organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(2-Chloro­phen­yl)sulfon­yl]-2-meth­­oxy­benzamide

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cUniversity College of Science, Tumkur University, Tumkur 572 103, Karnataka, India, dDepartment of Physics, Karnatak University, Dharwad, Karnataka 580 003, India, and eDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: pasuchetan@yahoo.co.in

(Received 16 October 2013; accepted 22 October 2013; online 31 October 2013)

The title compound, C14H12ClNO4S, crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the benzene rings are 89.68 (1) (mol­ecule 1) and 82.9 (1)° (mol­ecule 2). In each mol­ecule, intra­molecular N—H⋯O hydrogen bonds between the amide H atom and the meth­oxy O atom generate S(6) loops. In the crystal, mol­ecule 2 is linked into inversion dimers through pairs of C—H⋯O inter­actions, forming an R22(8) ring motif. Mol­ecules 1 and 2 are further linked along the b-axis direction through C—H⋯π inter­actions. The crystal structure is further stabilized by several ππ stacking inter­actions [centroid–centroid separations = 3.7793 (1), 3.6697 (1) and 3.6958 (1) Å], thus generating a three-dimensional architecture.

Related literature

For similar structures, see: Gowda et al. (2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o794.]); Suchetan et al. (2010a[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1040.],b[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1281.], 2013[Suchetan, P. A., Palakshamurthy, B. S., Mamatha, G. R., Kumar, V., Mohan, N. R. & Sreenivasa, S. (2013). Acta Cryst. E69, o1215.]). For hydrogen-bond motifs see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO4S

  • Mr = 325.76

  • Triclinic, [P \overline 1]

  • a = 8.0508 (3) Å

  • b = 12.9487 (4) Å

  • c = 14.1915 (5) Å

  • α = 83.897 (2)°

  • β = 89.368 (2)°

  • γ = 89.704 (2)°

  • V = 1470.94 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 K

  • 0.36 × 0.29 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 34023 measured reflections

  • 9760 independent reflections

  • 6518 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.163

  • S = 0.90

  • 9760 reflections

  • 389 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C22–C27 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O4 0.84 (2) 1.97 (2) 2.625 (2) 135 (2)
N2—HN2⋯O8 0.83 (2) 1.99 (2) 2.629 (3) 133 (2)
C13—H13⋯O3i 0.93 2.50 3.292 (3) 143
C10—H10⋯Cg 0.93 2.85 3.729 (3) 157
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continued efforts to study the crystal structures of N-(aroyl)-arylsulfonamides (Suchetan et al., 2010a,b,2013), we report here the crystal structure of the title compound (I) (Fig 1).

The title compound (I) crystallizes with two molecules in the asymmetric unit. This is in contrast to the single molecules observed in the asymmetric units of N-(benzoyl)-2-chloro-benzenesulfonamide (II) (Gowda et al., 2010), N-(2-chlorobenzoyl)-2-chloro-benzenesulfonamide (III) (Suchetan et al., 2010a), N-(2-methylbenzoyl)-2-chloro-benzenesulfonamide (IV) (Suchetan et al., 2010b) and N-(3-methoxybenzoyl)-2-chloro-benzenesulfonamide (V) (Suchetan et al., 2013). In the compound, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. The dihedral angles between the two benzene rings in (I) are 89.68 (1)° (molecule 1) and 82.9 (1)° (molecule 2). Compared to this, the dihedral angles are 73.3 (1)° in II (Gowda et al., 2010), 76.9 (1)° in III (Suchetan et al., 2010a), 78.7 (1)° in IV (Suchetan et al., 2010b) and 87.4 (1)° in V (Suchetan et al., 2013). The conformation of the N—H bond is syn to both the o-chloro and o-methoxy substituents in (I), similar to that observed in V (Suchetan et al., 2013). However, in III (Suchetan et al., 2010a) and IV (Suchetan et al., 2010b) the opposite effect is observed i.e., the N—H bond is anti to both the o-chloro and o-methoxy substituents. In both molecules, intramolecular N1—HN1···O4 and N2—HN2···O8 hydrogen bonds between the amide H atoms and the methoxy O atoms, generate S(6) loops (Bernstein et al., 1995)(Fig 2).

