metal-organic compounds
Aqua(azido)[N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamido-κ3N,N′,N′′]copper(II)
aDepartment of Chemistry, Clark University, 950 Main St, Worcester, MA 01610, USA, and bDepartment of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
*Correspondence e-mail: mturnbull@clarku.edu
The title compound, [Cu(C12H8N3O2)(N3)(H2O)], was formed by the air oxidation of 2-(aminomethyl)pyridine in 95% ethanol in the presence of copper(II) nitrate and sodium azide with condensation of the resulting picolinamide molecules to generate the imide moiety. The CuII ion has a square-pyramidal coordination sphere, the basal plane being occupied by four N atoms [two pyridine (py) N atoms, the imide N atom and an azide N atom] in a nearly planar array [mean deviation = 0.048 (6) Å] with the CuII ion displaced slightly from the plane [0.167 (5) Å] toward the fifth ligand. The apical position is occupied by a coordinating water molecule [Cu—O = 2.319 (4) Å]. The is stabilized by hydrogen-bonding interactions between the water molecules and carbonyl O atoms. The inversion-related square-pyramidal complex molecules pack base-to-base with long Cu⋯Npy contact distances of 3.537 (9) Å, preventing coordination of a sixth ligand.
CCDC reference: 949825
Related literature
For magneto-structural relationships in CuII complexes, see: Landee & Turnbull (2013). For copper(II)-catalysed air-oxidation of 2-aminomethylpyridine, see: Sahu et al. (2010); Turnbull et al. (2013). For the corresponding dicyanamide complex, see: Vangdal et al. (2002) and for the tricyanomethanide complex, see: de Gomes et al. (2008). For the bromide complex, see: Zhou et al. (2006) and for the fluoride and formate analogues, see: Borras et al. (2007). For the cyanate and thiocyanate complexes, see: Dey et al. (2002) and Madariaga et al. (1991), respectively. For a related 2-aminomethylpyridine structure, see: Bruda et al. (2006). For the τ parameter as a geometry predictor in coordination complexes, see: Addison et al. (1984).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 949825
10.1107/S1600536813027499/sj5358sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027499/sj5358Isup2.hkl
We are interested in the design and synthesis of CuII complexes to study magnetostructural relationships in low-dimensional magnetic lattics (Landee and Turnbull, 2013). In this work, a wide variety of heterocyclic
such as substituted pyrazine and pyridine compounds have been employed both as ligands and as bases. One such compound has been 2-aminomethylpyridine (Bruda et al., 2006). We were attempting the preparation of a series of CuII complexes employing the 2-aminomethylpyridine molecule as a blocking agent to limit coordination by other species when we encountered the CuII catalyzed air-oxidation and condensation of 2-aminomethylpyridine and resulting in situ formation of a CuII nitrate complex of N-(pridin-2-ylcarboyl)pyridine-2-carbamide (bis-picolinimide; bpa) (Turnbull et al., 2013). A similar reaction, in the presence of azide ion, has shown the same oxidation and condensation resulting in the preparation of [(N-(pyridin-2-ylcarboyl)pyridine2-carboxamido)(azido)(aqua)copper(II)] (1).Crystals of (1) (Figure 1) were produced via slow crystallization in air of an ethanolic solution of Cu(NO3)2·3H2O, 2-aminomethylpyridine and sodium azide. The CuII ion is coordinated by one bpa anion, one azide anion and a water molecule to generate a nearly square pyramidal, five-coordinate structure. The basal plane is composed of three nitrogen atoms from the bpa ligand and the coordinated azide ion. The four N-atoms are planar within 0.048 (6) Å and the CuII ion is displaced 0.167 (5) Å out of this plane. The O-atom of the water molecule is located in the apical position [Cu—O = 2.319 (4)Å]. The Addison parameter is 0.053, indicating that the geometry is very close to square pyramidal (Addison et al., 1984).
The pyridine rings in the bpa ligand are virtually planar (mean deviation of constituent atoms = 0.0021 (8) N1-ring; 0.003 (2) N15-ring) and the rings themselves are nearly co-planar (2.5 (1)°). The lattice structure of (1) is supported by hydrogen bonds between the coordinated water molecule (donor) and the carbonyl oxygen atoms (acceptor) of adjacent bpa ligands (see Figure 2, Table 1). The five-coordinate nature of the CuII ion is stabilized by long intermolecular Cu···N contacts between inversion related molecules [dCu···N15A = 3.537 (9) Å (-x, 2-y, -z)] effectively blocking the basal face of the square pyramidal structure and preventing coordination of a sixth ligand (see Figure 2).
Sahu and co-workers (Sahu et al., 2010) have previously observed the copper catalyzed air-oxidation and condensation of 2-aminomethylpyridine to bpa as well as the corresponding reaction for 2-aminomethylquinoline. Similar structures have been reported with other inorganic anions replacing the azide ion including halides [Br, (Zhou et al., 2006); F, (Borras et al., 2007)], pseudo halides [OCN, (Dey et al., 2002); SCN, (Madariaga, et al., 1991)] and cyanamide derivatives (Vangdal, et al., 2002; de Gomes et al. 2008)].
Cu(NO3)2.3H2O, ethanol and NaN3 were obtained from VWR Scientific while 2-aminomethylpyridine was purchased from Aldrich Chemical. All were used as received.
Cu(NO3)2.3H2O (0.241 g, 1.00 mmol), NaN3 (0.071g, 1.1 mmol) and 2-aminomethylpyridine (0.237 g,2.20 mmol) were dissolved in 20 ml of 95% ethanol in a 50 mL beaker and the beaker covered with parafilm with a couple of small holes in the film. Over the course of 2 weeks, blue needle-shaped crystals of (1) formed, which were isolated by filtration to give (1) 0.082 g (23 %).
All H-atoms bound to carbon were placed in calculated positions (C—H = 0.95 Å) and refined using a riding model with Uiso=1.2Ueq (C). Hydrogen atoms bonded to oxygen atoms were located in the difference map and their positions allowed to refine using anti-bumping restraints (0.85 Å for O—H distances) and fixed isotropic U values [Uiso=1.2Ueq (O)].
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).Fig. 1. - Thermal ellipsoid plot (50%) of the molecular unit of (1). Only those H-atoms whose positions were refined are labeled. | |
Fig. 2. - Packing diagram of (1) showing hydrogen bonds and short Cu···N intermolecular contacts (dashed lines). |
[Cu(C12H8N3O2)(N3)(H2O)] | Z = 2 |
Mr = 349.80 | F(000) = 354 |
Triclinic, P1 | Dx = 1.808 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.402 (4) Å | Cell parameters from 2526 reflections |
b = 8.900 (5) Å | θ = 2.9–26.0° |
c = 10.606 (6) Å | µ = 1.72 mm−1 |
α = 78.186 (9)° | T = 168 K |
β = 84.118 (8)° | Needle, blue |
γ = 70.040 (7)° | 0.28 × 0.06 × 0.03 mm |
V = 642.4 (6) Å3 |
Bruker SMART CCD area-detector diffractometer | 2258 independent reflections |
Radiation source: fine-focus sealed tube | 1837 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
ϕ & ω scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.854, Tmax = 1.000 | k = −9→10 |
7577 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0191P)2 + 2.3778P] where P = (Fo2 + 2Fc2)/3 |
2258 reflections | (Δ/σ)max = 0.001 |
205 parameters | Δρmax = 0.50 e Å−3 |
2 restraints | Δρmin = −0.69 e Å−3 |
[Cu(C12H8N3O2)(N3)(H2O)] | γ = 70.040 (7)° |
Mr = 349.80 | V = 642.4 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.402 (4) Å | Mo Kα radiation |
b = 8.900 (5) Å | µ = 1.72 mm−1 |
c = 10.606 (6) Å | T = 168 K |
α = 78.186 (9)° | 0.28 × 0.06 × 0.03 mm |
β = 84.118 (8)° |
Bruker SMART CCD area-detector diffractometer | 2258 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1837 reflections with I > 2σ(I) |
Tmin = 0.854, Tmax = 1.000 | Rint = 0.063 |
7577 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 2 restraints |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.17 | Δρmax = 0.50 e Å−3 |
2258 reflections | Δρmin = −0.69 e Å−3 |
205 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.09830 (10) | 0.76976 (9) | 0.14071 (7) | 0.0155 (2) | |
N1 | −0.0741 (6) | 0.7152 (5) | 0.2890 (4) | 0.0185 (11) | |
C2 | −0.0718 (8) | 0.7285 (7) | 0.4124 (5) | 0.0220 (13) | |
H2 | 0.0206 | 0.7691 | 0.4361 | 0.026* | |
C3 | −0.1984 (8) | 0.6857 (7) | 0.5071 (6) | 0.0247 (14) | |
H3 | −0.1926 | 0.6958 | 0.5939 | 0.030* | |
C4 | −0.3340 (8) | 0.6274 (7) | 0.4709 (6) | 0.0263 (14) | |
H4 | −0.4235 | 0.5976 | 0.5331 | 0.032* | |
C5 | −0.3374 (8) | 0.6133 (7) | 0.3427 (5) | 0.0244 (14) | |
H5 | −0.4291 | 0.5738 | 0.3167 | 0.029* | |
C6 | −0.2058 (7) | 0.6573 (6) | 0.2541 (5) | 0.0169 (12) | |
C7 | −0.2052 (8) | 0.6497 (6) | 0.1132 (5) | 0.0180 (12) | |
O7 | −0.3162 (5) | 0.5945 (5) | 0.0733 (4) | 0.0232 (9) | |
N8 | −0.0714 (6) | 0.7116 (5) | 0.0432 (4) | 0.0164 (10) | |
C9 | −0.0375 (7) | 0.7206 (6) | −0.0861 (5) | 0.0151 (12) | |
O9 | −0.1195 (5) | 0.6830 (5) | −0.1644 (4) | 0.0227 (9) | |
C10 | 0.1237 (7) | 0.7882 (6) | −0.1305 (5) | 0.0163 (12) | |
C11 | 0.1863 (8) | 0.8111 (6) | −0.2593 (5) | 0.0195 (13) | |
H11 | 0.1276 | 0.7848 | −0.3234 | 0.023* | |
C12 | 0.3370 (8) | 0.8732 (7) | −0.2914 (5) | 0.0237 (13) | |
H12 | 0.3830 | 0.8901 | −0.3783 | 0.028* | |
C13 | 0.4194 (8) | 0.9104 (7) | −0.1954 (5) | 0.0228 (13) | |
H13 | 0.5227 | 0.9528 | −0.2159 | 0.027* | |
C14 | 0.3502 (8) | 0.8853 (7) | −0.0697 (6) | 0.0229 (13) | |
H14 | 0.4076 | 0.9103 | −0.0041 | 0.028* | |
N15 | 0.2036 (6) | 0.8264 (5) | −0.0380 (4) | 0.0165 (10) | |
N16 | 0.2400 (7) | 0.8814 (6) | 0.2117 (5) | 0.0241 (12) | |
N17 | 0.2333 (6) | 0.9146 (6) | 0.3164 (5) | 0.0206 (11) | |
N18 | 0.2343 (8) | 0.9525 (7) | 0.4143 (5) | 0.0365 (14) | |
O1 | 0.3387 (5) | 0.5191 (5) | 0.1809 (4) | 0.0217 (9) | |
H1A | 0.305 (8) | 0.455 (6) | 0.147 (5) | 0.026* | |
H1B | 0.440 (5) | 0.520 (7) | 0.138 (5) | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0162 (4) | 0.0193 (4) | 0.0141 (4) | −0.0097 (3) | 0.0013 (3) | −0.0040 (3) |
N1 | 0.018 (3) | 0.023 (3) | 0.016 (3) | −0.008 (2) | −0.001 (2) | −0.004 (2) |
C2 | 0.023 (3) | 0.029 (3) | 0.020 (3) | −0.015 (3) | 0.004 (3) | −0.010 (3) |
C3 | 0.033 (3) | 0.029 (4) | 0.015 (3) | −0.013 (3) | 0.007 (3) | −0.007 (3) |
C4 | 0.027 (3) | 0.029 (4) | 0.023 (3) | −0.014 (3) | 0.008 (3) | −0.004 (3) |
C5 | 0.022 (3) | 0.031 (4) | 0.027 (3) | −0.016 (3) | 0.005 (3) | −0.013 (3) |
C6 | 0.020 (3) | 0.010 (3) | 0.018 (3) | −0.003 (2) | 0.002 (2) | −0.002 (2) |
C7 | 0.020 (3) | 0.013 (3) | 0.021 (3) | −0.005 (2) | 0.000 (2) | −0.006 (2) |
O7 | 0.023 (2) | 0.028 (2) | 0.026 (2) | −0.0158 (19) | 0.0003 (18) | −0.0074 (18) |
N8 | 0.019 (2) | 0.019 (3) | 0.016 (3) | −0.012 (2) | 0.000 (2) | −0.004 (2) |
C9 | 0.016 (3) | 0.014 (3) | 0.015 (3) | −0.005 (2) | −0.006 (2) | 0.001 (2) |
O9 | 0.021 (2) | 0.028 (2) | 0.021 (2) | −0.0119 (18) | −0.0018 (18) | −0.0023 (18) |
C10 | 0.016 (3) | 0.013 (3) | 0.019 (3) | −0.005 (2) | 0.000 (2) | −0.001 (2) |
C11 | 0.021 (3) | 0.022 (3) | 0.015 (3) | −0.007 (3) | −0.004 (2) | 0.000 (2) |
C12 | 0.024 (3) | 0.029 (3) | 0.016 (3) | −0.008 (3) | 0.005 (2) | −0.002 (3) |
C13 | 0.016 (3) | 0.028 (3) | 0.025 (3) | −0.012 (3) | 0.006 (2) | 0.000 (3) |
C14 | 0.020 (3) | 0.020 (3) | 0.032 (4) | −0.011 (3) | 0.001 (3) | −0.005 (3) |
N15 | 0.012 (2) | 0.020 (3) | 0.019 (3) | −0.007 (2) | −0.0003 (19) | −0.003 (2) |
N16 | 0.026 (3) | 0.034 (3) | 0.022 (3) | −0.022 (2) | 0.001 (2) | −0.009 (2) |
N17 | 0.022 (3) | 0.024 (3) | 0.020 (3) | −0.014 (2) | −0.005 (2) | −0.001 (2) |
N18 | 0.044 (3) | 0.052 (4) | 0.024 (3) | −0.026 (3) | −0.004 (3) | −0.011 (3) |
O1 | 0.016 (2) | 0.025 (2) | 0.025 (2) | −0.0093 (18) | 0.0014 (17) | −0.0069 (18) |
Cu—N16 | 1.958 (4) | N8—C9 | 1.359 (7) |
Cu—N8 | 1.961 (4) | C9—O9 | 1.235 (6) |
Cu—N15 | 2.007 (4) | C9—C10 | 1.505 (7) |
Cu—N1 | 2.009 (4) | C10—N15 | 1.350 (7) |
Cu—O1 | 2.319 (4) | C10—C11 | 1.393 (7) |
N1—C2 | 1.341 (6) | C11—C12 | 1.390 (7) |
N1—C6 | 1.359 (6) | C11—H11 | 0.9500 |
C2—C3 | 1.388 (7) | C12—C13 | 1.386 (8) |
C2—H2 | 0.9500 | C12—H12 | 0.9500 |
C3—C4 | 1.393 (8) | C13—C14 | 1.380 (8) |
C3—H3 | 0.9500 | C13—H13 | 0.9500 |
C4—C5 | 1.394 (8) | C14—N15 | 1.344 (6) |
C4—H4 | 0.9500 | C14—H14 | 0.9500 |
C5—C6 | 1.382 (7) | N16—N17 | 1.198 (6) |
C5—H5 | 0.9500 | N17—N18 | 1.157 (6) |
C6—C7 | 1.509 (7) | O1—H1A | 0.85 (2) |
C7—O7 | 1.236 (6) | O1—H1B | 0.84 (2) |
C7—N8 | 1.375 (7) | ||
N16—Cu—N8 | 165.67 (19) | N8—C7—C6 | 111.0 (4) |
N16—Cu—N15 | 91.65 (19) | C9—N8—C7 | 124.6 (4) |
N8—Cu—N15 | 80.91 (18) | C9—N8—Cu | 118.2 (3) |
N16—Cu—N1 | 103.67 (19) | C7—N8—Cu | 116.9 (3) |
N8—Cu—N1 | 82.26 (18) | O9—C9—N8 | 129.1 (5) |
N15—Cu—N1 | 162.45 (16) | O9—C9—C10 | 120.3 (5) |
N16—Cu—O1 | 93.76 (18) | N8—C9—C10 | 110.7 (4) |
N8—Cu—O1 | 98.80 (16) | N15—C10—C11 | 121.8 (5) |
N15—Cu—O1 | 92.89 (16) | N15—C10—C9 | 115.9 (4) |
N1—Cu—O1 | 94.57 (16) | C11—C10—C9 | 122.3 (5) |
C2—N1—C6 | 119.0 (5) | C12—C11—C10 | 118.3 (5) |
C2—N1—Cu | 128.2 (4) | C12—C11—H11 | 120.8 |
C6—N1—Cu | 112.8 (3) | C10—C11—H11 | 120.8 |
N1—C2—C3 | 122.9 (5) | C13—C12—C11 | 119.4 (5) |
N1—C2—H2 | 118.5 | C13—C12—H12 | 120.3 |
C3—C2—H2 | 118.5 | C11—C12—H12 | 120.3 |
C2—C3—C4 | 118.0 (5) | C14—C13—C12 | 119.4 (5) |
C2—C3—H3 | 121.0 | C14—C13—H13 | 120.3 |
C4—C3—H3 | 121.0 | C12—C13—H13 | 120.3 |
C3—C4—C5 | 119.4 (5) | N15—C14—C13 | 121.6 (5) |
C3—C4—H4 | 120.3 | N15—C14—H14 | 119.2 |
C5—C4—H4 | 120.3 | C13—C14—H14 | 119.2 |
C6—C5—C4 | 119.3 (5) | C14—N15—C10 | 119.5 (5) |
C6—C5—H5 | 120.4 | C14—N15—Cu | 126.3 (4) |
C4—C5—H5 | 120.4 | C10—N15—Cu | 114.0 (3) |
N1—C6—C5 | 121.4 (5) | N17—N16—Cu | 131.4 (4) |
N1—C6—C7 | 116.6 (4) | N18—N17—N16 | 175.6 (5) |
C5—C6—C7 | 122.0 (5) | Cu—O1—H1A | 106 (4) |
O7—C7—N8 | 127.9 (5) | Cu—O1—H1B | 112 (4) |
O7—C7—C6 | 121.1 (5) | H1A—O1—H1B | 101 (5) |
N16—Cu—N1—C2 | −9.4 (5) | O1—Cu—N8—C7 | 87.4 (4) |
N8—Cu—N1—C2 | −176.2 (5) | C7—N8—C9—O9 | 2.8 (9) |
N15—Cu—N1—C2 | −159.6 (5) | Cu—N8—C9—O9 | 176.3 (4) |
O1—Cu—N1—C2 | 85.6 (5) | C7—N8—C9—C10 | −177.7 (5) |
N16—Cu—N1—C6 | 171.0 (4) | Cu—N8—C9—C10 | −4.1 (6) |
N8—Cu—N1—C6 | 4.3 (4) | O9—C9—C10—N15 | 179.7 (5) |
N15—Cu—N1—C6 | 20.9 (8) | N8—C9—C10—N15 | 0.1 (6) |
O1—Cu—N1—C6 | −94.0 (4) | O9—C9—C10—C11 | 0.0 (8) |
C6—N1—C2—C3 | 0.0 (8) | N8—C9—C10—C11 | −179.6 (5) |
Cu—N1—C2—C3 | −179.5 (4) | N15—C10—C11—C12 | 0.8 (8) |
N1—C2—C3—C4 | −0.4 (9) | C9—C10—C11—C12 | −179.6 (5) |
C2—C3—C4—C5 | 0.4 (9) | C10—C11—C12—C13 | 0.0 (8) |
C3—C4—C5—C6 | 0.0 (9) | C11—C12—C13—C14 | −0.1 (8) |
C2—N1—C6—C5 | 0.5 (8) | C12—C13—C14—N15 | −0.4 (8) |
Cu—N1—C6—C5 | −179.9 (4) | C13—C14—N15—C10 | 1.1 (8) |
C2—N1—C6—C7 | 178.3 (5) | C13—C14—N15—Cu | 175.7 (4) |
Cu—N1—C6—C7 | −2.1 (6) | C11—C10—N15—C14 | −1.3 (8) |
C4—C5—C6—N1 | −0.5 (8) | C9—C10—N15—C14 | 179.1 (5) |
C4—C5—C6—C7 | −178.2 (5) | C11—C10—N15—Cu | −176.6 (4) |
N1—C6—C7—O7 | 177.9 (5) | C9—C10—N15—Cu | 3.8 (6) |
C5—C6—C7—O7 | −4.3 (8) | N16—Cu—N15—C14 | 12.8 (5) |
N1—C6—C7—N8 | −2.6 (7) | N8—Cu—N15—C14 | −179.5 (5) |
C5—C6—C7—N8 | 175.2 (5) | N1—Cu—N15—C14 | 163.8 (5) |
O7—C7—N8—C9 | −0.7 (9) | O1—Cu—N15—C14 | −81.1 (4) |
C6—C7—N8—C9 | 179.9 (5) | N16—Cu—N15—C10 | −172.3 (4) |
O7—C7—N8—Cu | −174.3 (4) | N8—Cu—N15—C10 | −4.6 (4) |
C6—C7—N8—Cu | 6.3 (6) | N1—Cu—N15—C10 | −21.3 (8) |
N16—Cu—N8—C9 | 64.4 (10) | O1—Cu—N15—C10 | 93.8 (4) |
N15—Cu—N8—C9 | 4.9 (4) | N8—Cu—N16—N17 | 112.7 (8) |
N1—Cu—N8—C9 | 179.9 (4) | N15—Cu—N16—N17 | 171.0 (5) |
O1—Cu—N8—C9 | −86.6 (4) | N1—Cu—N16—N17 | −0.4 (6) |
N16—Cu—N8—C7 | −121.6 (8) | O1—Cu—N16—N17 | −96.0 (5) |
N15—Cu—N8—C7 | 179.0 (4) | Cu—N16—N17—N18 | −171 (7) |
N1—Cu—N8—C7 | −6.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O9i | 0.85 (2) | 2.10 (4) | 2.843 (5) | 145 (5) |
O1—H1B···O7ii | 0.84 (2) | 2.13 (3) | 2.922 (5) | 157 (5) |
O1—H1A···O7i | 0.85 (2) | 2.45 (4) | 3.105 (5) | 134 (5) |
Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O9i | 0.85 (2) | 2.10 (4) | 2.843 (5) | 145 (5) |
O1—H1B···O7ii | 0.84 (2) | 2.13 (3) | 2.922 (5) | 157 (5) |
O1—H1A···O7i | 0.85 (2) | 2.45 (4) | 3.105 (5) | 134 (5) |
Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y, z. |
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Borras, J., Alzuet, G., Gonzalez-Alvarez, M., Garcia-Gimenez, J. L., Macias, B. & Liu-Gonzalez, M. (2007). Eur. J. Inorg. Chem. pp. 822–834. Google Scholar
Bruda, S., Turnbull, M. M., Landee, C. P. & Xu, Q. (2006). Inorg. Chim. Acta, 359, 298–308. Web of Science CSD CrossRef CAS Google Scholar
Dey, S. K., Choudhury, C. R., Dey, S. P., Dey, D. K., Mondal, N., Mahalli, S. O. G., Malik, K. M. A. & Mitra, S. (2002). J. Chem. Res. pp. 496–499. CrossRef Google Scholar
Gomes, D. C. de, Toma, L. M., Stumpf, H. O., Adams, H., Thomas, J. A., Lloret, F. L. & Julve, M. (2008). Polyhedron, 27, 559–573. CAS Google Scholar
Landee, C. P. & Turnbull, M. M. (2013). Eur. J. Inorg. Chem. pp. 2266–2285. Web of Science CrossRef Google Scholar
Madariaga, G., Zuñiga, F.-J., Rojo, T. & Folgado, J.-V. (1991). Acta Cryst. C47, 1632–1634. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sahu, R., Padhi, S. K., Jena, H. S. & Manivannan, V. (2010). Inorg. Chim. Acta, 363, 1448–1454. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemans Analytical X-ray Instruments, Inc. Madison, Wisconsin, USA. Google Scholar
Turnbull, M. M., Bruda, S. & Wikaira, J. L. (2013). Eur. Chem. Bull. 2, 2038–2240. Google Scholar
Vangdal, B., Carranza, J., Lloret, F., Julve, M. & Sletten, J. (2002). J. Chem. Soc. Dalton Trans. pp. 566–574. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, X.-P., Li, D., Zheng, S.-L., Zhang, X. & Wu, T. (2006). Inorg. Chem. 45, 7119–7125. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.