metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m575-m576

Bis[μ-N-(pyridin-2-ylmeth­yl)pyridin-3-amine-κ2N:N′]disilver(I) bis­­(perchlorate) di­methyl sulfoxide disolvate

aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea, and bDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr

(Received 25 September 2013; accepted 26 September 2013; online 2 October 2013)

In the binuclear title compound, [Ag2(C11H11N3)2](ClO4)2·2C2H6SO, the complex cation is centrosymmetric, with the unique AgI cation coordinated by two pyridine N atoms from two symmetry-related N-(pyridine-2-ylmeth­yl)pyridine-3-amine ligands in a geometry slightly distorted from linear [N—Ag—N = 170.78 (9)°], resulting in the formation of a 16-membered cyclic dimer. The two pyridine rings coordinating to the AgI atom are almost perpendicular to each other [dihedral angle = 87.73 (10)°]. Inter­molecular Ag⋯O inter­actions [3.149 (3) and 2.686 (3) Å], N—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions between the cyclic dimers and the anions or the solvent mol­ecules lead to the formation of a three-dimensional supra­molecular network.

Related literature

For structures of AgI coordination polymers with symmetrical dipyridyl ligands, see: Lee et al. (2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.]); Leong & Vittal (2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]); Park et al. (2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]) and of AgI coordination polymers with unsymmetrical dipyridyl ligands, see: Moon & Park (2013[Moon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414-m415.]); Zhang et al. (2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]). For the synthesis of the ligand, see: Foxon et al. (2002[Foxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111-121.]); Lee et al. (2008[Lee, S., Park, S., Kang, Y., Moon, S.-H., Lee, S. S. & Park, K.-M. (2008). Bull. Korean Chem. Soc. 29, 1811-1814.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C11H11N3)2](ClO4)2·2C2H6OS

  • Mr = 941.35

  • Monoclinic, P 21 /c

  • a = 7.3620 (3) Å

  • b = 11.1227 (5) Å

  • c = 21.1248 (10) Å

  • β = 95.328 (1)°

  • V = 1722.34 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 173 K

  • 0.45 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 9537 measured reflections

  • 3367 independent reflections

  • 3096 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.02

  • 3367 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N2/C7–C11 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.88 2.32 3.081 (4) 144
C1—H1⋯O2i 0.95 2.56 3.214 (4) 126
C6—H6A⋯O5ii 0.99 2.55 3.495 (4) 160
C11—H11⋯O5iii 0.95 2.55 3.191 (4) 125
C12—H12C⋯O4iv 0.98 2.49 3.270 (5) 137
C13—H13ACg 0.98 3.36 4.116 (5) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the development of silver(I) coordination polymers with fascinating structures, numerous symmetrical dipyridyl ligands with nitrogen donor atoms in the same positions on the two terminal pyridines are employed due to their easy synthesis (Lee et al., 2012; Leong & Vittal, 2011; Park et al., 2010). Despite the rapid growth in the AgI coordination chemistry, however, the investigation of AgI coordination polymers using unsymmetrical dipyridyl ligands with nitrogen donor atoms on different positions in the two terminal pyridines still remains lacking (Moon et al., 2013; Zhang et al., 2013). Herein, we report the crystal structure of the title compound prepared by the reaction of silver(I) perchlorate with the unsymmetrical dipyridyl ligand N-(pyridine-3-ylmethyl)pyridine-2-amine. This was synthesized by the reaction of 2-aminopyridine and 3-pyridinecarboxaldehyde according to literature procedures (Foxon et al., 2002; Lee et al., 2008).

The binuclear cation of the title compound, [Ag2(C11H11N3)2](ClO4)2(C2H6SO)2, is located on an inversion centre. Therefore, the asymmetric unit of the compound consists of an AgI cation, an N-(pyridine-3-ylmethyl)pyridine-2-amine ligand, a perchlorate anion and a molecule of dimethyl sulfoxide (DMSO) solvent. The two AgI centres, each in a geometry slightly distorted from linear [N–Ag–N 170.78 (9)°], are coordinated by two pyridine N atoms from the two symmetry-related N-(pyridine-3-ylmethyl)pyridine-2-amine ligands, leading to the formation of a centrosymmetric 16-membered cyclic dimer (Fig. 1). The two pyridine rings coordinated to each AgI centre are almost perpendicular to each other [dihedral angle = 87.73 (10)°]. Moreover, each AgI centre in the cyclic dimer interacts weakly with the N atom of a secondary amine group [Ag1···N3 2.699 (3) Å] and the O atom of a DMSO solvent molecule and a ClO4- anion [Ag1···O5 2.686 (3) Å and Ag1···O2 3.149 (3) Å] (Fig. 1).

In the crystal structure, the cyclic units interact with the ClO4- anions and the DMSO solvent molecules via intermolecular N–H···O and C–H···O hydrogen-bonds and C–H···π interactions (Table 1, Fig. 1). These interactions lead to the construction of a three-dimensional supramolecular network (Fig. 2).

Related literature top

For structures of AgI coordination polymers with symmetrical dipyridyl ligands, see: Lee et al. (2012); Leong & Vittal (2011); Park et al. (2010) and of AgI coordination polymers with unsymmetrical dipyridyl ligands, see: Moon et al. (2013); Zhang et al. (2013). For the synthesis of the ligand, see: Foxon et al. (2002); Lee et al. (2008).

Experimental top

The ligand (N-(pyridin-3-ylmethyl)pyridine-2-amine) was prepared according to a procedure described by Foxon et al. (2002) and Lee et al. (2008). Crystals of the title compound suitable for X-ray analysis were obtained by vapor diffusion of diethyl ether into a DMSO solution of the white precipitate afforded by the reaction of the ligand with silver(I) perchlorate in the malar ratio 1:1 in methanol.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp2–H, 0.88 Å for amine N–H, 0.98 Å for methyl C–H and 0.99 Å for methylene C–H. For all H atoms Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Intermolecular Ag···O interactions, N–H···O hydrogen bonds and C–H···π interactions are shown as yellow, black and red dashed lines, respectively. [Symmetry code: (i) 1 - x, - y, 1 - z].
[Figure 2] Fig. 2. The three-dimensional supramolecular structure formed through intermolecular Ag···O (yellow dashed lines) and C–H···O interactions (black dashed lines).
Bis[µ-N-(pyridin-2-ylmethyl)pyridin-3-amine-κ2N:N']disilver(I) bis(perchlorate) dimethyl sulfoxide disolvate top
Crystal data top
[Ag2(C11H11N3)2](ClO4)2·2C2H6OSF(000) = 944
Mr = 941.35Dx = 1.815 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7360 reflections
a = 7.3620 (3) Åθ = 2.7–28.3°
b = 11.1227 (5) ŵ = 1.48 mm1
c = 21.1248 (10) ÅT = 173 K
β = 95.328 (1)°Block, colorless
V = 1722.34 (13) Å30.45 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3096 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
ϕ and ω scansh = 98
9537 measured reflectionsk = 1313
3367 independent reflectionsl = 2518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0399P)2 + 3.5438P]
where P = (Fo2 + 2Fc2)/3
3367 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ag2(C11H11N3)2](ClO4)2·2C2H6OSV = 1722.34 (13) Å3
Mr = 941.35Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3620 (3) ŵ = 1.48 mm1
b = 11.1227 (5) ÅT = 173 K
c = 21.1248 (10) Å0.45 × 0.20 × 0.20 mm
β = 95.328 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3096 reflections with I > 2σ(I)
9537 measured reflectionsRint = 0.049
3367 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.02Δρmax = 0.61 e Å3
3367 reflectionsΔρmin = 0.65 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.50109 (3)0.25805 (2)0.484406 (11)0.02344 (10)
N10.3332 (3)0.3841 (2)0.53484 (12)0.0200 (5)
N20.3266 (3)0.1183 (2)0.55086 (12)0.0200 (5)
N30.1611 (3)0.1670 (2)0.48358 (12)0.0224 (5)
H30.20560.16040.44650.027*
C10.4183 (4)0.4681 (3)0.57264 (14)0.0229 (6)
H10.54370.48320.56860.028*
C20.3334 (4)0.5334 (3)0.61688 (15)0.0269 (7)
H20.39840.59240.64240.032*
C30.1510 (5)0.5108 (3)0.62316 (16)0.0305 (7)
H3A0.08860.55330.65360.037*
C40.0616 (4)0.4257 (3)0.58450 (17)0.0288 (7)
H40.06390.40960.58790.035*
C50.1546 (4)0.3632 (3)0.54062 (14)0.0201 (6)
C60.0546 (4)0.2732 (3)0.49703 (16)0.0240 (6)
H6A0.05620.24690.51640.029*
H6B0.01450.31350.45630.029*
C70.1930 (4)0.0766 (3)0.52826 (14)0.0186 (6)
C80.1501 (4)0.0853 (3)0.59090 (15)0.0231 (6)
H80.09070.15480.60510.028*
C90.1955 (5)0.0089 (3)0.63220 (15)0.0275 (7)
H90.16570.00490.67500.033*
C100.2841 (4)0.1091 (3)0.61127 (15)0.0265 (7)
H100.31560.17270.64020.032*
C110.2807 (4)0.0285 (3)0.51076 (14)0.0187 (6)
H110.30900.03620.46800.022*
Cl10.22314 (10)0.27926 (7)0.31521 (4)0.02713 (18)
O10.1356 (6)0.1764 (3)0.33725 (17)0.0789 (13)
O20.2542 (4)0.3637 (3)0.36785 (14)0.0448 (7)
O30.1082 (5)0.3355 (4)0.26650 (16)0.0698 (10)
O40.3925 (5)0.2503 (3)0.2927 (2)0.0716 (12)
S10.60059 (11)0.23249 (7)0.65444 (4)0.02617 (18)
O50.7044 (3)0.2308 (2)0.59577 (12)0.0329 (5)
C120.7185 (5)0.3371 (3)0.70810 (17)0.0378 (8)
H12A0.69990.41890.69150.045*
H12B0.84910.31840.71230.045*
H12C0.67090.33120.74980.045*
C130.6627 (6)0.0977 (4)0.6968 (2)0.0435 (9)
H13A0.60770.02850.67360.052*
H13B0.61870.10130.73920.052*
H13C0.79580.08930.70110.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02007 (14)0.02377 (15)0.02746 (16)0.00319 (8)0.00743 (10)0.00257 (9)
N10.0173 (12)0.0213 (12)0.0218 (13)0.0015 (9)0.0038 (9)0.0011 (10)
N20.0171 (12)0.0227 (12)0.0201 (12)0.0000 (9)0.0017 (9)0.0040 (10)
N30.0251 (13)0.0213 (13)0.0214 (13)0.0007 (10)0.0055 (10)0.0009 (10)
C10.0199 (14)0.0255 (15)0.0236 (15)0.0021 (12)0.0026 (11)0.0025 (12)
C20.0298 (17)0.0243 (15)0.0261 (16)0.0005 (13)0.0006 (13)0.0054 (13)
C30.0281 (17)0.0325 (18)0.0313 (17)0.0059 (13)0.0056 (13)0.0069 (14)
C40.0165 (14)0.0332 (17)0.0375 (18)0.0030 (12)0.0069 (13)0.0017 (15)
C50.0169 (13)0.0212 (14)0.0221 (15)0.0008 (11)0.0013 (11)0.0061 (12)
C60.0170 (14)0.0236 (15)0.0310 (17)0.0014 (11)0.0010 (12)0.0006 (13)
C70.0134 (13)0.0206 (14)0.0216 (14)0.0032 (10)0.0004 (10)0.0035 (11)
C80.0237 (15)0.0227 (15)0.0237 (15)0.0005 (12)0.0064 (12)0.0050 (12)
C90.0332 (18)0.0316 (17)0.0187 (14)0.0039 (13)0.0077 (12)0.0018 (13)
C100.0292 (16)0.0281 (16)0.0221 (15)0.0026 (13)0.0016 (12)0.0026 (13)
C110.0145 (13)0.0238 (14)0.0183 (14)0.0020 (11)0.0041 (10)0.0031 (11)
Cl10.0197 (4)0.0316 (4)0.0305 (4)0.0007 (3)0.0042 (3)0.0034 (3)
O10.127 (3)0.064 (2)0.0482 (19)0.056 (2)0.023 (2)0.0070 (17)
O20.0408 (15)0.0491 (16)0.0449 (16)0.0090 (12)0.0067 (12)0.0133 (13)
O30.067 (2)0.082 (3)0.055 (2)0.0250 (19)0.0210 (16)0.0001 (18)
O40.0364 (18)0.107 (3)0.073 (3)0.0121 (17)0.0135 (17)0.029 (2)
S10.0257 (4)0.0319 (4)0.0210 (4)0.0002 (3)0.0030 (3)0.0023 (3)
O50.0330 (13)0.0431 (14)0.0235 (12)0.0003 (10)0.0071 (10)0.0045 (10)
C120.046 (2)0.041 (2)0.0263 (17)0.0081 (17)0.0023 (15)0.0101 (15)
C130.051 (2)0.036 (2)0.043 (2)0.0006 (17)0.0024 (18)0.0077 (17)
Geometric parameters (Å, º) top
Ag1—N2i2.181 (2)C7—C81.392 (4)
Ag1—N12.208 (2)C7—C111.402 (4)
N1—C11.345 (4)C8—C91.385 (4)
N1—C51.352 (4)C8—H80.9500
N2—C111.332 (4)C9—C101.384 (4)
N2—C101.346 (4)C9—H90.9500
N2—Ag1i2.181 (2)C10—H100.9500
N3—C71.384 (4)C11—H110.9500
N3—C61.460 (4)Cl1—O41.412 (3)
N3—H30.8800Cl1—O11.413 (3)
C1—C21.379 (4)Cl1—O31.416 (3)
C1—H10.9500Cl1—O21.457 (3)
C2—C31.385 (5)S1—O51.515 (3)
C2—H20.9500S1—C131.784 (4)
C3—C41.377 (5)S1—C121.791 (4)
C3—H3A0.9500C12—H12A0.9800
C4—C51.389 (4)C12—H12B0.9800
C4—H40.9500C12—H12C0.9800
C5—C61.506 (4)C13—H13A0.9800
C6—H6A0.9900C13—H13B0.9800
C6—H6B0.9900C13—H13C0.9800
N2i—Ag1—N1170.78 (9)C9—C8—C7118.9 (3)
C1—N1—C5118.0 (3)C9—C8—H8120.5
C1—N1—Ag1118.47 (19)C7—C8—H8120.5
C5—N1—Ag1121.8 (2)C10—C9—C8120.1 (3)
C11—N2—C10118.6 (3)C10—C9—H9120.0
C11—N2—Ag1i115.99 (18)C8—C9—H9120.0
C10—N2—Ag1i124.9 (2)N2—C10—C9121.5 (3)
C7—N3—C6121.0 (3)N2—C10—H10119.3
C7—N3—H3119.5C9—C10—H10119.3
C6—N3—H3119.5N2—C11—C7123.6 (3)
N1—C1—C2123.6 (3)N2—C11—H11118.2
N1—C1—H1118.2C7—C11—H11118.2
C2—C1—H1118.2O4—Cl1—O1111.7 (3)
C1—C2—C3118.3 (3)O4—Cl1—O3110.0 (3)
C1—C2—H2120.8O1—Cl1—O3109.7 (3)
C3—C2—H2120.8O4—Cl1—O2108.8 (2)
C4—C3—C2118.8 (3)O1—Cl1—O2108.34 (19)
C4—C3—H3A120.6O3—Cl1—O2108.1 (2)
C2—C3—H3A120.6O5—S1—C13105.98 (17)
C3—C4—C5120.1 (3)O5—S1—C12105.90 (16)
C3—C4—H4119.9C13—S1—C1298.13 (19)
C5—C4—H4119.9S1—C12—H12A109.5
N1—C5—C4121.2 (3)S1—C12—H12B109.5
N1—C5—C6119.0 (3)H12A—C12—H12B109.5
C4—C5—C6119.8 (3)S1—C12—H12C109.5
N3—C6—C5114.6 (2)H12A—C12—H12C109.5
N3—C6—H6A108.6H12B—C12—H12C109.5
C5—C6—H6A108.6S1—C13—H13A109.5
N3—C6—H6B108.6S1—C13—H13B109.5
C5—C6—H6B108.6H13A—C13—H13B109.5
H6A—C6—H6B107.6S1—C13—H13C109.5
N3—C7—C8124.0 (3)H13A—C13—H13C109.5
N3—C7—C11118.6 (3)H13B—C13—H13C109.5
C8—C7—C11117.3 (3)
C5—N1—C1—C20.2 (4)C4—C5—C6—N3143.6 (3)
Ag1—N1—C1—C2165.1 (2)C6—N3—C7—C89.0 (4)
N1—C1—C2—C30.5 (5)C6—N3—C7—C11173.9 (3)
C1—C2—C3—C40.9 (5)N3—C7—C8—C9177.2 (3)
C2—C3—C4—C50.7 (5)C11—C7—C8—C90.0 (4)
C1—N1—C5—C40.4 (4)C7—C8—C9—C100.8 (5)
Ag1—N1—C5—C4164.3 (2)C11—N2—C10—C90.3 (4)
C1—N1—C5—C6177.6 (3)Ag1i—N2—C10—C9170.8 (2)
Ag1—N1—C5—C617.7 (4)C8—C9—C10—N20.7 (5)
C3—C4—C5—N10.0 (5)C10—N2—C11—C71.2 (4)
C3—C4—C5—C6178.0 (3)Ag1i—N2—C11—C7170.7 (2)
C7—N3—C6—C575.8 (3)N3—C7—C11—N2176.4 (3)
N1—C5—C6—N338.4 (4)C8—C7—C11—N21.0 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2/C7–C11 pyridine ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.882.323.081 (4)144
C1—H1···O2ii0.952.563.214 (4)126
C6—H6A···O5iii0.992.553.495 (4)160
C11—H11···O5i0.952.553.191 (4)125
C12—H12C···O4iv0.982.493.270 (5)137
C13—H13A···Cg0.983.364.116 (5)136
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2/C7–C11 pyridine ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.882.323.081 (4)144
C1—H1···O2i0.952.563.214 (4)126
C6—H6A···O5ii0.992.553.495 (4)160
C11—H11···O5iii0.952.553.191 (4)125
C12—H12C···O4iv0.982.493.270 (5)137
C13—H13A···Cg0.983.364.116 (5)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by NRF (2010–0022675) projects.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFoxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111–121.  CSD CrossRef Google Scholar
First citationLee, S., Park, S., Kang, Y., Moon, S.-H., Lee, S. S. & Park, K.-M. (2008). Bull. Korean Chem. Soc. 29, 1811–1814.  CAS Google Scholar
First citationLee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837.  Web of Science CrossRef CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414–m415.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPark, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914–5923.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m575-m576
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds