organic compounds
2-Amino-6-chloro-N-methylbenzamide
aState Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China, and bPlant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, People's Republic of China
*Correspondence e-mail: xdmei@ippcaas.cn
In the title compound, C8H9ClN2O, the dihedral angle between the benzene ring and the methylamide substituent is 68.39 (11)°. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, forming layers parallel to the ab plane.
CCDC reference: 965731
Related literature
For background information on substituted anthranilamides, see: Bharate et al. (2013); Gnamm et al. (2012); Lahm et al. (2005); Norman et al. (1996); Roe et al. (1999). For the synthesis, see: Witt & Bergman (2000); Coppola (1980).
Experimental
Crystal data
|
|
Data collection: CrystalClear (Rigaku, 2007); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 965731
10.1107/S1600536813027827/rz5085sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027827/rz5085Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813027827/rz5085Isup3.cml
The title compound was prepared according to the literature method (Witt & Bergman, 2000) by stirring isatoic anhydride with aqueous methylamine. Isatoic anhydride was prepared by reaction of anthranilic acid with triphosgene in good yield (Coppola, 1980). The title compound (0.2 g) was dissolved in ethanol (50 ml) at room temperature. Colourless blocks were obtained through slow evaporation after two weeks.
All H atoms were placed at calculated positions, with C—H = 0.93–0.98 Å, N—H = 0.86 Å, and refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms.
Data collection: CrystalClear (Rigaku, 2007); cell
CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids. |
C8H9ClN2O | F(000) = 768 |
Mr = 184.62 | Dx = 1.401 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 3698 reflections |
a = 9.2709 (19) Å | θ = 1.3–27.5° |
b = 11.812 (2) Å | µ = 0.39 mm−1 |
c = 15.982 (3) Å | T = 173 K |
V = 1750.2 (6) Å3 | Block, colourless |
Z = 8 | 0.43 × 0.25 × 0.18 mm |
Rigaku MM007-HF CCD (Saturn 724+) diffractometer | 1528 independent reflections |
Radiation source: fine-focus sealed tube | 1351 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 25.0°, θmin = 2.6° |
ω scans at fixed χ = 45° | h = −11→7 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) | k = −14→9 |
Tmin = 0.609, Tmax = 1.000 | l = −10→19 |
3865 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0417P)2 + 1.8852P] where P = (Fo2 + 2Fc2)/3 |
1528 reflections | (Δ/σ)max < 0.001 |
110 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C8H9ClN2O | V = 1750.2 (6) Å3 |
Mr = 184.62 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 9.2709 (19) Å | µ = 0.39 mm−1 |
b = 11.812 (2) Å | T = 173 K |
c = 15.982 (3) Å | 0.43 × 0.25 × 0.18 mm |
Rigaku MM007-HF CCD (Saturn 724+) diffractometer | 1528 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) | 1351 reflections with I > 2σ(I) |
Tmin = 0.609, Tmax = 1.000 | Rint = 0.042 |
3865 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.26 e Å−3 |
1528 reflections | Δρmin = −0.26 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.16414 (9) | 0.67224 (7) | 0.15558 (6) | 0.0435 (3) | |
O1 | −0.2070 (2) | 0.70451 (18) | 0.04718 (16) | 0.0403 (6) | |
C2 | −0.0247 (3) | 0.8296 (2) | 0.0969 (2) | 0.0298 (8) | |
N1 | −0.1950 (3) | 0.9652 (2) | 0.0421 (2) | 0.0435 (8) | |
H1A | −0.2129 | 0.9255 | −0.0017 | 0.052* | |
H1B | −0.2227 | 1.0347 | 0.0402 | 0.052* | |
C4 | −0.0826 (3) | 0.7415 (2) | 0.0382 (2) | 0.0302 (7) | |
N2 | 0.0030 (3) | 0.7101 (2) | −0.02413 (17) | 0.0352 (7) | |
H2 | 0.0870 | 0.7405 | −0.0280 | 0.042* | |
C6 | 0.0854 (3) | 0.8068 (3) | 0.1541 (2) | 0.0332 (8) | |
C7 | −0.0872 (3) | 0.9385 (3) | 0.0972 (2) | 0.0353 (8) | |
C8 | −0.0390 (4) | 1.0177 (3) | 0.1558 (2) | 0.0398 (9) | |
H8 | −0.0809 | 1.0911 | 0.1568 | 0.048* | |
C9 | 0.1338 (4) | 0.8853 (3) | 0.2115 (2) | 0.0413 (9) | |
H9 | 0.2095 | 0.8675 | 0.2493 | 0.050* | |
C10 | 0.0685 (4) | 0.9910 (3) | 0.2123 (2) | 0.0443 (9) | |
H10 | 0.0982 | 1.0458 | 0.2522 | 0.053* | |
C11 | −0.0395 (4) | 0.6261 (3) | −0.0866 (3) | 0.0498 (10) | |
H11C | −0.0103 | 0.6522 | −0.1423 | 0.075* | |
H11B | −0.1443 | 0.6160 | −0.0851 | 0.075* | |
H11A | 0.0079 | 0.5538 | −0.0742 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0438 (5) | 0.0390 (5) | 0.0476 (6) | 0.0069 (4) | −0.0035 (4) | 0.0071 (4) |
O1 | 0.0297 (12) | 0.0267 (12) | 0.0646 (18) | −0.0043 (10) | 0.0029 (11) | −0.0057 (12) |
C2 | 0.0266 (15) | 0.0251 (15) | 0.038 (2) | −0.0052 (13) | 0.0062 (14) | 0.0020 (14) |
N1 | 0.0440 (16) | 0.0248 (14) | 0.062 (2) | 0.0047 (13) | −0.0059 (15) | −0.0056 (14) |
C4 | 0.0281 (15) | 0.0200 (14) | 0.042 (2) | 0.0012 (13) | −0.0025 (15) | 0.0036 (14) |
N2 | 0.0309 (13) | 0.0341 (14) | 0.0405 (17) | −0.0032 (12) | 0.0040 (13) | −0.0069 (13) |
C6 | 0.0306 (16) | 0.0300 (17) | 0.039 (2) | −0.0008 (14) | 0.0073 (15) | 0.0012 (15) |
C7 | 0.0326 (16) | 0.0270 (16) | 0.046 (2) | −0.0029 (14) | 0.0076 (16) | −0.0019 (15) |
C8 | 0.048 (2) | 0.0262 (17) | 0.046 (2) | −0.0076 (16) | 0.0130 (18) | −0.0030 (16) |
C9 | 0.0365 (18) | 0.051 (2) | 0.036 (2) | −0.0082 (18) | 0.0047 (16) | −0.0041 (18) |
C10 | 0.0447 (19) | 0.045 (2) | 0.043 (2) | −0.0132 (18) | 0.0148 (18) | −0.0141 (18) |
C11 | 0.042 (2) | 0.052 (2) | 0.056 (3) | 0.0000 (18) | −0.0020 (19) | −0.021 (2) |
Cl1—C6 | 1.749 (3) | C6—C9 | 1.379 (5) |
O1—C4 | 1.242 (3) | C7—C8 | 1.397 (5) |
C2—C6 | 1.395 (4) | C8—C10 | 1.381 (5) |
C2—C7 | 1.411 (4) | C8—H8 | 0.9500 |
C2—C4 | 1.501 (4) | C9—C10 | 1.388 (5) |
N1—C7 | 1.369 (4) | C9—H9 | 0.9500 |
N1—H1A | 0.8601 | C10—H10 | 0.9500 |
N1—H1B | 0.8600 | C11—H11C | 0.9800 |
C4—N2 | 1.326 (4) | C11—H11B | 0.9800 |
N2—C11 | 1.461 (4) | C11—H11A | 0.9800 |
N2—H2 | 0.8600 | ||
C6—C2—C7 | 118.4 (3) | C8—C7—C2 | 118.7 (3) |
C6—C2—C4 | 122.5 (3) | C10—C8—C7 | 121.1 (3) |
C7—C2—C4 | 119.1 (3) | C10—C8—H8 | 119.4 |
C7—N1—H1A | 122.6 | C7—C8—H8 | 119.4 |
C7—N1—H1B | 117.4 | C6—C9—C10 | 118.0 (3) |
H1A—N1—H1B | 115.8 | C6—C9—H9 | 121.0 |
O1—C4—N2 | 123.0 (3) | C10—C9—H9 | 121.0 |
O1—C4—C2 | 120.2 (3) | C8—C10—C9 | 120.9 (3) |
N2—C4—C2 | 116.7 (3) | C8—C10—H10 | 119.5 |
C4—N2—C11 | 122.8 (3) | C9—C10—H10 | 119.5 |
C4—N2—H2 | 118.6 | N2—C11—H11C | 109.5 |
C11—N2—H2 | 118.6 | N2—C11—H11B | 109.5 |
C9—C6—C2 | 122.9 (3) | H11C—C11—H11B | 109.5 |
C9—C6—Cl1 | 117.7 (3) | N2—C11—H11A | 109.5 |
C2—C6—Cl1 | 119.3 (2) | H11C—C11—H11A | 109.5 |
N1—C7—C8 | 120.7 (3) | H11B—C11—H11A | 109.5 |
N1—C7—C2 | 120.6 (3) | ||
C6—C2—C4—O1 | 111.3 (4) | C6—C2—C7—N1 | 179.7 (3) |
C7—C2—C4—O1 | −66.0 (4) | C4—C2—C7—N1 | −2.8 (5) |
C6—C2—C4—N2 | −71.3 (4) | C6—C2—C7—C8 | −1.6 (5) |
C7—C2—C4—N2 | 111.3 (3) | C4—C2—C7—C8 | 175.9 (3) |
O1—C4—N2—C11 | −2.1 (5) | N1—C7—C8—C10 | 179.2 (3) |
C2—C4—N2—C11 | −179.4 (3) | C2—C7—C8—C10 | 0.5 (5) |
C7—C2—C6—C9 | 1.1 (5) | C2—C6—C9—C10 | 0.5 (5) |
C4—C2—C6—C9 | −176.3 (3) | Cl1—C6—C9—C10 | −178.0 (3) |
C7—C2—C6—Cl1 | 179.6 (2) | C7—C8—C10—C9 | 1.2 (5) |
C4—C2—C6—Cl1 | 2.2 (4) | C6—C9—C10—C8 | −1.7 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1i | 0.86 | 2.11 | 2.970 (3) | 175 |
N2—H2···O1ii | 0.86 | 2.04 | 2.895 (4) | 172 |
Symmetry codes: (i) −x−1/2, y+1/2, z; (ii) x+1/2, −y+3/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1i | 0.86 | 2.11 | 2.970 (3) | 175 |
N2—H2···O1ii | 0.86 | 2.04 | 2.895 (4) | 172 |
Symmetry codes: (i) −x−1/2, y+1/2, z; (ii) x+1/2, −y+3/2, −z. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Nos. 31101448 and 31321004), the National Basic Research Program of China (2014CB932201 and 2012CB114104), the Public Service Sector R & D Project (200903033), the Open Fund of SKLBPI (SKL2012IP06), the National Key Technologies R & D Program of China (2011BAE06B03) and the Special Fund for Agro-Scientific Research in the Public Interest (No. 201003025) of the Chinese government.
References
Bharate, S. B., Yadav, R. R., Khan, S. I., Tekwani, B. L., Jacob, M. R., Khan, I. A. & Vishwakarma, R. A. (2013). Med. Chem. Commun. 4, 1042–1048. Web of Science CrossRef CAS Google Scholar
Coppola, G. M. (1980). Synthesis, 7, 505–536. CrossRef Google Scholar
Gnamm, C., Jeanguenat, A., Dutton, A. C., Grimm, C., Kloer, D. P. & Crossthwaite, A. J. (2012). Bioorg. Med. Chem. Lett. 22, 3800–3806. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lahm, G. P., Selby, T. P., Freudenberger, J. H., Stevenson, T. M., Myers, B. J., Seburyamo, G., Smith, B. K., Flexner, L., Clark, C. E. & Cordova, D. (2005). Bioorg. Med. Chem. Lett. 15, 4898–4906. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Norman, M. H., Rigdon, G. C., Hall, W. R. & Navas, F. III (1996). J. Med. Chem. 39, 1172–1188. CrossRef CAS PubMed Web of Science Google Scholar
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Roe, M., Folkes, A., Ashworth, P., Brumwell, J., Chima, L., Hunjan, S., Pretswell, I., Dangerfield, W., Ryder, H. & Charlton, P. (1999). Bioorg. Med. Chem. Lett. 9, 595–600. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Witt, A. & Bergman, J. (2000). Tetrahedron, 56, 7245–7253. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Anthranilamide-based derivatives exhibit interesting biological activities such as antibacterial, antifungal, antiviral, antimalarial and insecticidal activities (Bharate et al., 2013; Gnamm et al., 2012; Lahm et al., 2005; Norman et al., 1996; Roe et al., 1999). We report here the crystal structure of the title compound, 2-amino-6-chloro-N-methylbenzamide, an important organic intermediate in the synthesis of medicines, agricultural chemicals and animal drugs.
In the title compound (Fig. 1) the dihedral angle formed by the benzene ring and the methylamide substituent (r.m.s. deviation 0.0065 Å) is 68.39 (11)°. In the crystal structure, molecules are connected via N—H···O hydrogen bonds (Table 1) into layers running parallel to the ab plane.