion is coordinated by two bidentated 5-bromo-pyridin-2-ylmethanolato ligands. A torsion angle of N1—O1—N2—O2 is -12.8 (1) ° and the CuII ion is located at -0.013 (2) Å from N1—O1—N2—O2 mean plane; therefore, the CuII has a slightly distorted square planer coordination environment. The complexes are connected via slipped π-π stackings between pyridine ring and pyridine ring [centroid-to-centroid distances: 3.625 (3), 3.767 (3), 3.935 (3) and 4.255 (3) Å; interplanar distances: 3.425 (2), 3.319 (2), 3.303 (2) and 3.594 (2) Å] and Cu···π interaction (centroid-to-CuII distance: 3.56 Å). These connections make this complex two-dimensional layered structure along with a c plane. (Fig. 2) Intermolecular Br···O halogen interaction [Br···O distances: 2.904 (3) and 3.042 (3) Å] and OH···O hydrogen bondings [O···O distances: 2.740 (4) and 2.825 (4) Å] make this two-dimensional layer to three-dimensional structure. (Fig. 3)

Related literature top

For four-coordinated bis(pyridin-2-ylmethanolato) CuII complexes, see: Antonioli et al. (2007); Boyle et al. (2010)

For related literature, see: Burla et al. (2005).

Experimental top

A solution of triethylamine (0.125 mmol) in MeOH (0.5 ml) was added to a solution of 5-bromo-pyridin-2-ylmethanol (0.125 mmol) in MeOH (0.5 ml). A solution of CuSO4·5H2O (0.0625 mmol) in H2O (0.25 ml) was added to the mixture. After several hours, purple crystals crystallized from the purple solution.

Refinement top

H atoms of OH were placed in a difference map and were refined coordinates only with restraints of O—H bond length (0.82 (2) Å) and Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on the parent C atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO (Rigaku, 2002); data reduction: RAPID-AUTO (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), Mercury (Bruno et al., 2002) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing for the title complex with labeling showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the complex. Pale purple spheres indicate centroids of pyridine rings and green dashed lines indicate π-π or Cu···π interactions. H2O molecules are omitted for clarity. (blue: copper; red: oxygen; light blue: nitrogen; gray: carbon; brown: bromine; white: hydrogen)
[Figure 3] Fig. 3. Crystal packing of the complex. Light blue dashed lines indicate Br···O halogen interaction or OH···O hydrogen bonding.
Bis[(5-bromopyridin-2-yl)methanolato-κ2N,O]copper(II) monohydrate top
Crystal data top
[Cu(C6H5BrNO)2]·H2OV = 670.41 (14) Å3
Mr = 455.60Z = 2
Triclinic, P1F(000) = 442
Hall symbol: -P 1Dx = 2.257 Mg m3
a = 7.1892 (9) ÅMo Kα radiation, λ = 0.71075 Å
b = 7.5438 (9) ŵ = 7.60 mm1
c = 13.2195 (15) ÅT = 100 K
α = 99.338 (3)°Needle, purple
β = 103.334 (3)°0.15 × 0.06 × 0.04 mm
γ = 100.400 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 99
Tmin = 0.395, Tmax = 0.751k = 99
6697 measured reflectionsl = 1717
3074 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.8098P]
where P = (Fo2 + 2Fc2)/3
3074 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 1.24 e Å3
2 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Cu(C6H5BrNO)2]·H2Oγ = 100.400 (3)°
Mr = 455.60V = 670.41 (14) Å3
Triclinic, P1Z = 2
a = 7.1892 (9) ÅMo Kα radiation
b = 7.5438 (9) ŵ = 7.60 mm1
c = 13.2195 (15) ÅT = 100 K
α = 99.338 (3)°0.15 × 0.06 × 0.04 mm
β = 103.334 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3074 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2305 reflections with I > 2σ(I)
Tmin = 0.395, Tmax = 0.751Rint = 0.039
6697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 1.24 e Å3
3074 reflectionsΔρmin = 1.05 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54156 (8)0.45571 (7)0.28991 (4)0.01103 (13)
N10.6758 (5)0.4606 (5)0.4385 (3)0.0113 (8)
N20.3724 (5)0.4527 (5)0.1470 (3)0.0108 (7)
O10.6975 (4)0.6960 (4)0.3169 (2)0.0158 (7)
O20.4262 (4)0.2003 (4)0.2603 (2)0.0133 (6)
C10.7898 (6)0.7701 (6)0.4241 (3)0.0113 (9)
H10.72200.86320.45100.014*
H20.92690.83370.43150.014*
C20.7909 (6)0.6272 (6)0.4907 (3)0.0101 (8)
C30.8947 (7)0.6571 (6)0.5958 (4)0.0149 (9)
H30.97520.77510.63150.018*
C40.8804 (7)0.5124 (6)0.6494 (3)0.0146 (9)
H40.95140.52990.72180.017*
C50.7603 (6)0.3425 (6)0.5946 (3)0.0128 (9)
C60.6600 (6)0.3186 (6)0.4895 (3)0.0115 (9)
H50.57880.20160.45230.014*
C70.2809 (6)0.1401 (6)0.1650 (3)0.0133 (9)
H60.15200.10800.18040.016*
H70.30320.02680.12490.016*
C80.2743 (6)0.2825 (6)0.0962 (3)0.0117 (9)
C90.1745 (6)0.2415 (6)0.0109 (3)0.0126 (9)
H80.10950.11820.04600.015*
C100.1710 (6)0.3826 (6)0.0657 (4)0.0149 (9)
H90.10490.35820.13930.018*
C110.2666 (6)0.5611 (6)0.0107 (3)0.0119 (9)
C120.3689 (6)0.5935 (6)0.0947 (3)0.0140 (10)
H100.43770.71520.13120.017*
Br10.72814 (7)0.13936 (6)0.66098 (3)0.01408 (12)
Br20.26359 (6)0.75716 (6)0.08331 (3)0.01288 (12)
O30.7243 (5)1.0111 (4)0.2380 (3)0.0190 (7)
H110.709 (8)0.913 (4)0.254 (4)0.029*
H120.638 (6)1.061 (7)0.250 (4)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0139 (3)0.0090 (3)0.0090 (3)0.0016 (2)0.0019 (2)0.0016 (2)
N10.0058 (18)0.0174 (19)0.0100 (19)0.0017 (15)0.0021 (15)0.0018 (17)
N20.0138 (19)0.0119 (17)0.0065 (18)0.0035 (15)0.0013 (15)0.0032 (15)
O10.0173 (17)0.0136 (16)0.0147 (17)0.0008 (13)0.0010 (13)0.0075 (14)
O20.0165 (17)0.0100 (14)0.0112 (16)0.0008 (12)0.0018 (13)0.0036 (13)
C10.008 (2)0.011 (2)0.013 (2)0.0007 (17)0.0015 (18)0.0038 (19)
C20.009 (2)0.010 (2)0.010 (2)0.0011 (16)0.0032 (17)0.0027 (18)
C30.017 (2)0.012 (2)0.015 (2)0.0028 (18)0.0054 (19)0.000 (2)
C40.020 (2)0.015 (2)0.010 (2)0.0040 (19)0.0053 (19)0.003 (2)
