organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benzyl­sulfanyl-1H-pyrazolo­[3,4-d]pyrimidine

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, bLaboratoire National de Contrôle des Médicaments, D M P, Ministère de la Santé, Madinat Al Irnane, BP 6206, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elfal_mohammed@yahoo.fr

(Received 4 October 2013; accepted 10 October 2013; online 16 October 2013)

The pyrazolo­[3,4-d]pyrimidine ring system of the title compound, C12H10N4S, is essentially planar [maximum deviation = 0.025 (1) Å for the C atom bearing the S atom] and almost perpendicular to the phenyl ring [dihedral angle = 71.42 (6)°]. In the crystal, mol­ecules are linked via pairs of N—H⋯N hydrogen bonds, forming inversion dimers.

Related literature

For the biological properties of pyrazolo­[3,4-d]pyrimidine derivatives, see: Rashad et al. (2008[Rashad, A. E., Hegab, M. I., Abdel-Megeid, R., Micky, J. A. & Abdel-Megeid, F. M. E. (2008). Bioorg. Med. Chem. 16, 7102-7106.], 2011[Rashad, A. E., Abeer, E. M. & Mamdouh, M. A. (2011). Eur. J. Med. Chem. 46, 1019-1026.]); Ballell et al. (2007[Ballell, L., Field, R. A., Chung, G. A. C. & Young, R. J. (2007). Bioorg. Med. Chem. Lett. 17, 1736-1740.]). For related compounds, see: Moussaif et al. (2010[Moussaif, A., Essassi, E. M., Lazar, S., Zouihri, H. & Leger, J. M. (2010). Acta Cryst. E66, o3137.]); Ouzidan et al. (2011[Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822.]); Alsubari et al. (2011[Alsubari, A., Ramli, Y., Essassi, E. M. & Zouihri, H. (2011). Acta Cryst. E67, o1926.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4S

  • Mr = 242.30

  • Monoclinic, P 21 /c

  • a = 9.4737 (3) Å

  • b = 5.1709 (2) Å

  • c = 23.6159 (8) Å

  • β = 96.823 (1)°

  • V = 1148.69 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.42 × 0.29 × 0.17 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.991

  • 15333 measured reflections

  • 3509 independent reflections

  • 2885 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.03

  • 3509 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N2i 0.86 2.10 2.9429 (16) 168
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazolo[3,4-d]pyrimidine derivatives are an important class of heterocyclic pharmaceuticals because of their significant and broad spectrum of biological properties, antiviral (Rashad et al., 2008); anti-mycobacterial (Ballell et al., 2007) and anticancer (Rashad et al., 2011). The present work is a continuation of the investigation of the sulfonamide derivatives published recently by our team (Moussaif et al., 2010; Ouzidan et al., 2011; Alsubari et al., 2011).

The crystal structure of title compound is build up from two fused six-membered rings (N1 to N4 C1 to C5) linked to a benzylsulfanyl group (S1 C6 to C12) as shown in Fig. 1. The fused rings system is almost planar with the largest deviation from the mean plane being -0.025 (1) A° at C5 atom. The dihedral angle between the benzyl cycle (C7 to C12) and the mean plane through the pyrazolo[3,4-d]pyrimidine system is of 71.42 (6)°. In the crystal, each molecule is linked to its symmetry equivalent created by a crystallographic inversion center by pairs of N3–H3N···N2 hydrogen bonds, forming inversion dimers as shown in Fig. 2 and Table 1.

Related literature top

For the biological properties of pyrazolo[3,4-d]pyrimidine derivatives, see: Rashad et al. (2008, 2011); Ballell et al. (2007). For related compounds, see: Moussaif et al. (2010); Ouzidan et al. (2011); Alsubari et al. (2011).

Experimental top

1H,5H-Pyrazolo[3,4-d]pyrimidine-4-thione (0.5 g, 3.29 mmol), benzylchloride (0.6 ml, 6.8 mmol) and potassium carbonate (0.94 g, 6.8 mmol) with a catalytic amount of tetra-n-butylammonium bromide were stirred in DMF (15 ml) for 72 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford yellow crystals in 60% yield.

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93-0.96 Å, N—H = 0.88 Å, and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq(C, N). In the last cycles of refinement, two outliers (0 0 2, 1 0 0) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular plot the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Packing diagram of the title compound showing the linkage between centrosymmetrically related molecules by N3—H3N···N2 hydrogen bonds (dashed lines).
4-Benzylsulfanyl-1H-pyrazolo[3,4-d]pyrimidine top
Crystal data top
C12H10N4SF(000) = 504
Mr = 242.30Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3509 reflections
a = 9.4737 (3) Åθ = 2.6–30.5°
b = 5.1709 (2) ŵ = 0.26 mm1
c = 23.6159 (8) ÅT = 296 K
β = 96.823 (1)°Sheet, yellow
V = 1148.69 (7) Å30.42 × 0.29 × 0.17 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
3509 independent reflections
Radiation source: fine-focus sealed tube2885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.960, Tmax = 0.991k = 77
15333 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2818P]
where P = (Fo2 + 2Fc2)/3
3509 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H10N4SV = 1148.69 (7) Å3
Mr = 242.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4737 (3) ŵ = 0.26 mm1
b = 5.1709 (2) ÅT = 296 K
c = 23.6159 (8) Å0.42 × 0.29 × 0.17 mm
β = 96.823 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
3509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2885 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.991Rint = 0.029
15333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
3509 reflectionsΔρmin = 0.23 e Å3
154 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53146 (14)0.5891 (3)0.39990 (6)0.0400 (3)
H10.61860.60930.38600.048*
C20.38176 (14)0.7002 (2)0.46100 (5)0.0347 (3)
C30.17220 (16)0.5324 (3)0.47363 (7)0.0510 (4)
H30.09140.42890.46980.061*
C40.28477 (13)0.5093 (2)0.43999 (5)0.0349 (3)
C50.32168 (12)0.3638 (2)0.39401 (5)0.0315 (2)
C60.28394 (15)0.0099 (3)0.30385 (6)0.0416 (3)
H6A0.38630.01570.31340.050*
H6B0.25680.16990.29790.050*
C70.24460 (14)0.1560 (2)0.24936 (6)0.0369 (3)
C80.12518 (16)0.0842 (3)0.21266 (6)0.0467 (3)
H80.07010.05510.22190.056*
C90.08797 (17)0.2192 (4)0.16251 (7)0.0555 (4)
H90.00860.16830.13800.067*
C100.16673 (19)0.4269 (4)0.14851 (7)0.0566 (4)
H100.14020.51830.11500.068*
C110.28603 (18)0.4997 (3)0.18457 (7)0.0534 (4)
H110.34010.64000.17520.064*
C120.32523 (16)0.3646 (3)0.23458 (6)0.0450 (3)
H120.40600.41360.25840.054*
N10.44627 (11)0.4023 (2)0.37454 (5)0.0371 (2)
N20.50762 (11)0.7469 (2)0.44184 (5)0.0385 (2)
N30.32520 (13)0.8224 (2)0.50327 (5)0.0456 (3)
H3N0.36510.94870.52270.055*
N40.19642 (15)0.7201 (3)0.51134 (6)0.0583 (4)
S10.20019 (4)0.13646 (7)0.363530 (14)0.04065 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (6)0.0415 (7)0.0407 (7)0.0091 (5)0.0060 (5)0.0020 (5)
C20.0405 (6)0.0316 (6)0.0305 (5)0.0006 (5)0.0017 (4)0.0004 (4)
C30.0425 (7)0.0646 (10)0.0478 (8)0.0093 (7)0.0126 (6)0.0170 (7)
C40.0351 (6)0.0369 (6)0.0321 (6)0.0032 (5)0.0020 (4)0.0023 (5)
C50.0335 (6)0.0297 (5)0.0301 (5)0.0011 (4)0.0007 (4)0.0009 (4)
C60.0476 (7)0.0327 (6)0.0432 (7)0.0040 (5)0.0008 (5)0.0070 (5)
C70.0396 (6)0.0322 (6)0.0388 (6)0.0053 (5)0.0044 (5)0.0080 (5)
C80.0434 (7)0.0441 (7)0.0506 (8)0.0005 (6)0.0025 (6)0.0039 (6)
C90.0476 (8)0.0655 (10)0.0505 (8)0.0123 (8)0.0060 (6)0.0025 (8)
C100.0608 (9)0.0641 (10)0.0464 (8)0.0263 (8)0.0126 (7)0.0104 (7)
C110.0598 (9)0.0468 (8)0.0576 (9)0.0059 (7)0.0231 (7)0.0055 (7)
C120.0445 (7)0.0435 (8)0.0480 (8)0.0009 (6)0.0091 (6)0.0068 (6)
N10.0368 (5)0.0373 (6)0.0373 (5)0.0044 (4)0.0050 (4)0.0037 (4)
N20.0421 (6)0.0349 (6)0.0377 (5)0.0080 (5)0.0008 (4)0.0010 (4)
N30.0506 (7)0.0457 (6)0.0401 (6)0.0053 (5)0.0040 (5)0.0130 (5)
N40.0521 (7)0.0715 (9)0.0535 (8)0.0077 (7)0.0158 (6)0.0225 (7)
S10.03936 (18)0.0419 (2)0.04027 (18)0.01091 (13)0.00279 (12)0.00697 (13)
Geometric parameters (Å, º) top
C1—N21.3234 (17)C6—H6B0.9700
C1—N11.3521 (17)C7—C121.390 (2)
C1—H10.9300C7—C81.3914 (19)
C2—N31.3455 (17)C8—C91.384 (2)
C2—N21.3464 (17)C8—H80.9300
C2—C41.3988 (17)C9—C101.371 (3)
C3—N41.319 (2)C9—H90.9300
C3—C41.4085 (19)C10—C111.384 (3)
C3—H30.9300C10—H100.9300
C4—C51.3992 (17)C11—C121.385 (2)
C5—N11.3316 (16)C11—H110.9300
C5—S11.7399 (12)C12—H120.9300
C6—C71.5008 (19)N3—N41.3637 (18)
C6—S11.8193 (14)N3—H3N0.8600
C6—H6A0.9700
N2—C1—N1128.77 (12)C8—C7—C6120.02 (13)
N2—C1—H1115.6C9—C8—C7120.27 (15)
N1—C1—H1115.6C9—C8—H8119.9
N3—C2—N2127.71 (12)C7—C8—H8119.9
N3—C2—C4106.97 (12)C10—C9—C8120.74 (15)
N2—C2—C4125.32 (12)C10—C9—H9119.6
N4—C3—C4111.15 (13)C8—C9—H9119.6
N4—C3—H3124.4C9—C10—C11119.54 (15)
C4—C3—H3124.4C9—C10—H10120.2
C2—C4—C5116.14 (11)C11—C10—H10120.2
C2—C4—C3104.44 (11)C10—C11—C12120.27 (16)
C5—C4—C3139.39 (12)C10—C11—H11119.9
N1—C5—C4120.07 (11)C12—C11—H11119.9
N1—C5—S1121.88 (9)C11—C12—C7120.41 (14)
C4—C5—S1118.05 (9)C11—C12—H12119.8
C7—C6—S1113.35 (9)C7—C12—H12119.8
C7—C6—H6A108.9C5—N1—C1117.44 (11)
S1—C6—H6A108.9C1—N2—C2112.17 (11)
C7—C6—H6B108.9C2—N3—N4111.31 (12)
S1—C6—H6B108.9C2—N3—H3N124.3
H6A—C6—H6B107.7N4—N3—H3N124.3
C12—C7—C8118.76 (14)C3—N4—N3106.12 (12)
C12—C7—C6121.21 (12)C5—S1—C6103.63 (6)
N3—C2—C4—C5178.01 (11)C10—C11—C12—C70.6 (2)
N2—C2—C4—C52.39 (19)C8—C7—C12—C110.8 (2)
N3—C2—C4—C30.53 (15)C6—C7—C12—C11178.96 (13)
N2—C2—C4—C3179.08 (13)C4—C5—N1—C11.62 (18)
N4—C3—C4—C20.49 (18)S1—C5—N1—C1177.92 (10)
N4—C3—C4—C5177.49 (16)N2—C1—N1—C51.3 (2)
C2—C4—C5—N13.22 (17)N1—C1—N2—C22.1 (2)
C3—C4—C5—N1178.96 (17)N3—C2—N2—C1179.40 (13)
C2—C4—C5—S1176.34 (9)C4—C2—N2—C10.13 (18)
C3—C4—C5—S11.5 (2)N2—C2—N3—N4179.18 (13)
S1—C6—C7—C1290.97 (14)C4—C2—N3—N40.42 (16)
S1—C6—C7—C888.78 (14)C4—C3—N4—N30.2 (2)
C12—C7—C8—C90.1 (2)C2—N3—N4—C30.11 (19)
C6—C7—C8—C9179.65 (13)N1—C5—S1—C63.06 (12)
C7—C8—C9—C100.8 (2)C4—C5—S1—C6176.49 (10)
C8—C9—C10—C111.0 (2)C7—C6—S1—C590.38 (11)
C9—C10—C11—C120.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N2i0.862.102.9429 (16)168
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N2i0.862.102.9429 (16)168.4
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAlsubari, A., Ramli, Y., Essassi, E. M. & Zouihri, H. (2011). Acta Cryst. E67, o1926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBallell, L., Field, R. A., Chung, G. A. C. & Young, R. J. (2007). Bioorg. Med. Chem. Lett. 17, 1736–1740.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoussaif, A., Essassi, E. M., Lazar, S., Zouihri, H. & Leger, J. M. (2010). Acta Cryst. E66, o3137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRashad, A. E., Abeer, E. M. & Mamdouh, M. A. (2011). Eur. J. Med. Chem. 46, 1019–1026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRashad, A. E., Hegab, M. I., Abdel-Megeid, R., Micky, J. A. & Abdel-Megeid, F. M. E. (2008). Bioorg. Med. Chem. 16, 7102–7106.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds