organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N-Tri­butyl­butan-1-aminium (T-4)-(cyano-κC)tri­hydro­borate

aDepartment of Chemistry, University of Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: thierry.maris@umontreal.ca

(Received 18 October 2013; accepted 21 October 2013; online 26 October 2013)

In the crystal structure of the title salt, C16H36N+·CH3BN, the tetra-n-butyl­ammonium cations and [BH3(CN)] anions are connected via weak C—H⋯N inter­actions, forming chains along the b-axis direction. The anion is almost linear with an N—C—B angle of 178.7 (2)°. The C—N—C angle values at the core of the tetra-n-butyl­ammonium cation range from 105.74 (11) to 111.35 (11)° with an average of 109.49 (11)°, close to the ideal tetra­hedral value.

Related literature

For the use of the title compound as a reducing agent, see: Hutchins & Kandasamy (1973[Hutchins, R. O. & Kandasamy, D. (1973). J. Am. Chem. Soc. 95, 6131-6132.]). It is also a selective reagent for reductive amination (Hutchins & Markovitz, 1981[Hutchins, R. O. & Markovitz, M. (1981). J. Org. Chem. 46, 3574-3575.]) and has been used as a radical mediator for hy­droxy­methyl­ation reactions (Kawamoto et al., 2012[Kawamoto, T., Fukuya, T. & Ryu, I. (2012). J. Am. Chem. Soc. 134, 875-877.]). For the structure of related borohydride salts, see: Jaroń & Grochala (2011[Jaroń, T. & Grochala, W. (2011). Acta Cryst. E67, o2171.]) (tetra­methyl­ammonium) and Jaroń et al. (2012[Jaroń, T., Wegner, W., Cyrański, M. K., Dobrzycki, Ł. & Grochala, W. (2012). J. Solid State Chem. 191, 279-282.]) (tetra-n-butyl­ammonium). For the ability of cyano­borohydride anions to form di­hydrogen bonds, see: Custelcean & Jackson (1998[Custelcean, R. & Jackson, J. E. (1998). J. Am. Chem. Soc. 120, 12935-12941.]). For the most usual conformations of quaternary ammonium cations, see: Alder et al. (1990[Alder, R. W., Maunder, C. M. & Orpen, A. G. (1990). Tetrahedron Lett. 31, 6717-6720.]).

[Scheme 1]

Experimental

Crystal data
  • C16H36N+·CH3BN

  • Mr = 282.31

  • Monoclinic, P 21

  • a = 7.8312 (5) Å

  • b = 13.9334 (9) Å

  • c = 9.6313 (6) Å

  • β = 112.269 (2)°

  • V = 972.54 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.25 × 0.2 × 0.15 mm

Data collection
  • Bruker Microstar X8 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2012[Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.]) Tmin = 0.590, Tmax = 0.753

  • 18043 measured reflections

  • 3520 independent reflections

  • 3510 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.03

  • 3520 reflections

  • 186 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack parameter determined using 1596 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.14 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N2i 0.97 2.58 3.515 (2) 162
C2—H2B⋯N2 0.97 2.58 3.523 (2) 165
C13—H13B⋯N2 0.97 2.59 3.474 (2) 152
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Despite the fact the title compound (I) is a common reagent used for example as a reducing agent (Hutchins & Kandasamy, 1973), its crystal structure has not yet been reported.

The structure contains distinctive N(Bu)4 cations and BH3CN anions lying in general positions (figure 1). The anion is almost linear with a N—C—B angle of 178.7 (2)°. The C—N—C angle values at the core of the tetra-n-butylammonium cation range from 105.74 (11)° to 111.35 (11)° with an average of 109.49 (11)° close to the ideal tetrahedral value.

The n-butyl chains are fully extended with an all-trans conformations, giving for the tetra-n-butylammonium cation a distorted D2d point group symmetry (Alder et al., 1990).

