organic compounds
1-Methyl-4-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]pyridinium 4-bromobenzenesulfonate monohydrate
aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th
In the title hydrated salt, C15H16NO2+·C6H4BrO3S−·H2O, the cation exists in an E conformation with respect to the ethenyl bond and is almost planar, with a dihedral angle of 2.62 (12)° between the planes of the pyridinium and benzene rings. The methoxy substituent deviates slightly from the plane of its attached benzene ring [Cmethyl—O—C—C torsion angle = −11.6 (6)°]. In the crystal, the cations, anion and water molecules are linked together into chains along [010] by O—H⋯O hydrogen bonds and weak C—H⋯O interactions. There is a short Br⋯O contact [3.029 (2) Å]. The also features C—H⋯π interactions involving the benzene ring of the anion.
CCDC reference: 293058
Related literature
For bond-length data, see: Allen et al. (1987). For applications of stilbene derivatives, see: Belluti et al. (2010); Chanawanno et al. (2010); Frombaum et al. (2012); Hussain et al. (2009); Jindawong et al. (2005); Li et al. (2013); Ruanwas et al. (2010). For related structures, see: Chanawanno et al. (2009); Fun et al. (2011); Jindawong et al. (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 293058
10.1107/S1600536813027244/sj5354sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027244/sj5354Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813027244/sj5354Isup3.cml
First of all, 1-methyl-4-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]pyridinium iodide (compound A) was prepared by mixing a solution (1:1:1 molar ratio) of 1,4-dimethylpyridinium iodide (2.98 g, 12.68 mmol), isovanillin (1.96 g, 12.86 mmol) and piperidine (1.09 g, 12.80 mmol). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The solid which formed was filtered, washed with diethylether and recrystallized from methanol, to give brown crystals of compound A (3.99 g, 85% yield Mp. 503-504 K). Thereafter, the title compound was synthesized by mixing a solution of compound A (0.21 g, 0.58 mmol) in hot methanol (45 ml) and a solution of silver (I) 4-bromobenzenesulfonate (Jindawong et al., 2005), (0.20 g, 0.58 mmol) in hot methanol (40 ml). The mixture yielded a yellow solid of silver iodide immediately. After stirring the mixture for 20 min, the precipitate of silver iodide was removed and the resulting yellow solution was evaporated to yield the title compound as a yellow solid (0.27 g, 94% yield). Yellow needle-shaped single crystals of the title compound suitable for x-ray
were recrystalized from ethanol/methanol (1:1 v/v) by slow evaporation of the solvent at room temperature over several days, Mp. 511–512 K.Hydroxy and water H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH, and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the
for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids. A hydrogen bond is shown as a dashed line. | |
Fig. 2. The crystal packing of the title compound viewed approximately along the c axis. Only H atoms involved in O—H···O hydrogen bonds and weak C—H···O interactions are shown for clarity. Hydrogen bonds are drawn as dashed lines. |
C15H16NO2+·C6H4BrO3S−·H2O | Z = 2 |
Mr = 496.37 | F(000) = 508 |
Triclinic, P1 | Dx = 1.538 Mg m−3 |
Hall symbol: -P 1 | Melting point = 511–512 K |
a = 9.7426 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8821 (7) Å | Cell parameters from 3717 reflections |
c = 11.8356 (8) Å | θ = 2.1–25.0° |
α = 80.107 (1)° | µ = 2.05 mm−1 |
β = 73.140 (1)° | T = 100 K |
γ = 83.297 (1)° | Needle, yellow |
V = 1071.60 (13) Å3 | 0.54 × 0.51 × 0.16 mm |
Bruker APEXII CCD area-detector diffractometer | 3717 independent reflections |
Radiation source: sealed tube | 3392 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −11→11 |
Tmin = 0.402, Tmax = 0.728 | k = −11→11 |
5431 measured reflections | l = −14→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0865P)2 + 0.2408P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3717 reflections | Δρmax = 0.59 e Å−3 |
286 parameters | Δρmin = −0.82 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.026 (3) |
C15H16NO2+·C6H4BrO3S−·H2O | γ = 83.297 (1)° |
Mr = 496.37 | V = 1071.60 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.7426 (7) Å | Mo Kα radiation |
b = 9.8821 (7) Å | µ = 2.05 mm−1 |
c = 11.8356 (8) Å | T = 100 K |
α = 80.107 (1)° | 0.54 × 0.51 × 0.16 mm |
β = 73.140 (1)° |
Bruker APEXII CCD area-detector diffractometer | 3717 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3392 reflections with I > 2σ(I) |
Tmin = 0.402, Tmax = 0.728 | Rint = 0.027 |
5431 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.59 e Å−3 |
3717 reflections | Δρmin = −0.82 e Å−3 |
286 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.33252 (3) | −0.08552 (3) | 0.17801 (3) | 0.05706 (18) | |
S1 | 0.31851 (7) | 0.54351 (6) | 0.25594 (6) | 0.0432 (2) | |
O1 | 0.3962 (3) | 0.6148 (2) | 0.14279 (19) | 0.0682 (7) | |
O2 | 0.3892 (3) | 0.5389 (2) | 0.3481 (2) | 0.0690 (6) | |
O3 | 0.1683 (2) | 0.5911 (2) | 0.2912 (3) | 0.0717 (7) | |
O4 | 0.0748 (2) | 0.0170 (3) | 0.57781 (19) | 0.0612 (6) | |
H4A | 0.021 (4) | 0.083 (4) | 0.573 (3) | 0.060 (10)* | |
O5 | 0.3044 (3) | −0.1435 (3) | 0.5684 (2) | 0.0673 (7) | |
N1 | −0.1966 (3) | 0.4820 (3) | 1.2500 (2) | 0.0552 (6) | |
C1 | 0.3205 (3) | 0.3703 (3) | 0.2328 (2) | 0.0370 (5) | |
C2 | 0.3903 (3) | 0.3303 (3) | 0.1220 (2) | 0.0397 (5) | |
H2A | 0.4362 | 0.3947 | 0.0595 | 0.048* | |
C3 | 0.3917 (3) | 0.1959 (3) | 0.1045 (2) | 0.0413 (6) | |
H3A | 0.4375 | 0.1692 | 0.0303 | 0.050* | |
C4 | 0.3239 (3) | 0.1009 (3) | 0.1991 (2) | 0.0414 (6) | |
C5 | 0.2534 (3) | 0.1391 (3) | 0.3101 (2) | 0.0473 (6) | |
H5A | 0.2081 | 0.0745 | 0.3728 | 0.057* | |
C6 | 0.2516 (3) | 0.2742 (3) | 0.3261 (2) | 0.0434 (6) | |
H6A | 0.2040 | 0.3013 | 0.3999 | 0.052* | |
C7 | 0.0825 (3) | 0.0955 (3) | 0.7566 (2) | 0.0459 (6) | |
H7A | −0.0007 | 0.1528 | 0.7583 | 0.055* | |
C8 | 0.1366 (3) | 0.0180 (3) | 0.6658 (2) | 0.0450 (6) | |
C9 | 0.2618 (3) | −0.0698 (3) | 0.6621 (3) | 0.0512 (7) | |
C10 | 0.3307 (3) | −0.0750 (4) | 0.7487 (3) | 0.0607 (8) | |
H10A | 0.4147 | −0.1313 | 0.7460 | 0.073* | |
C11 | 0.2752 (4) | 0.0035 (4) | 0.8403 (3) | 0.0630 (9) | |
H11A | 0.3226 | −0.0016 | 0.8988 | 0.076* | |
C12 | 0.1506 (3) | 0.0898 (3) | 0.8470 (2) | 0.0483 (7) | |
C13 | 0.0935 (3) | 0.1690 (3) | 0.9448 (3) | 0.0536 (7) | |
H13A | 0.1457 | 0.1596 | 1.0006 | 0.064* | |
C14 | −0.0245 (3) | 0.2534 (3) | 0.9641 (3) | 0.0518 (7) | |
H14A | −0.0767 | 0.2641 | 0.9082 | 0.062* | |
C15 | −0.0802 (3) | 0.3305 (3) | 1.0634 (2) | 0.0482 (6) | |
C16 | −0.0137 (3) | 0.3290 (4) | 1.1535 (3) | 0.0601 (8) | |
H16A | 0.0721 | 0.2758 | 1.1515 | 0.072* | |
C17 | −0.0727 (4) | 0.4041 (4) | 1.2442 (3) | 0.0621 (8) | |
H17A | −0.0265 | 0.4016 | 1.3032 | 0.074* | |
C18 | −0.2637 (4) | 0.4864 (4) | 1.1655 (3) | 0.0610 (8) | |
H18A | −0.3492 | 0.5408 | 1.1698 | 0.073* | |
C19 | −0.2093 (3) | 0.4127 (4) | 1.0733 (3) | 0.0580 (8) | |
H19A | −0.2585 | 0.4169 | 1.0160 | 0.070* | |
C20 | −0.2569 (5) | 0.5637 (4) | 1.3496 (3) | 0.0757 (10) | |
H20A | −0.3572 | 0.5877 | 1.3571 | 0.114* | |
H20B | −0.2069 | 0.6460 | 1.3336 | 0.114* | |
H20C | −0.2456 | 0.5101 | 1.4225 | 0.114* | |
C21 | 0.4426 (4) | −0.2138 (5) | 0.5445 (4) | 0.0830 (12) | |
H21A | 0.4610 | −0.2535 | 0.4725 | 0.125* | |
H21B | 0.4467 | −0.2854 | 0.6097 | 0.125* | |
H21C | 0.5137 | −0.1501 | 0.5350 | 0.125* | |
O1W | 0.0853 (3) | 0.7571 (3) | 0.4734 (2) | 0.0615 (6) | |
H1W1 | 0.143 (5) | 0.796 (5) | 0.490 (4) | 0.087 (16)* | |
H2W1 | 0.120 (5) | 0.706 (5) | 0.423 (4) | 0.082 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0620 (3) | 0.0341 (2) | 0.0688 (3) | −0.01219 (14) | −0.00293 (16) | −0.01084 (14) |
S1 | 0.0501 (4) | 0.0321 (4) | 0.0444 (4) | −0.0052 (3) | −0.0061 (3) | −0.0074 (3) |
O1 | 0.1028 (18) | 0.0350 (11) | 0.0525 (12) | −0.0186 (11) | 0.0039 (11) | −0.0027 (9) |
O2 | 0.0927 (18) | 0.0552 (13) | 0.0709 (14) | −0.0150 (12) | −0.0346 (13) | −0.0139 (11) |
O3 | 0.0546 (14) | 0.0496 (13) | 0.1069 (18) | 0.0051 (11) | −0.0082 (12) | −0.0308 (12) |
O4 | 0.0587 (13) | 0.0770 (16) | 0.0564 (13) | 0.0155 (12) | −0.0285 (10) | −0.0243 (11) |
O5 | 0.0547 (13) | 0.0828 (17) | 0.0703 (14) | 0.0182 (12) | −0.0225 (11) | −0.0339 (12) |
N1 | 0.0515 (14) | 0.0595 (16) | 0.0491 (13) | −0.0117 (12) | −0.0023 (11) | −0.0081 (11) |
C1 | 0.0358 (12) | 0.0314 (12) | 0.0415 (13) | −0.0042 (9) | −0.0072 (10) | −0.0035 (10) |
C2 | 0.0385 (13) | 0.0331 (13) | 0.0404 (13) | −0.0050 (10) | −0.0029 (10) | 0.0011 (10) |
C3 | 0.0414 (13) | 0.0413 (14) | 0.0374 (12) | −0.0029 (11) | −0.0031 (10) | −0.0088 (10) |
C4 | 0.0395 (13) | 0.0308 (12) | 0.0504 (14) | −0.0062 (10) | −0.0066 (11) | −0.0044 (10) |
C5 | 0.0489 (15) | 0.0361 (14) | 0.0483 (15) | −0.0130 (11) | −0.0004 (12) | 0.0010 (11) |
C6 | 0.0436 (14) | 0.0439 (14) | 0.0362 (12) | −0.0063 (11) | 0.0008 (10) | −0.0065 (11) |
C7 | 0.0360 (13) | 0.0552 (16) | 0.0451 (14) | −0.0043 (11) | −0.0100 (11) | −0.0046 (12) |
C8 | 0.0405 (14) | 0.0519 (16) | 0.0424 (14) | −0.0059 (11) | −0.0114 (11) | −0.0049 (11) |
C9 | 0.0434 (15) | 0.0558 (17) | 0.0542 (16) | −0.0043 (13) | −0.0131 (12) | −0.0074 (13) |
C10 | 0.0456 (16) | 0.073 (2) | 0.067 (2) | 0.0074 (15) | −0.0225 (15) | −0.0151 (16) |
C11 | 0.0545 (18) | 0.082 (2) | 0.0612 (19) | 0.0042 (16) | −0.0302 (15) | −0.0147 (17) |
C12 | 0.0418 (14) | 0.0584 (18) | 0.0457 (14) | −0.0108 (13) | −0.0127 (11) | −0.0045 (12) |
C13 | 0.0492 (16) | 0.069 (2) | 0.0475 (15) | −0.0099 (14) | −0.0185 (13) | −0.0073 (14) |
C14 | 0.0492 (16) | 0.0628 (19) | 0.0464 (15) | −0.0109 (14) | −0.0160 (12) | −0.0062 (13) |
C15 | 0.0410 (14) | 0.0563 (17) | 0.0451 (14) | −0.0122 (12) | −0.0089 (11) | −0.0003 (13) |
C16 | 0.0465 (16) | 0.081 (2) | 0.0544 (17) | 0.0015 (15) | −0.0150 (13) | −0.0177 (16) |
C17 | 0.0539 (18) | 0.081 (2) | 0.0534 (17) | −0.0055 (16) | −0.0158 (14) | −0.0145 (16) |
C18 | 0.0500 (17) | 0.067 (2) | 0.0607 (18) | −0.0004 (15) | −0.0111 (14) | −0.0061 (15) |
C19 | 0.0522 (17) | 0.071 (2) | 0.0527 (17) | −0.0032 (15) | −0.0192 (14) | −0.0075 (15) |
C20 | 0.080 (2) | 0.079 (3) | 0.064 (2) | −0.005 (2) | −0.0029 (18) | −0.0287 (19) |
C21 | 0.064 (2) | 0.090 (3) | 0.095 (3) | 0.023 (2) | −0.022 (2) | −0.036 (2) |
O1W | 0.0623 (14) | 0.0660 (15) | 0.0545 (13) | 0.0033 (12) | −0.0109 (11) | −0.0183 (11) |
Br1—C4 | 1.890 (3) | C9—C10 | 1.370 (4) |
S1—O1 | 1.440 (2) | C10—C11 | 1.386 (5) |
S1—O2 | 1.441 (2) | C10—H10A | 0.9300 |
S1—O3 | 1.445 (2) | C11—C12 | 1.390 (4) |
S1—C1 | 1.777 (2) | C11—H11A | 0.9300 |
O4—C8 | 1.348 (3) | C12—C13 | 1.448 (4) |
O4—H4A | 0.79 (4) | C13—C14 | 1.326 (5) |
O5—C9 | 1.369 (4) | C13—H13A | 0.9300 |
O5—C21 | 1.416 (4) | C14—C15 | 1.449 (4) |
N1—C18 | 1.338 (4) | C14—H14A | 0.9300 |
N1—C17 | 1.344 (4) | C15—C16 | 1.397 (4) |
N1—C20 | 1.483 (4) | C15—C19 | 1.402 (4) |
C1—C6 | 1.390 (4) | C16—C17 | 1.361 (5) |
C1—C2 | 1.391 (4) | C16—H16A | 0.9300 |
C2—C3 | 1.377 (4) | C17—H17A | 0.9300 |
C2—H2A | 0.9300 | C18—C19 | 1.359 (5) |
C3—C4 | 1.388 (4) | C18—H18A | 0.9300 |
C3—H3A | 0.9300 | C19—H19A | 0.9300 |
C4—C5 | 1.389 (4) | C20—H20A | 0.9600 |
C5—C6 | 1.377 (4) | C20—H20B | 0.9600 |
C5—H5A | 0.9300 | C20—H20C | 0.9600 |
C6—H6A | 0.9300 | C21—H21A | 0.9600 |
C7—C8 | 1.371 (4) | C21—H21B | 0.9600 |
C7—C12 | 1.404 (4) | C21—H21C | 0.9600 |
C7—H7A | 0.9300 | O1W—H1W1 | 0.80 (5) |
C8—C9 | 1.406 (4) | O1W—H2W1 | 0.81 (4) |
O1—S1—O2 | 112.81 (16) | C10—C11—C12 | 121.9 (3) |
O1—S1—O3 | 112.92 (16) | C10—C11—H11A | 119.1 |
O2—S1—O3 | 113.31 (16) | C12—C11—H11A | 119.1 |
O1—S1—C1 | 105.43 (12) | C11—C12—C7 | 117.4 (3) |
O2—S1—C1 | 106.15 (12) | C11—C12—C13 | 120.8 (3) |
O3—S1—C1 | 105.34 (12) | C7—C12—C13 | 121.8 (3) |
C8—O4—H4A | 111 (3) | C14—C13—C12 | 127.6 (3) |
C9—O5—C21 | 118.7 (3) | C14—C13—H13A | 116.2 |
C18—N1—C17 | 119.8 (3) | C12—C13—H13A | 116.2 |
C18—N1—C20 | 120.5 (3) | C13—C14—C15 | 126.5 (3) |
C17—N1—C20 | 119.6 (3) | C13—C14—H14A | 116.7 |
C6—C1—C2 | 119.9 (2) | C15—C14—H14A | 116.7 |
C6—C1—S1 | 119.64 (19) | C16—C15—C19 | 116.0 (3) |
C2—C1—S1 | 120.50 (19) | C16—C15—C14 | 124.2 (3) |
C3—C2—C1 | 120.3 (2) | C19—C15—C14 | 119.8 (3) |
C3—C2—H2A | 119.8 | C17—C16—C15 | 120.9 (3) |
C1—C2—H2A | 119.8 | C17—C16—H16A | 119.5 |
C2—C3—C4 | 119.1 (2) | C15—C16—H16A | 119.5 |
C2—C3—H3A | 120.4 | N1—C17—C16 | 121.1 (3) |
C4—C3—H3A | 120.4 | N1—C17—H17A | 119.4 |
C3—C4—C5 | 121.3 (2) | C16—C17—H17A | 119.4 |
C3—C4—Br1 | 119.4 (2) | N1—C18—C19 | 121.2 (3) |
C5—C4—Br1 | 119.21 (19) | N1—C18—H18A | 119.4 |
C6—C5—C4 | 119.0 (2) | C19—C18—H18A | 119.4 |
C6—C5—H5A | 120.5 | C18—C19—C15 | 121.0 (3) |
C4—C5—H5A | 120.5 | C18—C19—H19A | 119.5 |
C5—C6—C1 | 120.4 (2) | C15—C19—H19A | 119.5 |
C5—C6—H6A | 119.8 | N1—C20—H20A | 109.5 |
C1—C6—H6A | 119.8 | N1—C20—H20B | 109.5 |
C8—C7—C12 | 121.1 (3) | H20A—C20—H20B | 109.5 |
C8—C7—H7A | 119.5 | N1—C20—H20C | 109.5 |
C12—C7—H7A | 119.5 | H20A—C20—H20C | 109.5 |
O4—C8—C7 | 123.9 (2) | H20B—C20—H20C | 109.5 |
O4—C8—C9 | 115.8 (2) | O5—C21—H21A | 109.5 |
C7—C8—C9 | 120.3 (2) | O5—C21—H21B | 109.5 |
O5—C9—C10 | 125.6 (3) | H21A—C21—H21B | 109.5 |
O5—C9—C8 | 115.0 (2) | O5—C21—H21C | 109.5 |
C10—C9—C8 | 119.4 (3) | H21A—C21—H21C | 109.5 |
C9—C10—C11 | 120.0 (3) | H21B—C21—H21C | 109.5 |
C9—C10—H10A | 120.0 | H1W1—O1W—H2W1 | 115 (4) |
C11—C10—H10A | 120.0 | ||
O1—S1—C1—C6 | −179.1 (2) | C7—C8—C9—C10 | −1.3 (5) |
O2—S1—C1—C6 | 61.0 (2) | O5—C9—C10—C11 | −179.0 (3) |
O3—S1—C1—C6 | −59.5 (2) | C8—C9—C10—C11 | 1.4 (5) |
O1—S1—C1—C2 | 0.9 (3) | C9—C10—C11—C12 | −0.5 (6) |
O2—S1—C1—C2 | −119.0 (2) | C10—C11—C12—C7 | −0.4 (5) |
O3—S1—C1—C2 | 120.5 (2) | C10—C11—C12—C13 | 178.9 (3) |
C6—C1—C2—C3 | −0.1 (4) | C8—C7—C12—C11 | 0.5 (4) |
S1—C1—C2—C3 | 179.9 (2) | C8—C7—C12—C13 | −178.8 (3) |
C1—C2—C3—C4 | −0.6 (4) | C11—C12—C13—C14 | −178.9 (3) |
C2—C3—C4—C5 | 0.8 (4) | C7—C12—C13—C14 | 0.4 (5) |
C2—C3—C4—Br1 | −177.19 (19) | C12—C13—C14—C15 | 179.3 (3) |
C3—C4—C5—C6 | −0.2 (4) | C13—C14—C15—C16 | 1.6 (5) |
Br1—C4—C5—C6 | 177.8 (2) | C13—C14—C15—C19 | −178.1 (3) |
C4—C5—C6—C1 | −0.6 (4) | C19—C15—C16—C17 | −0.3 (5) |
C2—C1—C6—C5 | 0.8 (4) | C14—C15—C16—C17 | −179.9 (3) |
S1—C1—C6—C5 | −179.3 (2) | C18—N1—C17—C16 | 0.0 (5) |
C12—C7—C8—O4 | 178.7 (3) | C20—N1—C17—C16 | −179.4 (4) |
C12—C7—C8—C9 | 0.4 (5) | C15—C16—C17—N1 | 0.1 (6) |
C21—O5—C9—C10 | −11.6 (6) | C17—N1—C18—C19 | 0.3 (5) |
C21—O5—C9—C8 | 168.1 (3) | C20—N1—C18—C19 | 179.6 (3) |
O4—C8—C9—O5 | 0.6 (4) | N1—C18—C19—C15 | −0.5 (6) |
C7—C8—C9—O5 | 179.0 (3) | C16—C15—C19—C18 | 0.5 (5) |
O4—C8—C9—C10 | −179.8 (3) | C14—C15—C19—C18 | −179.8 (3) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O4i | 0.80 (5) | 2.52 (5) | 3.015 (4) | 122 (4) |
O1W—H1W1···O5i | 0.80 (5) | 2.22 (5) | 3.008 (4) | 166 (4) |
O1W—H2W1···O3 | 0.82 (5) | 2.00 (5) | 2.809 (4) | 169 (5) |
O4—H4A···O1Wii | 0.79 (4) | 1.88 (4) | 2.656 (4) | 168 (3) |
C2—H2A···O1iii | 0.93 | 2.49 | 3.216 (3) | 135 |
C5—H5A···O4 | 0.93 | 2.40 | 3.241 (3) | 150 |
C18—H18A···O1iv | 0.93 | 2.60 | 3.476 (5) | 158 |
C10—H10A···Cg1v | 0.93 | 2.78 | 3.672 (4) | 160 |
C16—H16A···Cg1vi | 0.93 | 2.72 | 3.543 (3) | 148 |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x−1, y, z+1; (v) −x+1, −y, −z+1; (vi) x, y, z+1. |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O4i | 0.80 (5) | 2.52 (5) | 3.015 (4) | 122 (4) |
O1W—H1W1···O5i | 0.80 (5) | 2.22 (5) | 3.008 (4) | 166 (4) |
O1W—H2W1···O3 | 0.82 (5) | 2.00 (5) | 2.809 (4) | 169 (5) |
O4—H4A···O1Wii | 0.79 (4) | 1.88 (4) | 2.656 (4) | 168 (3) |
C2—H2A···O1iii | 0.93 | 2.49 | 3.216 (3) | 135 |
C5—H5A···O4 | 0.93 | 2.40 | 3.241 (3) | 150 |
C18—H18A···O1iv | 0.93 | 2.60 | 3.476 (5) | 158 |
C10—H10A···Cg1v | 0.93 | 2.78 | 3.672 (4) | 160 |
C16—H16A···Cg1vi | 0.93 | 2.72 | 3.543 (3) | 148 |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x−1, y, z+1; (v) −x+1, −y, −z+1; (vi) x, y, z+1. |
Acknowledgements
The authors thank Prince of Songkla University for generous support. The authors also thank the Universiti Sains Malaysia for the APEX DE2012 (grant No. 1002/PFIZIK/910323).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Belluti, F., Fontana, G., Bo, L. D., Carenini, N., Giommarelli, C. & Zunino, F. (2010). Bioorg. Med. Chem. 18, 3543–3550. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o1549–o1550. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Frombaum, M., Le Clanche, S., Bonnefont-Rousselot, D. & Borderie, D. (2012). Biochimie, 94, 269–276. Web of Science CrossRef CAS PubMed Google Scholar
Fun, H. K., Chantrapromma, S. & Jansrisewangwong, P. (2011). Acta Cryst. E67, o105–o106. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hussain, M., Khan, K. M., Ali, S. I., Parveen, R. & Shim, W. S. (2009). Fibers Polym.. 10, 407–412. Web of Science CrossRef CAS Google Scholar
Jindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X.-L. & Karalai, C. (2005). Acta Cryst. E61, o1340–o1342. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Li, X., Lu, H., He, D., Luo, C. & Huang, J. (2013). J. Fluoresc. 23, 1039–1044. Web of Science CrossRef CAS PubMed Google Scholar
Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padakid, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The stilbene scaffold is a basic element for a number of biologically active natural and synthetic compounds. Stilbene-based compounds are extensively present in nature and have attracted chemists and biologists because of their wide range of biological activities, acting as antibacterial (Chanawanno et al., 2010), anticancer (Belluti et al., 2010) and antioxidant (Frombaum et al., 2012) agents. In addition, some stilbenes also exhibit non-linear optical (Ruanwas et al., 2010) and fluorescent properties (Li et al., 2013). They are also generally used in the manufacturing industry as whitening agents (Hussain et al., 2009). Due to these interesting properties, the title pyridinium-stilbene (I) was synthesized. We report herein the synthesis and crystal structure of (I).
The asymmetric unit of (I) consists of a C15H16NO2+ cation, a C6H4BrSO3- anion and a H2O molecule (Fig. 1). All bond lengths (Allen et al., 1987) and angles in both the cation and anion are normal and compare well with those found in closely related structures (Chanawanno et al., 2009; Fun et al., 2011; Jindawong et al., 2005). The cation exists in an E configuration with respect to the C13 ═C14 double bond [1.326 (5) Å] and the C12—C13—C14—C15 torsion angle is 179.3 (3)°. The cation is essentially planar with a dihedral angle between the pyridinium and benzene rings of the cation of 2.62 (12)°. The hydroxy group lies close to the plane of the C7···C12 benzene ring whereas the methoxy group is slightly twisted from this plane with a C21–O5–C9–C10 torsion angle of -11.6 (6)°. The benzene ring of the 4-bromobenzenesulfonate anion makes dihedral angles of 80.35 (15) and 78.37 (15)° with pyridinium and benzene rings of the cation, respectively.
In the crystal packing (Fig. 2), intermolecular O—H···O hydrogen bonds form between the water molecule (O1W) and the O3 (sulfonate), O4 (hydroxy) and O5 (methoxy) atoms, and between the hydroxy substituent (O4) and the water molecule (O1W) (Table 1). Atoms O1 and O4 are involved in weak intermolecular C—H···O interactions (Table 1). The cations, anions and water molecules are linked into chains along [0 1 0] through these O–H···O and weak C—H···O hydrogen bonds (Fig. 2 and Table 1). The crystal structure is further stabilized by C—H···π interactions involving the centroid of the benzene ring of the cation (Table 1). A short Br···O contact [3.029 (2) Å; symmetry code +x, -1+y, z] also forms between adjacent anions.