In the crystal, molecule 2 is linked into inversion dimers through intermolecular C13—H13···O3 (Fig 3) interactions forming an R22(8) ring motif (Bernstein et al., 1995). Molecule 1 and 2 are further linked through C10—H10···π interactions along the b axis (Fig 4). The crystal structure is further stabilized by several π -π interactions [centroid-centroid separation being 3.7793 (1) Å (for Cg1—Cg1), 3.6697 (1) Å (for Cg3—Cg3) and 3.6958 (1) Å (for Cg2—Cg2)] (Fig 5). Cg1 and Cg3 are the centroids of the C8···C13 and C22···C27 methoxy benzene rings and Cg2 is the centroid of the C1···C6 sulfonamide ring.

Related literature top

For similar structures, see: Gowda et al. (2010); Suchetan et al. (2010a,b, 2013). For hydrogen-bond motifs see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by refluxing a mixture of 2-methoxybenzoic acid, 2-chlorobenzene sulfonamide and phosphorous oxychloride for 2 h on a water bath. The resulting mixture was cooled and poured into ice cold water. The Solid obtained was filtered and washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried solid was recrystallized to the constant melting point (429 K). Colorless prisms of (I) were obtained from a slow evaporation of an ethanolic solution at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later refined freely. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Formation of intramolecular N—H···O hydrogen bonds, dashed lines, generating S(6) loops.
[Figure 3] Fig. 3. Packing of molecules in I through intermolecular C—H···O interactions, dashed lines, generating R22(8) loops. H atoms not involved in H-bonding are ommitted for clarity.
[Figure 4] Fig. 4. Linking of molecules along b axis in (I) through C—H···Cg1 interactions. H atoms not involved in H-bonding are ommitted for clarity.
[Figure 5] Fig. 5. Stacking of molecules in I, through Cg···Cg interactions. Where Cg1 and Cg3 are the centroids of the C8—C13 and C22—C27 methoxy benzene rings and Cg2 is the centroid of the C1—C6 sulfonamide ring. H atoms are ommitted for clarity.
N-[(2-Chlorophenyl)sulfonyl]-2-methoxybenzamide top
Crystal data top
C14H12ClNO4SF(000) = 672
Mr = 325.76Prism
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Melting point: 429 K
a = 8.0508 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.9487 (4) ÅCell parameters from 1234 reflections
c = 14.1915 (5) Åθ = 1.6–31.8°
α = 83.897 (2)°µ = 0.42 mm1
β = 89.368 (2)°T = 293 K
γ = 89.704 (2)°Prism, colourless
V = 1470.94 (9) Å30.36 × 0.29 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 31.8°, θmin = 1.6°
ϕ and ω scansh = 1111
34023 measured reflectionsk = 1719
9760 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0876P)2 + 0.587P]
where P = (Fo2 + 2Fc2)/3
9760 reflections(Δ/σ)max = 0.002
389 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C14H12ClNO4Sγ = 89.704 (2)°
Mr = 325.76V = 1470.94 (9) Å3
Triclinic, P1Z = 4
a = 8.0508 (3) ÅMo Kα radiation
b = 12.9487 (4) ŵ = 0.42 mm1
c = 14.1915 (5) ÅT = 293 K
α = 83.897 (2)°0.36 × 0.29 × 0.23 mm
β = 89.368 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6518 reflections with I > 2σ(I)
34023 measured reflectionsRint = 0.028
9760 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.68 e Å3
9760 reflectionsΔρmin = 0.59 e Å3
389 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C280.6577 (5)1.3256 (3)0.3153 (3)0.1291 (16)
H28A0.62481.25530.33520.194*
H28B0.68561.33190.24940.194*
H28C0.75261.34350.35190.194*
HN20.408 (3)1.5138 (18)0.2590 (15)0.057 (6)*
HN10.080 (3)1.0299 (18)0.2691 (15)0.056 (6)*
C10.4099 (2)1.01693 (13)0.14113 (11)0.0413 (3)
C20.3854 (3)1.11730 (15)0.09867 (13)0.0526 (4)
C30.5167 (3)1.17506 (18)0.05849 (16)0.0692 (6)
H30.49931.24270.03110.083*
C40.6705 (4)1.1329 (2)0.05921 (16)0.0732 (7)
H40.75841.17200.03170.088*
C50.7001 (3)1.0329 (2)0.09992 (17)0.0696 (7)
H50.80661.00470.09950.084*
C60.5675 (2)0.97436 (17)0.14195 (14)0.0533 (4)
H60.58570.90720.17020.064*
C70.2633 (3)1.02032 (16)0.35657 (13)0.0504 (4)
C80.1764 (2)1.07678 (14)0.42977 (12)0.0476 (4)
C90.0234 (3)1.12861 (14)0.41869 (13)0.0520 (4)
C100.0391 (3)1.18159 (17)0.49168 (16)0.0654 (6)
H100.13931.21740.48400.078*
C110.0456 (3)1.18137 (18)0.57482 (17)0.0701 (6)
H110.00221.21700.62310.084*
C120.1934 (3)1.1294 (2)0.58768 (16)0.0699 (6)
H120.24951.12850.64470.084*
C130.2585 (3)1.07799 (18)0.51452 (14)0.0593 (5)
H130.35981.04360.52280.071*
C140.2212 (4)1.1690 (3)0.3257 (2)0.0902 (9)
H14A0.28931.14000.37770.135*
H14B0.26821.15280.26710.135*
H14C0.21591.24300.32600.135*
C150.0676 (2)1.58600 (13)0.15496 (11)0.0407 (3)
C160.0377 (3)1.48635 (14)0.13150 (13)0.0529 (4)
C170.1220 (3)1.45853 (18)0.10457 (17)0.0687 (6)
H170.14271.39240.08720.082*
C180.2491 (3)1.5294 (2)0.10383 (17)0.0691 (6)
H180.35551.51050.08590.083*
C190.2212 (3)1.62651 (19)0.12890 (15)0.0601 (5)
H190.30831.67330.12910.072*
C200.0624 (2)1.65527 (15)0.15405 (13)0.0485 (4)
H200.04291.72190.17050.058*
C210.2474 (2)1.53203 (16)0.35569 (13)0.0500 (4)
C220.3193 (2)1.45265 (15)0.42864 (12)0.0483 (4)
C230.4520 (3)1.38669 (16)0.41651 (13)0.0527 (4)
C240.5045 (3)1.31545 (18)0.49100 (16)0.0670 (6)
H240.59311.27160.48250.080*
C250.4266 (3)1.3094 (2)0.57675 (16)0.0727 (7)
H250.46261.26140.62600.087*
C260.2968 (3)1.3730 (2)0.59061 (15)0.0703 (7)
H260.24501.36900.64920.084*
C270.2425 (3)1.44394 (18)0.51671 (14)0.0600 (5)
H270.15291.48660.52610.072*
N10.1728 (2)1.00103 (13)0.27880 (11)0.0495 (4)
N20.3337 (2)1.55288 (14)0.27293 (11)0.0526 (4)
O10.11150 (18)0.93899 (12)0.12765 (10)0.0612 (4)
O20.3149 (2)0.84221 (11)0.22865 (11)0.0659 (4)
O30.4060 (2)0.99214 (16)0.36392 (12)0.0797 (5)
O40.0573 (2)1.12592 (13)0.33491 (10)0.0666 (4)
O50.37606 (18)1.61675 (14)0.10764 (11)0.0721 (5)
O60.2480 (2)1.73358 (11)0.21074 (12)0.0707 (4)
O70.1198 (2)1.57723 (14)0.36765 (11)0.0716 (4)
O80.5245 (2)1.39365 (13)0.32949 (11)0.0713 (5)
S10.24534 (6)0.93882 (3)0.19164 (3)0.04506 (12)
S20.26639 (6)1.63258 (4)0.18268 (3)0.04893 (13)
Cl10.19015 (10)1.17448 (5)0.09374 (6)0.0900 (2)
Cl20.19141 (10)1.39327 (5)0.13476 (5)0.0854 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C280.132 (3)0.133 (3)0.112 (2)0.091 (3)0.049 (2)0.042 (2)
C10.0459 (9)0.0403 (8)0.0384 (8)0.0003 (7)0.0031 (7)0.0087 (6)
C20.0644 (12)0.0439 (9)0.0494 (10)0.0006 (9)0.0024 (9)0.0045 (7)
C30.0948 (18)0.0555 (12)0.0565 (12)0.0177 (12)0.0091 (12)0.0021 (9)
C40.0816 (17)0.0851 (17)0.0549 (12)0.0299 (14)0.0139 (11)0.0172 (11)
C50.0465 (11)0.105 (2)0.0630 (13)0.0006 (12)0.0042 (10)0.0339 (13)
C60.0512 (11)0.0604 (12)0.0502 (10)0.0086 (9)0.0004 (8)0.0147 (8)
C70.0534 (11)0.0536 (10)0.0443 (9)0.0040 (8)0.0056 (8)0.0057 (7)
C80.0552 (11)0.0433 (9)0.0447 (9)0.0114 (8)0.0098 (8)0.0071 (7)
C90.0661 (12)0.0423 (9)0.0476 (9)0.0038 (8)0.0121 (9)0.0061 (7)
C100.0828 (16)0.0524 (12)0.0623 (12)0.0013 (11)0.0169 (11)0.0141 (9)
C110.0926 (18)0.0607 (13)0.0605 (12)0.0164 (13)0.0222 (12)0.0239 (10)
C120.0870 (17)0.0763 (15)0.0491 (11)0.0278 (13)0.0061 (11)0.0179 (10)
C130.0635 (13)0.0647 (13)0.0506 (10)0.0142 (10)0.0051 (9)0.0105 (9)
C140.0921 (19)0.103 (2)0.0768 (16)0.0482 (17)0.0087 (14)0.0173 (15)
C150.0437 (9)0.0381 (8)0.0395 (8)0.0020 (7)0.0014 (6)0.0001 (6)
C160.0707 (13)0.0398 (9)0.0477 (9)0.0062 (9)0.0028 (9)0.0021 (7)
C170.0887 (17)0.0498 (12)0.0686 (13)0.0219 (12)0.0008 (12)0.0119 (10)
C180.0566 (13)0.0793 (16)0.0706 (14)0.0147 (12)0.0058 (11)0.0057 (12)
C190.0480 (11)0.0692 (14)0.0620 (12)0.0037 (10)0.0064 (9)0.0027 (10)
C200.0475 (10)0.0454 (9)0.0525 (10)0.0065 (8)0.0059 (8)0.0049 (7)
C210.0490 (10)0.0550 (11)0.0457 (9)0.0053 (8)0.0039 (8)0.0046 (8)
C220.0474 (10)0.0529 (10)0.0431 (9)0.0055 (8)0.0058 (7)0.0007 (7)
C230.0539 (11)0.0528 (10)0.0489 (10)0.0000 (9)0.0040 (8)0.0058 (8)
C240.0699 (14)0.0591 (12)0.0669 (13)0.0036 (10)0.0124 (11)0.0152 (10)
C250.0782 (16)0.0750 (15)0.0577 (12)0.0167 (13)0.0154 (11)0.0230 (11)
C260.0752 (15)0.0866 (17)0.0457 (10)0.0259 (13)0.0012 (10)0.0070 (10)
C270.0569 (12)0.0752 (14)0.0471 (10)0.0115 (10)0.0006 (9)0.0029 (9)
N10.0474 (9)0.0572 (10)0.0453 (8)0.0030 (8)0.0056 (7)0.0122 (7)
N20.0454 (9)0.0626 (10)0.0471 (8)0.0139 (8)0.0024 (7)0.0072 (7)
O10.0529 (8)0.0724 (10)0.0619 (8)0.0076 (7)0.0000 (7)0.0233 (7)
O20.0877 (11)0.0367 (7)0.0720 (9)0.0038 (7)0.0076 (8)0.0002 (6)
O30.0606 (10)0.1193 (15)0.0633 (9)0.0189 (10)0.0076 (8)0.0295 (9)
O40.0737 (10)0.0727 (10)0.0544 (8)0.0239 (8)0.0005 (7)0.0131 (7)
O50.0499 (8)0.0969 (12)0.0621 (9)0.0079 (8)0.0072 (7)0.0262 (8)
O60.0714 (10)0.0454 (8)0.0932 (11)0.0081 (7)0.0246 (9)0.0007 (7)
O70.0663 (10)0.0863 (11)0.0612 (9)0.0286 (9)0.0060 (7)0.0011 (8)
O80.0776 (11)0.0732 (10)0.0592 (8)0.0338 (8)0.0117 (7)0.0142 (7)
S10.0499 (3)0.0389 (2)0.0469 (2)0.00208 (18)0.00520 (18)0.00783 (16)
S20.0410 (2)0.0494 (3)0.0531 (2)0.00109 (18)0.00462 (18)0.00939 (18)
Cl10.0898 (5)0.0554 (3)0.1200 (6)0.0259 (3)0.0007 (4)0.0116 (3)
Cl20.1187 (6)0.0528 (3)0.0861 (4)0.0362 (3)0.0009 (4)0.0118 (3)
Geometric parameters (Å, º) top
C28—O81.421 (3)C15—C201.381 (2)
C28—H28A0.9600C15—C161.386 (3)
C28—H28B0.9600C15—S21.7626 (18)
C28—H28C0.9600C16—C171.394 (3)
C1—C61.381 (3)C16—Cl21.729 (2)
C1—C21.387 (3)C17—C181.377 (4)
C1—S11.7692 (18)C17—H170.9300
C2—C31.381 (3)C18—C191.360 (3)
C2—Cl11.733 (2)C18—H180.9300
C3—C41.350 (4)C19—C201.383 (3)
C3—H30.9300C19—H190.9300
C4—C51.381 (4)C20—H200.9300
C4—H40.9300C21—O71.208 (2)
C5—C61.403 (3)C21—N21.372 (2)
C5—H50.9300C21—C221.493 (3)
C6—H60.9300C22—C271.394 (3)
C7—O31.206 (2)C22—C231.394 (3)
C7—N11.375 (3)C23—O81.366 (2)
C7—C81.498 (3)C23—C241.391 (3)
C8—C131.380 (3)C24—C251.370 (3)
C8—C91.402 (3)C24—H240.9300
C9—O41.365 (2)C25—C261.363 (4)
C9—C101.390 (3)C25—H250.9300
C10—C111.369 (3)C26—C271.387 (3)
C10—H100.9300C26—H260.9300
C11—C121.368 (4)C27—H270.9300
C11—H110.9300N1—S11.6464 (16)
C12—C131.388 (3)N1—HN10.84 (2)
C12—H120.9300N2—S21.6456 (16)
C13—H130.9300N2—HN20.83 (2)
C14—O41.431 (3)O1—S11.4167 (15)
C14—H14A0.9600O2—S11.4193 (15)
C14—H14B0.9600O5—S21.4229 (16)
C14—H14C0.9600O6—S21.4159 (17)
O8—C28—H28A109.5C15—C16—Cl2122.57 (17)
O8—C28—H28B109.5C17—C16—Cl2117.90 (16)
H28A—C28—H28B109.5C18—C17—C16119.7 (2)
O8—C28—H28C109.5C18—C17—H17120.1
H28A—C28—H28C109.5C16—C17—H17120.1
H28B—C28—H28C109.5C19—C18—C17121.0 (2)
C6—C1—C2119.26 (18)C19—C18—H18119.5
C6—C1—S1118.13 (14)C17—C18—H18119.5
C2—C1—S1122.58 (14)C18—C19—C20119.6 (2)
C3—C2—C1120.8 (2)C18—C19—H19120.2
C3—C2—Cl1117.68 (17)C20—C19—H19120.2
C1—C2—Cl1121.52 (15)C15—C20—C19120.67 (19)
C4—C3—C2119.7 (2)C15—C20—H20119.7
C4—C3—H3120.2C19—C20—H20119.7
C2—C3—H3120.2O7—C21—N2120.38 (18)
C3—C4—C5121.4 (2)O7—C21—C22122.59 (18)
C3—C4—H4119.3N2—C21—C22117.03 (17)
C5—C4—H4119.3C27—C22—C23117.87 (18)
C4—C5—C6119.1 (2)C27—C22—C21115.59 (18)
C4—C5—H5120.4C23—C22—C21126.54 (17)
C6—C5—H5120.4O8—C23—C24122.1 (2)
C1—C6—C5119.7 (2)O8—C23—C22117.77 (16)
C1—C6—H6120.1C24—C23—C22120.1 (2)
C5—C6—H6120.1C25—C24—C23120.4 (2)
O3—C7—N1120.28 (18)C25—C24—H24119.8
O3—C7—C8122.73 (18)C23—C24—H24119.8
N1—C7—C8116.99 (17)C26—C25—C24120.7 (2)
C13—C8—C9118.47 (18)C26—C25—H25119.7
C13—C8—C7115.62 (18)C24—C25—H25119.7
C9—C8—C7125.90 (17)C25—C26—C27119.5 (2)
O4—C9—C10122.6 (2)C25—C26—H26120.3
O4—C9—C8117.88 (16)C27—C26—H26120.3
C10—C9—C8119.5 (2)C26—C27—C22121.4 (2)
C11—C10—C9120.5 (2)C26—C27—H27119.3
C11—C10—H10119.8C22—C27—H27119.3
C9—C10—H10119.8C7—N1—S1124.23 (14)
C12—C11—C10120.8 (2)C7—N1—HN1119.7 (15)
C12—C11—H11119.6S1—N1—HN1115.3 (15)
C10—C11—H11119.6C21—N2—S2123.34 (14)
C11—C12—C13119.1 (2)C21—N2—HN2120.8 (15)
C11—C12—H12120.4S2—N2—HN2113.6 (15)
C13—C12—H12120.4C9—O4—C14118.77 (17)
C8—C13—C12121.5 (2)C23—O8—C28118.52 (18)
C8—C13—H13119.2O1—S1—O2118.75 (10)
C12—C13—H13119.2O1—S1—N1104.48 (9)
O4—C14—H14A109.5O2—S1—N1109.88 (9)
O4—C14—H14B109.5O1—S1—C1110.61 (9)
H14A—C14—H14B109.5O2—S1—C1107.38 (9)
O4—C14—H14C109.5N1—S1—C1104.90 (8)
H14A—C14—H14C109.5O6—S2—O5119.47 (11)
H14B—C14—H14C109.5O6—S2—N2109.83 (10)
C20—C15—C16119.46 (17)O5—S2—N2104.50 (9)
C20—C15—S2116.91 (14)O6—S2—C15108.02 (9)
C16—C15—S2123.60 (14)O5—S2—C15108.78 (9)
C15—C16—C17119.53 (19)N2—S2—C15105.37 (8)
C6—C1—C2—C30.8 (3)O7—C21—C22—C23170.5 (2)
S1—C1—C2—C3178.80 (16)N2—C21—C22—C239.9 (3)
C6—C1—C2—Cl1179.04 (14)C27—C22—C23—O8178.48 (18)
S1—C1—C2—Cl11.0 (2)C21—C22—C23—O80.5 (3)
C1—C2—C3—C41.0 (3)C27—C22—C23—C240.3 (3)
Cl1—C2—C3—C4178.82 (18)C21—C22—C23—C24179.3 (2)
C2—C3—C4—C50.4 (4)O8—C23—C24—C25178.7 (2)
C3—C4—C5—C60.5 (3)C22—C23—C24—C250.0 (3)
C2—C1—C6—C50.1 (3)C23—C24—C25—C260.1 (4)
S1—C1—C6—C5178.03 (15)C24—C25—C26—C270.5 (4)
C4—C5—C6—C10.7 (3)C25—C26—C27—C220.9 (3)
O3—C7—C8—C1311.6 (3)C23—C22—C27—C260.8 (3)
N1—C7—C8—C13168.32 (17)C21—C22—C27—C26179.84 (19)
O3—C7—C8—C9167.3 (2)O3—C7—N1—S10.8 (3)
N1—C7—C8—C912.8 (3)C8—C7—N1—S1179.16 (13)
C13—C8—C9—O4179.34 (17)O7—C21—N2—S24.3 (3)
C7—C8—C9—O41.8 (3)C22—C21—N2—S2176.06 (14)
C13—C8—C9—C101.6 (3)C10—C9—O4—C147.3 (3)
C7—C8—C9—C10177.29 (18)C8—C9—O4—C14173.6 (2)
O4—C9—C10—C11179.4 (2)C24—C23—O8—C280.0 (4)
C8—C9—C10—C111.5 (3)C22—C23—O8—C28178.8 (3)
C9—C10—C11—C120.2 (3)C7—N1—S1—O1179.03 (16)
C10—C11—C12—C131.1 (4)C7—N1—S1—O252.54 (18)
C9—C8—C13—C120.3 (3)C7—N1—S1—C162.61 (17)
C7—C8—C13—C12178.66 (19)C6—C1—S1—O1128.77 (15)
C11—C12—C13—C81.0 (3)C2—C1—S1—O149.27 (17)
C20—C15—C16—C171.9 (3)C6—C1—S1—O22.24 (17)
S2—C15—C16—C17175.80 (15)C2—C1—S1—O2179.72 (15)
C20—C15—C16—Cl2177.69 (14)C6—C1—S1—N1119.12 (15)
S2—C15—C16—Cl24.6 (2)C2—C1—S1—N162.85 (17)
C15—C16—C17—C181.6 (3)C21—N2—S2—O661.0 (2)
Cl2—C16—C17—C18178.03 (18)C21—N2—S2—O5169.72 (18)
C16—C17—C18—C190.1 (4)C21—N2—S2—C1555.13 (19)
C17—C18—C19—C201.1 (3)C20—C15—S2—O67.14 (17)
C16—C15—C20—C190.8 (3)C16—C15—S2—O6175.07 (15)
S2—C15—C20—C19177.10 (15)C20—C15—S2—O5123.94 (15)
C18—C19—C20—C150.7 (3)C16—C15—S2—O553.85 (17)
O7—C21—C22—C278.5 (3)C20—C15—S2—N2124.48 (15)
N2—C21—C22—C27171.13 (18)C16—C15—S2—N257.73 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
N1—HN1···O40.84 (2)1.97 (2)2.625 (2)135 (2)
N2—HN2···O80.83 (2)1.99 (2)2.629 (3)133 (2)
C13—H13···O3i0.932.503.292 (3)143
C10—H10···Cg0.932.853.729 (3)157
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
N1—HN1···O40.84 (2)1.97 (2)2.625 (2)135 (2)
N2—HN2···O80.83 (2)1.99 (2)2.629 (3)133 (2)
C13—H13···O3i0.932.503.292 (3)143
C10—H10···Cg0.932.853.729 (3)157
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

PAS thanks the University Grants Commission (UGC), India, for financial support under its Minor Research Project scheme. JT thanks the Department of Science and Technology (DST), New Delhi, for the SCXRD facility under the PURSE Grant (SR/S9/Z-23/2008/11, 2009) at USIC, Karnatak University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o794.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Palakshamurthy, B. S., Mamatha, G. R., Kumar, V., Mohan, N. R. & Sreenivasa, S. (2013). Acta Cryst. E69, o1215.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds