organic compounds
8-Methoxy-3-methyl-3,4-dihydro-2H-1,3-benzoxazine
aSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: yangxiangxianghaut@126.com
The title compound, C10H13NO2, crystallizes with two crystallographically independent molecules of similar geometry in the the six-membered oxazine rings adopts a half-chair conformation. Neither hydrogen bonds nor π–π interactions are observed in the crystal structure.
CCDC reference: 963639
Related literature
For the synthesis and applications of 1,3-benzoxazines, see: Holly & Cope (1944); Gu et al. (1998); Zheng et al. (2011); Rimdusit & Ishida (2000); Stewart (2009); Ning & Ishida (1994). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 963639
10.1107/S1600536813026706/rz5083sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813026706/rz5083Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813026706/rz5083Isup3.cml
Methylamine (40 wt% in water; 3.9 g, 0.05 mol), formaldehyde (37% wt in water; 8.1 g, 0.1 mol), 4-methoxyphenol (6.2 g, 0.05 mol) and 1, 4-dioxine (50 ml) were added to a 250 ml flask equipped with a condenser. The mixture was stirred at 90 °C for 5 h. After condensed by rotary evaporator, a yellowish-brown viscous liquid was obtained and set at room temperature for a few hours. After washing several times with methanol, a yellowish powder was precipitated. Anhydrous ether was used to dissolve the powder, and colourless crystals suitable for X-ray
were obtained by slow evoporation of the solvent.All H atoms were refined using a riding model approximation, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The asymmetric unit of the title complound with displacement ellipsoids drawn at the 50% probability level. |
C10H13NO2 | F(000) = 768 |
Mr = 179.21 | Dx = 1.284 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2ybc | Cell parameters from 2369 reflections |
a = 23.4234 (14) Å | θ = 3.2–66.9° |
b = 5.0054 (3) Å | µ = 0.73 mm−1 |
c = 15.9408 (10) Å | T = 291 K |
β = 97.210 (6)° | Prism, colourless |
V = 1854.2 (2) Å3 | 0.22 × 0.20 × 0.18 mm |
Z = 8 |
Agilent Xcalibur (Eos, Gemini) diffractometer | 3281 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2471 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 16.2312 pixels mm-1 | θmax = 67.1°, θmin = 3.8° |
ω scans | h = −19→27 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −3→5 |
Tmin = 0.783, Tmax = 1.000 | l = −18→19 |
6857 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0524P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3281 reflections | Δρmax = 0.15 e Å−3 |
240 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0041 (3) |
C10H13NO2 | V = 1854.2 (2) Å3 |
Mr = 179.21 | Z = 8 |
Monoclinic, P21/c | Cu Kα radiation |
a = 23.4234 (14) Å | µ = 0.73 mm−1 |
b = 5.0054 (3) Å | T = 291 K |
c = 15.9408 (10) Å | 0.22 × 0.20 × 0.18 mm |
β = 97.210 (6)° |
Agilent Xcalibur (Eos, Gemini) diffractometer | 3281 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2471 reflections with I > 2σ(I) |
Tmin = 0.783, Tmax = 1.000 | Rint = 0.030 |
6857 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.15 e Å−3 |
3281 reflections | Δρmin = −0.16 e Å−3 |
240 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.93754 (5) | 0.7027 (2) | 0.81029 (8) | 0.0481 (3) | |
O2 | 0.93639 (5) | 1.0466 (3) | 0.93130 (8) | 0.0507 (3) | |
N1 | 0.89328 (8) | 0.5131 (3) | 0.67831 (9) | 0.0538 (4) | |
C1 | 0.93598 (8) | 0.4853 (3) | 0.74936 (12) | 0.0526 (4) | |
H1A | 0.9734 | 0.4725 | 0.7294 | 0.063* | |
H1B | 0.9293 | 0.3192 | 0.7779 | 0.063* | |
C2 | 0.83649 (9) | 0.5122 (4) | 0.70753 (12) | 0.0549 (5) | |
H2A | 0.8282 | 0.3343 | 0.7268 | 0.066* | |
H2B | 0.8075 | 0.5574 | 0.6607 | 0.066* | |
C3 | 0.83340 (7) | 0.7092 (3) | 0.77871 (10) | 0.0429 (4) | |
C4 | 0.88444 (7) | 0.7904 (3) | 0.82559 (10) | 0.0384 (3) | |
C5 | 0.88378 (7) | 0.9799 (3) | 0.89037 (9) | 0.0395 (3) | |
C6 | 0.83181 (8) | 1.0838 (4) | 0.90755 (11) | 0.0498 (4) | |
H6 | 0.8309 | 1.2096 | 0.9503 | 0.060* | |
C7 | 0.78089 (8) | 1.0000 (4) | 0.86090 (12) | 0.0566 (5) | |
H7 | 0.7460 | 1.0694 | 0.8729 | 0.068* | |
C8 | 0.78165 (8) | 0.8159 (4) | 0.79739 (12) | 0.0540 (5) | |
H8 | 0.7472 | 0.7620 | 0.7665 | 0.065* | |
C9 | 0.90299 (11) | 0.7484 (4) | 0.62759 (12) | 0.0672 (6) | |
H9A | 0.8977 | 0.9070 | 0.6595 | 0.101* | |
H9B | 0.8761 | 0.7481 | 0.5769 | 0.101* | |
H9C | 0.9415 | 0.7445 | 0.6131 | 0.101* | |
C10 | 0.93882 (9) | 1.2585 (4) | 0.99146 (12) | 0.0551 (5) | |
H10D | 0.9778 | 1.2823 | 1.0170 | 0.083* | |
H10E | 0.9150 | 1.2153 | 1.0343 | 0.083* | |
H10F | 0.9253 | 1.4206 | 0.9635 | 0.083* | |
O1' | 0.33443 (5) | 0.5282 (3) | 0.32961 (8) | 0.0572 (4) | |
O2' | 0.28466 (6) | 0.1922 (3) | 0.42062 (9) | 0.0659 (4) | |
N1' | 0.41648 (7) | 0.7858 (3) | 0.30046 (10) | 0.0520 (4) | |
C1' | 0.35547 (8) | 0.7584 (4) | 0.28753 (13) | 0.0590 (5) | |
H1'A | 0.3430 | 0.7444 | 0.2273 | 0.071* | |
H1'B | 0.3383 | 0.9184 | 0.3078 | 0.071* | |
C2' | 0.43450 (8) | 0.8338 (4) | 0.39037 (12) | 0.0521 (4) | |
H2'A | 0.4257 | 1.0171 | 0.4037 | 0.063* | |
H2'B | 0.4759 | 0.8107 | 0.4020 | 0.063* | |
C3' | 0.40554 (7) | 0.6489 (3) | 0.44663 (11) | 0.0435 (4) | |
C4' | 0.35742 (7) | 0.5065 (3) | 0.41245 (10) | 0.0426 (4) | |
C5' | 0.33050 (7) | 0.3264 (4) | 0.46242 (11) | 0.0467 (4) | |
C6' | 0.35111 (8) | 0.2984 (4) | 0.54686 (12) | 0.0547 (5) | |
H6' | 0.3334 | 0.1806 | 0.5806 | 0.066* | |
C7' | 0.39836 (9) | 0.4464 (4) | 0.58138 (12) | 0.0622 (5) | |
H7' | 0.4118 | 0.4299 | 0.6386 | 0.075* | |
C8' | 0.42559 (8) | 0.6174 (4) | 0.53176 (12) | 0.0566 (5) | |
H8' | 0.4577 | 0.7129 | 0.5555 | 0.068* | |
C9' | 0.44587 (9) | 0.5579 (4) | 0.26797 (13) | 0.0611 (5) | |
H9'A | 0.4335 | 0.5381 | 0.2086 | 0.092* | |
H9'B | 0.4367 | 0.3986 | 0.2971 | 0.092* | |
H9'C | 0.4867 | 0.5870 | 0.2769 | 0.092* | |
C10' | 0.25623 (10) | 0.0001 (5) | 0.46693 (16) | 0.0750 (7) | |
H10A | 0.2276 | −0.0919 | 0.4292 | 0.113* | |
H10B | 0.2381 | 0.0892 | 0.5099 | 0.113* | |
H10C | 0.2839 | −0.1262 | 0.4929 | 0.113* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0447 (6) | 0.0478 (7) | 0.0533 (7) | 0.0041 (5) | 0.0126 (5) | −0.0065 (5) |
O2 | 0.0476 (6) | 0.0544 (8) | 0.0491 (7) | −0.0022 (5) | 0.0019 (5) | −0.0106 (5) |
N1 | 0.0802 (11) | 0.0369 (8) | 0.0467 (8) | −0.0029 (7) | 0.0177 (7) | −0.0041 (6) |
C1 | 0.0652 (11) | 0.0365 (9) | 0.0600 (11) | 0.0048 (8) | 0.0233 (9) | −0.0010 (8) |
C2 | 0.0696 (11) | 0.0432 (10) | 0.0512 (10) | −0.0098 (9) | 0.0047 (8) | −0.0056 (8) |
C3 | 0.0495 (9) | 0.0367 (9) | 0.0425 (8) | −0.0048 (7) | 0.0052 (7) | 0.0024 (7) |
C4 | 0.0429 (8) | 0.0342 (8) | 0.0395 (8) | 0.0005 (6) | 0.0107 (6) | 0.0052 (6) |
C5 | 0.0440 (8) | 0.0382 (8) | 0.0367 (8) | −0.0009 (6) | 0.0070 (6) | 0.0029 (6) |
C6 | 0.0524 (9) | 0.0531 (11) | 0.0462 (9) | 0.0048 (8) | 0.0149 (7) | −0.0062 (8) |
C7 | 0.0420 (9) | 0.0655 (13) | 0.0641 (11) | 0.0074 (8) | 0.0137 (8) | −0.0021 (9) |
C8 | 0.0421 (9) | 0.0594 (12) | 0.0592 (11) | −0.0060 (8) | 0.0018 (7) | 0.0027 (9) |
C9 | 0.1094 (18) | 0.0485 (11) | 0.0476 (10) | −0.0042 (11) | 0.0247 (11) | 0.0001 (8) |
C10 | 0.0690 (12) | 0.0457 (10) | 0.0487 (10) | −0.0082 (9) | 0.0007 (8) | −0.0047 (8) |
O1' | 0.0515 (7) | 0.0706 (9) | 0.0478 (7) | −0.0120 (6) | −0.0001 (5) | 0.0058 (6) |
O2' | 0.0581 (8) | 0.0701 (10) | 0.0703 (9) | −0.0205 (7) | 0.0115 (7) | 0.0027 (7) |
N1' | 0.0555 (9) | 0.0455 (9) | 0.0569 (9) | 0.0002 (7) | 0.0140 (7) | 0.0066 (7) |
C1' | 0.0571 (11) | 0.0656 (13) | 0.0535 (10) | 0.0049 (9) | 0.0038 (8) | 0.0141 (9) |
C2' | 0.0529 (10) | 0.0394 (10) | 0.0649 (11) | −0.0051 (8) | 0.0106 (8) | −0.0029 (8) |
C3' | 0.0427 (8) | 0.0380 (9) | 0.0500 (9) | 0.0045 (7) | 0.0067 (7) | −0.0041 (7) |
C4' | 0.0410 (8) | 0.0437 (9) | 0.0435 (8) | 0.0047 (7) | 0.0065 (6) | 0.0002 (7) |
C5' | 0.0431 (8) | 0.0435 (9) | 0.0552 (9) | 0.0022 (7) | 0.0129 (7) | 0.0000 (8) |
C6' | 0.0588 (10) | 0.0534 (11) | 0.0543 (10) | 0.0077 (8) | 0.0162 (8) | 0.0108 (8) |
C7' | 0.0679 (12) | 0.0727 (14) | 0.0452 (10) | 0.0100 (10) | 0.0034 (8) | 0.0042 (9) |
C8' | 0.0542 (10) | 0.0595 (12) | 0.0539 (10) | −0.0021 (9) | −0.0019 (8) | −0.0070 (9) |
C9' | 0.0687 (12) | 0.0534 (11) | 0.0647 (12) | −0.0026 (10) | 0.0224 (9) | −0.0002 (9) |
C10' | 0.0768 (14) | 0.0602 (14) | 0.0950 (17) | −0.0200 (11) | 0.0375 (13) | −0.0054 (12) |
O1—C1 | 1.456 (2) | O1'—C1' | 1.451 (2) |
O1—C4 | 1.3695 (19) | O1'—C4' | 1.366 (2) |
O2—C5 | 1.362 (2) | O2'—C5' | 1.367 (2) |
O2—C10 | 1.426 (2) | O2'—C10' | 1.427 (2) |
N1—C1 | 1.421 (3) | N1'—C1' | 1.425 (2) |
N1—C2 | 1.464 (2) | N1'—C2' | 1.462 (2) |
N1—C9 | 1.463 (2) | N1'—C9' | 1.461 (2) |
C1—H1A | 0.9700 | C1'—H1'A | 0.9700 |
C1—H1B | 0.9700 | C1'—H1'B | 0.9700 |
C2—H2A | 0.9700 | C2'—H2'A | 0.9700 |
C2—H2B | 0.9700 | C2'—H2'B | 0.9700 |
C2—C3 | 1.512 (2) | C2'—C3' | 1.508 (2) |
C3—C4 | 1.389 (2) | C3'—C4' | 1.386 (2) |
C3—C8 | 1.391 (2) | C3'—C8' | 1.388 (3) |
C4—C5 | 1.404 (2) | C4'—C5' | 1.404 (2) |
C5—C6 | 1.382 (2) | C5'—C6' | 1.379 (3) |
C6—H6 | 0.9300 | C6'—H6' | 0.9300 |
C6—C7 | 1.389 (3) | C6'—C7' | 1.387 (3) |
C7—H7 | 0.9300 | C7'—H7' | 0.9300 |
C7—C8 | 1.370 (3) | C7'—C8' | 1.375 (3) |
C8—H8 | 0.9300 | C8'—H8' | 0.9300 |
C9—H9A | 0.9600 | C9'—H9'A | 0.9600 |
C9—H9B | 0.9600 | C9'—H9'B | 0.9600 |
C9—H9C | 0.9600 | C9'—H9'C | 0.9600 |
C10—H10D | 0.9600 | C10'—H10A | 0.9600 |
C10—H10E | 0.9600 | C10'—H10B | 0.9600 |
C10—H10F | 0.9600 | C10'—H10C | 0.9600 |
C4—O1—C1 | 114.28 (13) | C4'—O1'—C1' | 113.24 (14) |
C5—O2—C10 | 117.51 (14) | C5'—O2'—C10' | 117.90 (17) |
C1—N1—C2 | 108.85 (14) | C1'—N1'—C2' | 108.58 (15) |
C1—N1—C9 | 112.13 (16) | C1'—N1'—C9' | 112.47 (16) |
C9—N1—C2 | 112.88 (17) | C9'—N1'—C2' | 112.64 (15) |
O1—C1—H1A | 108.6 | O1'—C1'—H1'A | 108.8 |
O1—C1—H1B | 108.6 | O1'—C1'—H1'B | 108.8 |
N1—C1—O1 | 114.52 (14) | N1'—C1'—O1' | 113.74 (15) |
N1—C1—H1A | 108.6 | N1'—C1'—H1'A | 108.8 |
N1—C1—H1B | 108.6 | N1'—C1'—H1'B | 108.8 |
H1A—C1—H1B | 107.6 | H1'A—C1'—H1'B | 107.7 |
N1—C2—H2A | 109.3 | N1'—C2'—H2'A | 109.0 |
N1—C2—H2B | 109.3 | N1'—C2'—H2'B | 109.0 |
N1—C2—C3 | 111.61 (15) | N1'—C2'—C3' | 112.71 (14) |
H2A—C2—H2B | 108.0 | H2'A—C2'—H2'B | 107.8 |
C3—C2—H2A | 109.3 | C3'—C2'—H2'A | 109.0 |
C3—C2—H2B | 109.3 | C3'—C2'—H2'B | 109.0 |
C4—C3—C2 | 118.41 (16) | C4'—C3'—C2' | 119.09 (15) |
C4—C3—C8 | 119.13 (16) | C4'—C3'—C8' | 118.99 (17) |
C8—C3—C2 | 122.45 (16) | C8'—C3'—C2' | 121.92 (16) |
O1—C4—C3 | 123.36 (15) | O1'—C4'—C3' | 122.78 (16) |
O1—C4—C5 | 116.23 (14) | O1'—C4'—C5' | 116.67 (15) |
C3—C4—C5 | 120.36 (15) | C3'—C4'—C5' | 120.54 (16) |
O2—C5—C4 | 115.17 (14) | O2'—C5'—C4' | 114.85 (16) |
O2—C5—C6 | 125.41 (15) | O2'—C5'—C6' | 125.68 (17) |
C6—C5—C4 | 119.42 (15) | C6'—C5'—C4' | 119.48 (17) |
C5—C6—H6 | 120.0 | C5'—C6'—H6' | 120.1 |
C5—C6—C7 | 119.92 (16) | C5'—C6'—C7' | 119.81 (18) |
C7—C6—H6 | 120.0 | C7'—C6'—H6' | 120.1 |
C6—C7—H7 | 119.7 | C6'—C7'—H7' | 119.7 |
C8—C7—C6 | 120.57 (17) | C8'—C7'—C6' | 120.59 (18) |
C8—C7—H7 | 119.7 | C8'—C7'—H7' | 119.7 |
C3—C8—H8 | 119.7 | C3'—C8'—H8' | 119.7 |
C7—C8—C3 | 120.59 (16) | C7'—C8'—C3' | 120.55 (18) |
C7—C8—H8 | 119.7 | C7'—C8'—H8' | 119.7 |
N1—C9—H9A | 109.5 | N1'—C9'—H9'A | 109.5 |
N1—C9—H9B | 109.5 | N1'—C9'—H9'B | 109.5 |
N1—C9—H9C | 109.5 | N1'—C9'—H9'C | 109.5 |
H9A—C9—H9B | 109.5 | H9'A—C9'—H9'B | 109.5 |
H9A—C9—H9C | 109.5 | H9'A—C9'—H9'C | 109.5 |
H9B—C9—H9C | 109.5 | H9'B—C9'—H9'C | 109.5 |
O2—C10—H10D | 109.5 | O2'—C10'—H10A | 109.5 |
O2—C10—H10E | 109.5 | O2'—C10'—H10B | 109.5 |
O2—C10—H10F | 109.5 | O2'—C10'—H10C | 109.5 |
H10D—C10—H10E | 109.5 | H10A—C10'—H10B | 109.5 |
H10D—C10—H10F | 109.5 | H10A—C10'—H10C | 109.5 |
H10E—C10—H10F | 109.5 | H10B—C10'—H10C | 109.5 |
O1—C4—C5—O2 | −1.7 (2) | O1'—C4'—C5'—O2' | 0.8 (2) |
O1—C4—C5—C6 | 177.98 (15) | O1'—C4'—C5'—C6' | −179.01 (16) |
O2—C5—C6—C7 | 179.74 (17) | O2'—C5'—C6'—C7' | 179.68 (18) |
N1—C2—C3—C4 | −21.6 (2) | N1'—C2'—C3'—C4' | −15.2 (2) |
N1—C2—C3—C8 | 156.76 (17) | N1'—C2'—C3'—C8' | 164.96 (17) |
C1—O1—C4—C3 | −9.1 (2) | C1'—O1'—C4'—C3' | −14.7 (2) |
C1—O1—C4—C5 | 173.47 (14) | C1'—O1'—C4'—C5' | 166.48 (16) |
C1—N1—C2—C3 | 50.6 (2) | C1'—N1'—C2'—C3' | 45.4 (2) |
C2—N1—C1—O1 | −62.57 (19) | C2'—N1'—C1'—O1' | −64.2 (2) |
C2—C3—C4—O1 | 0.5 (2) | C2'—C3'—C4'—O1' | −0.7 (2) |
C2—C3—C4—C5 | 177.80 (15) | C2'—C3'—C4'—C5' | 178.01 (16) |
C2—C3—C8—C7 | −178.06 (18) | C2'—C3'—C8'—C7' | −179.74 (18) |
C3—C4—C5—O2 | −179.24 (14) | C3'—C4'—C5'—O2' | −177.96 (15) |
C3—C4—C5—C6 | 0.5 (2) | C3'—C4'—C5'—C6' | 2.2 (3) |
C4—O1—C1—N1 | 41.2 (2) | C4'—O1'—C1'—N1' | 48.5 (2) |
C4—C3—C8—C7 | 0.3 (3) | C4'—C3'—C8'—C7' | 0.4 (3) |
C4—C5—C6—C7 | 0.1 (3) | C4'—C5'—C6'—C7' | −0.5 (3) |
C5—C6—C7—C8 | −0.4 (3) | C5'—C6'—C7'—C8' | −1.2 (3) |
C6—C7—C8—C3 | 0.2 (3) | C6'—C7'—C8'—C3' | 1.3 (3) |
C8—C3—C4—O1 | −178.00 (15) | C8'—C3'—C4'—O1' | 179.13 (16) |
C8—C3—C4—C5 | −0.7 (2) | C8'—C3'—C4'—C5' | −2.1 (3) |
C9—N1—C1—O1 | 63.0 (2) | C9'—N1'—C1'—O1' | 61.2 (2) |
C9—N1—C2—C3 | −74.6 (2) | C9'—N1'—C2'—C3' | −79.85 (19) |
C10—O2—C5—C4 | 173.49 (14) | C10'—O2'—C5'—C4' | 178.22 (17) |
C10—O2—C5—C6 | −6.2 (2) | C10'—O2'—C5'—C6' | −1.9 (3) |
Experimental details
Crystal data | |
Chemical formula | C10H13NO2 |
Mr | 179.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 291 |
a, b, c (Å) | 23.4234 (14), 5.0054 (3), 15.9408 (10) |
β (°) | 97.210 (6) |
V (Å3) | 1854.2 (2) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.73 |
Crystal size (mm) | 0.22 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Agilent Xcalibur (Eos, Gemini) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.783, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6857, 3281, 2471 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.114, 1.02 |
No. of reflections | 3281 |
No. of parameters | 240 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.16 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
The authors thank Ms Y. Zhu for technical assistance. This research was supported by the Science and Technology Department of Henan Province of the People's Republic of China (grant No. 122102210111) and the Doctoral Scientific Fund Project of Henan University of Technology.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gu, Y., Xie, M. L., Liu, X. H., Li, Y., Zhang, J. H., Ling, H., Huang, Y. & Hu, Z. (1998). Chem. Ind. Eng. Prog. pp. 43–47. Google Scholar
Holly, F. W. & Cope, A. C. (1944). J. Am. Chem. Soc. 66, 1875–1879. CrossRef CAS Google Scholar
Ning, X. & Ishida, H. (1994). J. Polym. Sci. Part A Polym. Chem. 32, 1121–1129. CrossRef CAS Web of Science Google Scholar
Rimdusit, S. & Ishida, H. (2000). Polymer, 41, 7941–7949. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stewart, R. (2009). Reinforced Plastics, 53, 28–33. CrossRef Google Scholar
Zheng, L., Zhang, C., Wang, Z., Zhao, P., Liu, X. & Gu, Y. (2011). J. Aero. Mater. 31, 62–66. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzo[e][1,3]oxazines, which are synthesized by an amine, a phenolic compound and formaldehyde via Mannich reaction (Holly & Cope, 1944), are a useful class of heterocyclic compounds. They can be cured via thermal ring-opening polymerization to construct a novel class of thermosetting resins called polybenzoxazins (Ning & Ishida, 1994). Polybenzoxazines have been widely used as automobile braking materials (Gu et al., 1998), copper clad laminates (Zheng et al., 2011), electronic packaging materials (Rimdusit & Ishida, 2000), aircraft cabin sidewalls (Stewart, 2009). The title compound was prepared by reaction of 2-methoxyphenol, formaldehyde and methylamine and its crystal structure is described herein.
The asymmetric unit of the title compound consists of two crystallographically independent molecules of similar geometry (Fig. 1). In both molecules the six-membered oxazine rings adopt a half-chair conformation, with atoms N1, C1 and N1', C1' displaced on opposite sides of the C2-C4/O1 (r.m.s deviation 0.0017 Å) and C2'-C4'/O1' (r.m.s deviation 0.0024 Å) mean planes by 0.4941 (15), 0.2019 (17) Å and 0.3664 (16), 0.351 (2) Å, respectively. The puckering parameters (Cremer & Pople, 1975) are Q = 0.4664 (16) Å, θ = 129.48 (19)°, ϕ = -75.7 (2)° for ring O1/C1/N1/C2–C4, and Q = 0.4722 (17) Å, θ = 128.97 (18)°, ϕ = -89.0 (3)° for ring O1'/C1'/N1'/C2'–C4'. In the crystal structure, no hydrogen bonding or π–π stacking interactions are observed.