C50.013 (2)0.015 (2)0.015 (2)0.0045 (18)0.0074 (19)0.009 (2)
C60.014 (2)0.009 (2)0.013 (2)0.0048 (17)0.0062 (19)0.0014 (19)
C70.013 (2)0.012 (2)0.011 (2)0.0014 (18)0.0016 (18)0.0031 (19)
C80.008 (2)0.010 (2)0.015 (2)0.0002 (16)0.0024 (18)0.0007 (19)
C90.009 (2)0.014 (2)0.015 (2)0.0014 (17)0.0026 (18)0.0044 (19)
C100.013 (2)0.019 (2)0.010 (2)0.0011 (18)0.0019 (18)0.000 (2)
C110.015 (2)0.015 (2)0.010 (2)0.0060 (18)0.0066 (18)0.0070 (19)
C120.016 (2)0.013 (2)0.016 (2)0.0065 (18)0.008 (2)0.003 (2)
Br10.0183 (2)0.0142 (2)0.0112 (2)0.00372 (17)0.00498 (18)0.00535 (19)
Br20.0155 (2)0.0128 (2)0.0122 (2)0.00431 (17)0.00462 (17)0.00519 (18)
O30.023 (2)0.0137 (16)0.0228 (19)0.0039 (14)0.0071 (15)0.0083 (16)
Geometric parameters (Å, º) top
Cu1—O11.882 (3)C4—H40.9500
Cu1—O21.892 (3)C5—C61.375 (6)
Cu1—N11.970 (3)C5—Br11.891 (4)
Cu1—N21.991 (3)C6—H50.9500
N1—C21.349 (5)C7—C81.516 (5)
N1—C61.356 (5)C7—H60.9900
N2—C81.331 (5)C7—H70.9900
N2—C121.359 (5)C8—C91.387 (6)
O1—C11.391 (5)C9—C101.383 (6)
O2—C71.385 (5)C9—H80.9500
C1—C21.499 (5)C10—C111.390 (6)
C1—H10.9900C10—H90.9500
C1—H20.9900C11—C121.376 (6)
C2—C31.378 (6)C11—Br21.890 (4)
C3—C41.396 (6)C12—H100.9500
C3—H30.9500O3—H110.797 (19)
C4—C51.387 (6)O3—H120.817 (19)
O1—Cu1—O2169.72 (13)C6—C5—C4120.2 (4)
O1—Cu1—N184.45 (13)C6—C5—Br1118.3 (3)
O2—Cu1—N193.40 (13)C4—C5—Br1121.6 (3)
O1—Cu1—N298.13 (13)N1—C6—C5120.6 (4)
O2—Cu1—N285.38 (13)N1—C6—H5119.7
N1—Cu1—N2171.91 (14)C5—C6—H5119.7
C2—N1—C6120.1 (4)O2—C7—C8113.1 (3)
C2—N1—Cu1113.1 (3)O2—C7—H6109.0
C6—N1—Cu1126.8 (3)C8—C7—H6109.0
C8—N2—C12119.8 (4)O2—C7—H7109.0
C8—N2—Cu1111.6 (3)C8—C7—H7109.0
C12—N2—Cu1127.9 (3)H6—C7—H7107.8
C1—O1—Cu1113.9 (2)N2—C8—C9122.0 (4)
C7—O2—Cu1113.5 (2)N2—C8—C7114.5 (4)
O1—C1—C2112.8 (3)C9—C8—C7123.5 (4)
O1—C1—H1109.0C10—C9—C8119.1 (4)
C2—C1—H1109.0C10—C9—H8120.5
O1—C1—H2109.0C8—C9—H8120.5
C2—C1—H2109.0C9—C10—C11118.4 (4)
H1—C1—H2107.8C9—C10—H9120.8
N1—C2—C3121.3 (4)C11—C10—H9120.8
N1—C2—C1113.6 (4)C12—C11—C10120.2 (4)
C3—C2—C1125.1 (4)C12—C11—Br2120.4 (3)
C2—C3—C4119.4 (4)C10—C11—Br2119.4 (3)
C2—C3—H3120.3N2—C12—C11120.5 (4)
C4—C3—H3120.3N2—C12—H10119.7
C5—C4—C3118.5 (4)C11—C12—H10119.7
C5—C4—H4120.8H11—O3—H12109 (5)
C3—C4—H4120.8
O1—Cu1—N1—C26.8 (3)C2—C3—C4—C50.4 (6)
O2—Cu1—N1—C2176.7 (3)C3—C4—C5—C60.6 (6)
N2—Cu1—N1—C2102.2 (10)C3—C4—C5—Br1178.9 (3)
O1—Cu1—N1—C6174.2 (3)C2—N1—C6—C50.1 (6)
O2—Cu1—N1—C64.3 (3)Cu1—N1—C6—C5178.9 (3)
N2—Cu1—N1—C676.8 (11)C4—C5—C6—N10.5 (6)
O1—Cu1—N2—C8165.7 (3)Br1—C5—C6—N1179.1 (3)
O2—Cu1—N2—C84.6 (3)Cu1—O2—C7—C811.3 (4)
N1—Cu1—N2—C886.3 (10)C12—N2—C8—C93.0 (6)
O1—Cu1—N2—C125.0 (4)Cu1—N2—C8—C9168.5 (3)
O2—Cu1—N2—C12175.2 (3)C12—N2—C8—C7176.8 (3)
N1—Cu1—N2—C12103.1 (10)Cu1—N2—C8—C711.7 (4)
O2—Cu1—O1—C191.0 (7)O2—C7—C8—N215.4 (5)
N1—Cu1—O1—C112.7 (3)O2—C7—C8—C9164.8 (4)
N2—Cu1—O1—C1159.6 (3)N2—C8—C9—C102.3 (6)
O1—Cu1—O2—C7114.6 (7)C7—C8—C9—C10177.5 (4)
N1—Cu1—O2—C7167.8 (3)C8—C9—C10—C110.6 (6)
N2—Cu1—O2—C74.2 (3)C9—C10—C11—C122.8 (6)
Cu1—O1—C1—C215.9 (4)C9—C10—C11—Br2179.8 (3)
C6—N1—C2—C30.2 (6)C8—N2—C12—C110.7 (6)
Cu1—N1—C2—C3179.3 (3)Cu1—N2—C12—C11169.2 (3)
C6—N1—C2—C1178.9 (3)C10—C11—C12—N22.2 (6)
Cu1—N1—C2—C10.2 (4)Br2—C11—C12—N2179.6 (3)
O1—C1—C2—N110.3 (5)N1—O1—N2—O212.82 (13)
O1—C1—C2—C3170.6 (4)O1—N1—O2—N213.32 (14)
N1—C2—C3—C40.0 (6)N1—O2—N2—O111.80 (12)
C1—C2—C3—C4179.0 (4)O2—N1—O1—N211.96 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H11···O10.80 (2)1.95 (2)2.740 (4)170 (6)
O3—H12···O2i0.82 (2)2.01 (2)2.825 (4)171 (5)
Symmetry code: (i) x, y+1, z.
Selected bond lengths (Å) top
Cu1—O11.882 (3)Cu1—N11.970 (3)
Cu1—O21.892 (3)Cu1—N21.991 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H11···O10.797 (19)1.95 (2)2.740 (4)170 (6)
O3—H12···O2i0.817 (19)2.01 (2)2.825 (4)171 (5)
Symmetry code: (i) x, y+1, z.
 

References

First citationAntonioli, B., Bray, D. J., Clegg, J. K., Jolliffe, K. A., Gloe, K., Gloe, K. & Lindoy, L. F. (2007). Polyhedron, 26, 673–678.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoyle, T. J., Ottley, L. M. & Raymond, R. (2010). J. Coord. Chem. 63, 545–557.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokariGoogle Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds