metal-organic compounds
Bis[μ-N-(pyridin-2-ylmethyl)pyridin-3-amine-κ2N:N′]disilver(I) bis(perchlorate) dimethyl sulfoxide disolvate
aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea, and bDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr
In the binuclear title compound, [Ag2(C11H11N3)2](ClO4)2·2C2H6SO, the complex cation is centrosymmetric, with the unique AgI cation coordinated by two pyridine N atoms from two symmetry-related N-(pyridine-2-ylmethyl)pyridine-3-amine ligands in a geometry slightly distorted from linear [N—Ag—N = 170.78 (9)°], resulting in the formation of a 16-membered cyclic dimer. The two pyridine rings coordinating to the AgI atom are almost perpendicular to each other [dihedral angle = 87.73 (10)°]. Intermolecular Ag⋯O interactions [3.149 (3) and 2.686 (3) Å], N—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π interactions between the cyclic dimers and the anions or the solvent molecules lead to the formation of a three-dimensional supramolecular network.
CCDC reference: 963329
Related literature
For structures of AgI coordination polymers with symmetrical dipyridyl ligands, see: Lee et al. (2012); Leong & Vittal (2011); Park et al. (2010) and of AgI coordination polymers with unsymmetrical dipyridyl ligands, see: Moon & Park (2013); Zhang et al. (2013). For the synthesis of the ligand, see: Foxon et al. (2002); Lee et al. (2008).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 963329
10.1107/S1600536813026585/sj5353sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813026585/sj5353Isup2.hkl
The ligand (N-(pyridin-3-ylmethyl)pyridine-2-amine) was prepared according to a procedure described by Foxon et al. (2002) and Lee et al. (2008). Crystals of the title compound suitable for X-ray analysis were obtained by vapor diffusion of diethyl ether into a DMSO solution of the white precipitate afforded by the reaction of the ligand with silver(I) perchlorate in the malar ratio 1:1 in methanol.
All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp2–H, 0.88 Å for amine N–H, 0.98 Å for methyl C–H and 0.99 Å for methylene C–H. For all H atoms Uiso(H) = 1.2Ueq(C,N).
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Intermolecular Ag···O interactions, N–H···O hydrogen bonds and C–H···π interactions are shown as yellow, black and red dashed lines, respectively. [Symmetry code: (i) 1 - x, - y, 1 - z]. | |
Fig. 2. The three-dimensional supramolecular structure formed through intermolecular Ag···O (yellow dashed lines) and C–H···O interactions (black dashed lines). |
[Ag2(C11H11N3)2](ClO4)2·2C2H6OS | F(000) = 944 |
Mr = 941.35 | Dx = 1.815 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7360 reflections |
a = 7.3620 (3) Å | θ = 2.7–28.3° |
b = 11.1227 (5) Å | µ = 1.48 mm−1 |
c = 21.1248 (10) Å | T = 173 K |
β = 95.328 (1)° | Block, colorless |
V = 1722.34 (13) Å3 | 0.45 × 0.20 × 0.20 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 3096 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.049 |
Graphite monochromator | θmax = 26.0°, θmin = 1.9° |
ϕ and ω scans | h = −9→8 |
9537 measured reflections | k = −13→13 |
3367 independent reflections | l = −25→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0399P)2 + 3.5438P] where P = (Fo2 + 2Fc2)/3 |
3367 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
[Ag2(C11H11N3)2](ClO4)2·2C2H6OS | V = 1722.34 (13) Å3 |
Mr = 941.35 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.3620 (3) Å | µ = 1.48 mm−1 |
b = 11.1227 (5) Å | T = 173 K |
c = 21.1248 (10) Å | 0.45 × 0.20 × 0.20 mm |
β = 95.328 (1)° |
Bruker SMART CCD area-detector diffractometer | 3096 reflections with I > 2σ(I) |
9537 measured reflections | Rint = 0.049 |
3367 independent reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.61 e Å−3 |
3367 reflections | Δρmin = −0.65 e Å−3 |
217 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.50109 (3) | 0.25805 (2) | 0.484406 (11) | 0.02344 (10) | |
N1 | 0.3332 (3) | 0.3841 (2) | 0.53484 (12) | 0.0200 (5) | |
N2 | 0.3266 (3) | −0.1183 (2) | 0.55086 (12) | 0.0200 (5) | |
N3 | 0.1611 (3) | 0.1670 (2) | 0.48358 (12) | 0.0224 (5) | |
H3 | 0.2056 | 0.1604 | 0.4465 | 0.027* | |
C1 | 0.4183 (4) | 0.4681 (3) | 0.57264 (14) | 0.0229 (6) | |
H1 | 0.5437 | 0.4832 | 0.5686 | 0.028* | |
C2 | 0.3334 (4) | 0.5334 (3) | 0.61688 (15) | 0.0269 (7) | |
H2 | 0.3984 | 0.5924 | 0.6424 | 0.032* | |
C3 | 0.1510 (5) | 0.5108 (3) | 0.62316 (16) | 0.0305 (7) | |
H3A | 0.0886 | 0.5533 | 0.6536 | 0.037* | |
C4 | 0.0616 (4) | 0.4257 (3) | 0.58450 (17) | 0.0288 (7) | |
H4 | −0.0639 | 0.4096 | 0.5879 | 0.035* | |
C5 | 0.1546 (4) | 0.3632 (3) | 0.54062 (14) | 0.0201 (6) | |
C6 | 0.0546 (4) | 0.2732 (3) | 0.49703 (16) | 0.0240 (6) | |
H6A | −0.0562 | 0.2469 | 0.5164 | 0.029* | |
H6B | 0.0145 | 0.3135 | 0.4563 | 0.029* | |
C7 | 0.1930 (4) | 0.0766 (3) | 0.52826 (14) | 0.0186 (6) | |
C8 | 0.1501 (4) | 0.0853 (3) | 0.59090 (15) | 0.0231 (6) | |
H8 | 0.0907 | 0.1548 | 0.6051 | 0.028* | |
C9 | 0.1955 (5) | −0.0089 (3) | 0.63220 (15) | 0.0275 (7) | |
H9 | 0.1657 | −0.0049 | 0.6750 | 0.033* | |
C10 | 0.2841 (4) | −0.1091 (3) | 0.61127 (15) | 0.0265 (7) | |
H10 | 0.3156 | −0.1727 | 0.6402 | 0.032* | |
C11 | 0.2807 (4) | −0.0285 (3) | 0.51076 (14) | 0.0187 (6) | |
H11 | 0.3090 | −0.0362 | 0.4680 | 0.022* | |
Cl1 | 0.22314 (10) | 0.27926 (7) | 0.31521 (4) | 0.02713 (18) | |
O1 | 0.1356 (6) | 0.1764 (3) | 0.33725 (17) | 0.0789 (13) | |
O2 | 0.2542 (4) | 0.3637 (3) | 0.36785 (14) | 0.0448 (7) | |
O3 | 0.1082 (5) | 0.3355 (4) | 0.26650 (16) | 0.0698 (10) | |
O4 | 0.3925 (5) | 0.2503 (3) | 0.2927 (2) | 0.0716 (12) | |
S1 | 0.60059 (11) | 0.23249 (7) | 0.65444 (4) | 0.02617 (18) | |
O5 | 0.7044 (3) | 0.2308 (2) | 0.59577 (12) | 0.0329 (5) | |
C12 | 0.7185 (5) | 0.3371 (3) | 0.70810 (17) | 0.0378 (8) | |
H12A | 0.6999 | 0.4189 | 0.6915 | 0.045* | |
H12B | 0.8491 | 0.3184 | 0.7123 | 0.045* | |
H12C | 0.6709 | 0.3312 | 0.7498 | 0.045* | |
C13 | 0.6627 (6) | 0.0977 (4) | 0.6968 (2) | 0.0435 (9) | |
H13A | 0.6077 | 0.0285 | 0.6736 | 0.052* | |
H13B | 0.6187 | 0.1013 | 0.7392 | 0.052* | |
H13C | 0.7958 | 0.0893 | 0.7011 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.02007 (14) | 0.02377 (15) | 0.02746 (16) | 0.00319 (8) | 0.00743 (10) | −0.00257 (9) |
N1 | 0.0173 (12) | 0.0213 (12) | 0.0218 (13) | 0.0015 (9) | 0.0038 (9) | 0.0011 (10) |
N2 | 0.0171 (12) | 0.0227 (12) | 0.0201 (12) | 0.0000 (9) | 0.0017 (9) | −0.0040 (10) |
N3 | 0.0251 (13) | 0.0213 (13) | 0.0214 (13) | 0.0007 (10) | 0.0055 (10) | −0.0009 (10) |
C1 | 0.0199 (14) | 0.0255 (15) | 0.0236 (15) | −0.0021 (12) | 0.0026 (11) | 0.0025 (12) |
C2 | 0.0298 (17) | 0.0243 (15) | 0.0261 (16) | 0.0005 (13) | 0.0006 (13) | −0.0054 (13) |
C3 | 0.0281 (17) | 0.0325 (18) | 0.0313 (17) | 0.0059 (13) | 0.0056 (13) | −0.0069 (14) |
C4 | 0.0165 (14) | 0.0332 (17) | 0.0375 (18) | 0.0030 (12) | 0.0069 (13) | −0.0017 (15) |
C5 | 0.0169 (13) | 0.0212 (14) | 0.0221 (15) | 0.0008 (11) | 0.0013 (11) | 0.0061 (12) |
C6 | 0.0170 (14) | 0.0236 (15) | 0.0310 (17) | 0.0014 (11) | 0.0010 (12) | −0.0006 (13) |
C7 | 0.0134 (13) | 0.0206 (14) | 0.0216 (14) | −0.0032 (10) | 0.0004 (10) | −0.0035 (11) |
C8 | 0.0237 (15) | 0.0227 (15) | 0.0237 (15) | −0.0005 (12) | 0.0064 (12) | −0.0050 (12) |
C9 | 0.0332 (18) | 0.0316 (17) | 0.0187 (14) | 0.0039 (13) | 0.0077 (12) | −0.0018 (13) |
C10 | 0.0292 (16) | 0.0281 (16) | 0.0221 (15) | 0.0026 (13) | 0.0016 (12) | 0.0026 (13) |
C11 | 0.0145 (13) | 0.0238 (14) | 0.0183 (14) | −0.0020 (11) | 0.0041 (10) | −0.0031 (11) |
Cl1 | 0.0197 (4) | 0.0316 (4) | 0.0305 (4) | −0.0007 (3) | 0.0042 (3) | 0.0034 (3) |
O1 | 0.127 (3) | 0.064 (2) | 0.0482 (19) | −0.056 (2) | 0.023 (2) | −0.0070 (17) |
O2 | 0.0408 (15) | 0.0491 (16) | 0.0449 (16) | −0.0090 (12) | 0.0067 (12) | −0.0133 (13) |
O3 | 0.067 (2) | 0.082 (3) | 0.055 (2) | 0.0250 (19) | −0.0210 (16) | 0.0001 (18) |
O4 | 0.0364 (18) | 0.107 (3) | 0.073 (3) | 0.0121 (17) | 0.0135 (17) | −0.029 (2) |
S1 | 0.0257 (4) | 0.0319 (4) | 0.0210 (4) | 0.0002 (3) | 0.0030 (3) | −0.0023 (3) |
O5 | 0.0330 (13) | 0.0431 (14) | 0.0235 (12) | 0.0003 (10) | 0.0071 (10) | −0.0045 (10) |
C12 | 0.046 (2) | 0.041 (2) | 0.0263 (17) | −0.0081 (17) | 0.0023 (15) | −0.0101 (15) |
C13 | 0.051 (2) | 0.036 (2) | 0.043 (2) | −0.0006 (17) | 0.0024 (18) | 0.0077 (17) |
Ag1—N2i | 2.181 (2) | C7—C8 | 1.392 (4) |
Ag1—N1 | 2.208 (2) | C7—C11 | 1.402 (4) |
N1—C1 | 1.345 (4) | C8—C9 | 1.385 (4) |
N1—C5 | 1.352 (4) | C8—H8 | 0.9500 |
N2—C11 | 1.332 (4) | C9—C10 | 1.384 (4) |
N2—C10 | 1.346 (4) | C9—H9 | 0.9500 |
N2—Ag1i | 2.181 (2) | C10—H10 | 0.9500 |
N3—C7 | 1.384 (4) | C11—H11 | 0.9500 |
N3—C6 | 1.460 (4) | Cl1—O4 | 1.412 (3) |
N3—H3 | 0.8800 | Cl1—O1 | 1.413 (3) |
C1—C2 | 1.379 (4) | Cl1—O3 | 1.416 (3) |
C1—H1 | 0.9500 | Cl1—O2 | 1.457 (3) |
C2—C3 | 1.385 (5) | S1—O5 | 1.515 (3) |
C2—H2 | 0.9500 | S1—C13 | 1.784 (4) |
C3—C4 | 1.377 (5) | S1—C12 | 1.791 (4) |
C3—H3A | 0.9500 | C12—H12A | 0.9800 |
C4—C5 | 1.389 (4) | C12—H12B | 0.9800 |
C4—H4 | 0.9500 | C12—H12C | 0.9800 |
C5—C6 | 1.506 (4) | C13—H13A | 0.9800 |
C6—H6A | 0.9900 | C13—H13B | 0.9800 |
C6—H6B | 0.9900 | C13—H13C | 0.9800 |
N2i—Ag1—N1 | 170.78 (9) | C9—C8—C7 | 118.9 (3) |
C1—N1—C5 | 118.0 (3) | C9—C8—H8 | 120.5 |
C1—N1—Ag1 | 118.47 (19) | C7—C8—H8 | 120.5 |
C5—N1—Ag1 | 121.8 (2) | C10—C9—C8 | 120.1 (3) |
C11—N2—C10 | 118.6 (3) | C10—C9—H9 | 120.0 |
C11—N2—Ag1i | 115.99 (18) | C8—C9—H9 | 120.0 |
C10—N2—Ag1i | 124.9 (2) | N2—C10—C9 | 121.5 (3) |
C7—N3—C6 | 121.0 (3) | N2—C10—H10 | 119.3 |
C7—N3—H3 | 119.5 | C9—C10—H10 | 119.3 |
C6—N3—H3 | 119.5 | N2—C11—C7 | 123.6 (3) |
N1—C1—C2 | 123.6 (3) | N2—C11—H11 | 118.2 |
N1—C1—H1 | 118.2 | C7—C11—H11 | 118.2 |
C2—C1—H1 | 118.2 | O4—Cl1—O1 | 111.7 (3) |
C1—C2—C3 | 118.3 (3) | O4—Cl1—O3 | 110.0 (3) |
C1—C2—H2 | 120.8 | O1—Cl1—O3 | 109.7 (3) |
C3—C2—H2 | 120.8 | O4—Cl1—O2 | 108.8 (2) |
C4—C3—C2 | 118.8 (3) | O1—Cl1—O2 | 108.34 (19) |
C4—C3—H3A | 120.6 | O3—Cl1—O2 | 108.1 (2) |
C2—C3—H3A | 120.6 | O5—S1—C13 | 105.98 (17) |
C3—C4—C5 | 120.1 (3) | O5—S1—C12 | 105.90 (16) |
C3—C4—H4 | 119.9 | C13—S1—C12 | 98.13 (19) |
C5—C4—H4 | 119.9 | S1—C12—H12A | 109.5 |
N1—C5—C4 | 121.2 (3) | S1—C12—H12B | 109.5 |
N1—C5—C6 | 119.0 (3) | H12A—C12—H12B | 109.5 |
C4—C5—C6 | 119.8 (3) | S1—C12—H12C | 109.5 |
N3—C6—C5 | 114.6 (2) | H12A—C12—H12C | 109.5 |
N3—C6—H6A | 108.6 | H12B—C12—H12C | 109.5 |
C5—C6—H6A | 108.6 | S1—C13—H13A | 109.5 |
N3—C6—H6B | 108.6 | S1—C13—H13B | 109.5 |
C5—C6—H6B | 108.6 | H13A—C13—H13B | 109.5 |
H6A—C6—H6B | 107.6 | S1—C13—H13C | 109.5 |
N3—C7—C8 | 124.0 (3) | H13A—C13—H13C | 109.5 |
N3—C7—C11 | 118.6 (3) | H13B—C13—H13C | 109.5 |
C8—C7—C11 | 117.3 (3) | ||
C5—N1—C1—C2 | 0.2 (4) | C4—C5—C6—N3 | −143.6 (3) |
Ag1—N1—C1—C2 | −165.1 (2) | C6—N3—C7—C8 | −9.0 (4) |
N1—C1—C2—C3 | 0.5 (5) | C6—N3—C7—C11 | 173.9 (3) |
C1—C2—C3—C4 | −0.9 (5) | N3—C7—C8—C9 | −177.2 (3) |
C2—C3—C4—C5 | 0.7 (5) | C11—C7—C8—C9 | 0.0 (4) |
C1—N1—C5—C4 | −0.4 (4) | C7—C8—C9—C10 | 0.8 (5) |
Ag1—N1—C5—C4 | 164.3 (2) | C11—N2—C10—C9 | −0.3 (4) |
C1—N1—C5—C6 | 177.6 (3) | Ag1i—N2—C10—C9 | 170.8 (2) |
Ag1—N1—C5—C6 | −17.7 (4) | C8—C9—C10—N2 | −0.7 (5) |
C3—C4—C5—N1 | 0.0 (5) | C10—N2—C11—C7 | 1.2 (4) |
C3—C4—C5—C6 | −178.0 (3) | Ag1i—N2—C11—C7 | −170.7 (2) |
C7—N3—C6—C5 | 75.8 (3) | N3—C7—C11—N2 | 176.4 (3) |
N1—C5—C6—N3 | 38.4 (4) | C8—C7—C11—N2 | −1.0 (4) |
Symmetry code: (i) −x+1, −y, −z+1. |
Cg is the centroid of the N2/C7–C11 pyridine ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1 | 0.88 | 2.32 | 3.081 (4) | 144 |
C1—H1···O2ii | 0.95 | 2.56 | 3.214 (4) | 126 |
C6—H6A···O5iii | 0.99 | 2.55 | 3.495 (4) | 160 |
C11—H11···O5i | 0.95 | 2.55 | 3.191 (4) | 125 |
C12—H12C···O4iv | 0.98 | 2.49 | 3.270 (5) | 137 |
C13—H13A···Cg | 0.98 | 3.36 | 4.116 (5) | 136 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) x, −y+1/2, z+1/2. |
Cg is the centroid of the N2/C7–C11 pyridine ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1 | 0.88 | 2.32 | 3.081 (4) | 144 |
C1—H1···O2i | 0.95 | 2.56 | 3.214 (4) | 126 |
C6—H6A···O5ii | 0.99 | 2.55 | 3.495 (4) | 160 |
C11—H11···O5iii | 0.95 | 2.55 | 3.191 (4) | 125 |
C12—H12C···O4iv | 0.98 | 2.49 | 3.270 (5) | 137 |
C13—H13A···Cg | 0.98 | 3.36 | 4.116 (5) | 136 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y, −z+1; (iv) x, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by NRF (2010–0022675) projects.
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Foxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111–121. CSD CrossRef Google Scholar
Lee, S., Park, S., Kang, Y., Moon, S.-H., Lee, S. S. & Park, K.-M. (2008). Bull. Korean Chem. Soc. 29, 1811–1814. CAS Google Scholar
Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837. Web of Science CrossRef CAS Google Scholar
Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. Web of Science CrossRef CAS PubMed Google Scholar
Moon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414–m415. CSD CrossRef CAS IUCr Journals Google Scholar
Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914–5923. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the development of silver(I) coordination polymers with fascinating structures, numerous symmetrical dipyridyl ligands with nitrogen donor atoms in the same positions on the two terminal pyridines are employed due to their easy synthesis (Lee et al., 2012; Leong & Vittal, 2011; Park et al., 2010). Despite the rapid growth in the AgI coordination chemistry, however, the investigation of AgI coordination polymers using unsymmetrical dipyridyl ligands with nitrogen donor atoms on different positions in the two terminal pyridines still remains lacking (Moon et al., 2013; Zhang et al., 2013). Herein, we report the crystal structure of the title compound prepared by the reaction of silver(I) perchlorate with the unsymmetrical dipyridyl ligand N-(pyridine-3-ylmethyl)pyridine-2-amine. This was synthesized by the reaction of 2-aminopyridine and 3-pyridinecarboxaldehyde according to literature procedures (Foxon et al., 2002; Lee et al., 2008).
The binuclear cation of the title compound, [Ag2(C11H11N3)2](ClO4)2(C2H6SO)2, is located on an inversion centre. Therefore, the asymmetric unit of the compound consists of an AgI cation, an N-(pyridine-3-ylmethyl)pyridine-2-amine ligand, a perchlorate anion and a molecule of dimethyl sulfoxide (DMSO) solvent. The two AgI centres, each in a geometry slightly distorted from linear [N–Ag–N 170.78 (9)°], are coordinated by two pyridine N atoms from the two symmetry-related N-(pyridine-3-ylmethyl)pyridine-2-amine ligands, leading to the formation of a centrosymmetric 16-membered cyclic dimer (Fig. 1). The two pyridine rings coordinated to each AgI centre are almost perpendicular to each other [dihedral angle = 87.73 (10)°]. Moreover, each AgI centre in the cyclic dimer interacts weakly with the N atom of a secondary amine group [Ag1···N3 2.699 (3) Å] and the O atom of a DMSO solvent molecule and a ClO4- anion [Ag1···O5 2.686 (3) Å and Ag1···O2 3.149 (3) Å] (Fig. 1).
In the crystal structure, the cyclic units interact with the ClO4- anions and the DMSO solvent molecules via intermolecular N–H···O and C–H···O hydrogen-bonds and C–H···π interactions (Table 1, Fig. 1). These interactions lead to the construction of a three-dimensional supramolecular network (Fig. 2).