Each anion is surrounded by two cations linked through three weak C—H···N hydrogen bonds; these define chains along the b-axis (figure 2) with a distance separation between the nitrogen atoms of 4.404 (2) Å and 4.491 (2) Å.

The title compound, as many tetraalkylammonium borohydride salts (Jaroń et al., 2012; Jaroń & Grochala, 2011) is loosely packed with a density lower than 1.

Related literature top

For the use of the title compound as a reducing agent, see: Hutchins & Kandasamy (1973). It is also a selective reagent for reductive amination (Hutchins & Markovitz, 1981) and has been used as a radical mediator for hydroxymethylation reactions (Kawamoto et al., 2012). For the structure of related borohydride salts, see: Jaroń & Grochala (2011) (tetramethylammonium) and Jaroń et al. (2012) (tetra-n-butylammonium). For the ability of cyanoborohydride anions to form dihydrogen bonds, see: Custelcean & Jackson (1998). For the most usual conformations of quaternary ammonium cations, see: Alder et al. (1990).

Experimental top

Compound (I) is commercially available from Sigma-Aldrich and a crystalline specimen has been extracted directly from the commercial flask.

Refinement top

H-atoms were placed in calculated positions (C—H 0.98–0.99 Å, B–H 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C) for methylene or 1.5Ueq(C) for methyl groups and the hydrogen atoms linked to the boron atom.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atomic numbering scheme and 50% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius with hydrogen bonds drawn as dashed lines.
[Figure 2] Fig. 2. Projection along the a-axis showing the chains running along the b-axis made by the weak C—H···N interactions (dashed lines). Hydrogen atoms not involved in these interactions have been removed for clarity.
N,N,N-Tributylbutan-1-aminium (T-4)-(cyano-κC)trihydroborate top
Crystal data top
C16H36N+·CH3BNF(000) = 320
Mr = 282.31Dx = 0.964 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 7.8312 (5) ÅCell parameters from 9860 reflections
b = 13.9334 (9) Åθ = 5.0–70.0°
c = 9.6313 (6) ŵ = 0.40 mm1
β = 112.269 (2)°T = 100 K
V = 972.54 (11) Å3Block, clear light colourless
Z = 20.25 × 0.2 × 0.15 mm
Data collection top
Bruker Microstar X8
diffractometer
3520 independent reflections
Radiation source: Rotating-anode X-ray tube, Bruker Microstar/FR591 generator3510 reflections with I > 2σ(I)
Helios Mirror Optics monochromatorRint = 0.041
Detector resolution: 8.3 pixels mm-1θmax = 70.2°, θmin = 5.0°
ω scansh = 98
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
k = 1617
Tmin = 0.590, Tmax = 0.753l = 1111
18043 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.059P)2 + 0.1174P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.17 e Å3
3520 reflectionsΔρmin = 0.16 e Å3
186 parametersAbsolute structure: Flack parameter determined using 1596 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
1 restraintAbsolute structure parameter: 0.14 (12)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H36N+·CH3BNV = 972.54 (11) Å3
Mr = 282.31Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.8312 (5) ŵ = 0.40 mm1
b = 13.9334 (9) ÅT = 100 K
c = 9.6313 (6) Å0.25 × 0.2 × 0.15 mm
β = 112.269 (2)°
Data collection top
Bruker Microstar X8
diffractometer
3520 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
3510 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 0.753Rint = 0.041
18043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.17 e Å3
S = 1.03Δρmin = 0.16 e Å3
3520 reflectionsAbsolute structure: Flack parameter determined using 1596 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
186 parametersAbsolute structure parameter: 0.14 (12)
1 restraint
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker microstar diffractometer equipped with a Platinum 135 CCD Detector, a Helios optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 110.0 degree scan in 110 frames over three different parts of the reciprocal space

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H,H) groups At 1.5 times of: All B(H,H,H) groups, All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: C1(H1A,H1B), C2(H2A,H2B), C3(H3A,H3B), C5(H5A,H5B), C6(H6A,H6B), C7(H7A,H7B), C9(H9A,H9B), C10(H10A,H10B), C11(H11A,H11B), C13(H13A,H13B), C14(H14A,H14B), C15(H15A,H15B) 2.b Idealized Me refined as rotating group: C8(H8A,H8B,H8C), C12(H12A,H12B,H12C), C16(H16A,H16B,H16C), C4(H4A,H4B,H4C), B1(H1C,H1D,H1E)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37329 (16)0.60490 (9)0.25684 (14)0.0171 (3)
C10.35569 (19)0.67475 (12)0.37167 (17)0.0186 (3)
H1A0.23130.67010.36980.022*
H1B0.37120.73930.34050.022*
C20.4898 (2)0.66116 (12)0.53249 (16)0.0209 (3)
H2A0.61340.67900.54180.025*
H2B0.49140.59440.56160.025*
C30.4275 (2)0.72452 (12)0.63373 (17)0.0246 (4)
H3A0.43050.79110.60520.030*
H3B0.30080.70880.61780.030*
C50.56503 (19)0.61031 (11)0.25259 (17)0.0183 (3)
H5A0.57050.56660.17610.022*
H5B0.65380.58830.34830.022*
C60.6223 (2)0.70965 (12)0.22094 (18)0.0215 (3)
H6A0.62270.75360.29920.026*
H6B0.53360.73300.12620.026*
C70.8133 (2)0.70710 (12)0.2143 (2)0.0252 (3)
H7A0.90200.68450.30970.030*
H7B0.81310.66220.13730.030*
C80.8715 (2)0.80552 (13)0.1804 (2)0.0286 (4)
H8A0.79020.82550.08220.043*
H8B0.99560.80240.18400.043*
H8C0.86550.85080.25360.043*
C90.2259 (2)0.63434 (11)0.10726 (17)0.0193 (3)
H9A0.10810.63540.11870.023*
H9B0.25200.69950.08570.023*
C100.2053 (2)0.57252 (12)0.02823 (17)0.0224 (3)
H10A0.15330.51060.01970.027*
H10B0.32490.56200.03380.027*
C110.0779 (2)0.62444 (14)0.16886 (18)0.0274 (4)
H11A0.03760.63890.15810.033*
H11B0.13430.68480.17820.033*
C120.0379 (3)0.56601 (14)0.31121 (18)0.0319 (4)
H12A0.02990.60460.39700.048*
H12B0.03370.51050.30900.048*
H12C0.15200.54600.31750.048*
C130.3451 (2)0.50172 (11)0.29578 (16)0.0187 (3)
H13A0.34670.46030.21530.022*
H13B0.44840.48350.38590.022*
C140.1676 (2)0.48347 (12)0.32089 (18)0.0222 (3)
H14A0.06280.50250.23230.027*
H14B0.16680.52190.40460.027*
C150.1506 (2)0.37789 (13)0.3535 (2)0.0276 (4)
H15A0.25920.35820.43850.033*
H15B0.14520.33990.26750.033*
C160.0207 (3)0.35851 (13)0.3874 (2)0.0310 (4)
H16A0.12880.37120.29960.047*
H16B0.02020.39950.46770.047*
H16C0.02110.29260.41650.047*
C40.5460 (2)0.71352 (15)0.79966 (19)0.0313 (4)
H4A0.66990.73340.81770.047*
H4B0.54620.64750.82840.047*
H4C0.49650.75270.85760.047*
N20.5861 (3)0.42280 (13)0.66014 (18)0.0418 (4)
C170.6380 (2)0.42768 (13)0.7884 (2)0.0297 (4)
B10.7120 (3)0.43232 (17)0.9652 (2)0.0332 (4)
H1C0.61120.42350.99750.050*
H1D0.76810.49370.99870.050*
H1E0.80180.38261.00690.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0163 (6)0.0160 (7)0.0194 (6)0.0013 (4)0.0071 (5)0.0006 (5)
C10.0192 (7)0.0154 (7)0.0236 (7)0.0018 (5)0.0108 (6)0.0010 (6)
C20.0220 (7)0.0194 (8)0.0221 (7)0.0006 (6)0.0092 (6)0.0012 (6)
C30.0262 (7)0.0248 (9)0.0251 (8)0.0011 (6)0.0122 (6)0.0034 (7)
C50.0140 (6)0.0199 (8)0.0214 (7)0.0022 (5)0.0072 (6)0.0007 (6)
C60.0198 (7)0.0207 (8)0.0265 (8)0.0002 (6)0.0117 (6)0.0003 (6)
C70.0196 (7)0.0232 (8)0.0351 (8)0.0000 (6)0.0130 (6)0.0007 (7)
C80.0257 (8)0.0270 (9)0.0367 (9)0.0059 (6)0.0158 (7)0.0028 (7)
C90.0176 (7)0.0191 (7)0.0206 (7)0.0026 (6)0.0065 (6)0.0025 (6)
C100.0239 (7)0.0213 (8)0.0208 (7)0.0024 (6)0.0070 (6)0.0007 (6)
C110.0310 (8)0.0250 (9)0.0226 (8)0.0028 (7)0.0062 (7)0.0027 (6)
C120.0387 (9)0.0298 (10)0.0215 (8)0.0001 (8)0.0049 (7)0.0009 (7)
C130.0203 (7)0.0143 (7)0.0203 (7)0.0001 (6)0.0064 (5)0.0005 (6)
C140.0235 (7)0.0198 (8)0.0240 (7)0.0014 (6)0.0099 (6)0.0005 (6)
C150.0274 (8)0.0209 (8)0.0336 (8)0.0053 (7)0.0104 (7)0.0017 (7)
C160.0374 (9)0.0296 (10)0.0282 (8)0.0132 (7)0.0148 (7)0.0027 (7)
C40.0336 (8)0.0383 (10)0.0243 (8)0.0005 (8)0.0134 (7)0.0056 (7)
N20.0627 (11)0.0240 (8)0.0286 (8)0.0016 (8)0.0059 (7)0.0025 (7)
C170.0335 (8)0.0164 (8)0.0341 (9)0.0002 (7)0.0070 (7)0.0010 (7)
B10.0389 (10)0.0263 (10)0.0306 (10)0.0033 (9)0.0088 (8)0.0021 (8)
Geometric parameters (Å, º) top
N1—C11.5182 (18)C10—H10B0.9700
N1—C51.5195 (17)C10—C111.526 (2)
N1—C91.5216 (18)C11—H11A0.9700
N1—C131.5229 (19)C11—H11B0.9700
C1—H1A0.9700C11—C121.521 (2)
C1—H1B0.9700C12—H12A0.9600
C1—C21.518 (2)C12—H12B0.9600
C2—H2A0.9700C12—H12C0.9600
C2—H2B0.9700C13—H13A0.9700
C2—C31.526 (2)C13—H13B0.9700
C3—H3A0.9700C13—C141.5192 (19)
C3—H3B0.9700C14—H14A0.9700
C3—C41.521 (2)C14—H14B0.9700
C5—H5A0.9700C14—C151.520 (2)
C5—H5B0.9700C15—H15A0.9700
C5—C61.521 (2)C15—H15B0.9700
C6—H6A0.9700C15—C161.521 (2)
C6—H6B0.9700C16—H16A0.9600
C6—C71.5215 (19)C16—H16B0.9600
C7—H7A0.9700C16—H16C0.9600
C7—H7B0.9700C4—H4A0.9600
C7—C81.519 (2)C4—H4B0.9600
C8—H8A0.9600C4—H4C0.9600
C8—H8B0.9600N2—C171.147 (2)
C8—H8C0.9600C17—B11.578 (3)
C9—H9A0.9700B1—H1C0.9600
C9—H9B0.9700B1—H1D0.9600
C9—C101.520 (2)B1—H1E0.9600
C10—H10A0.9700
C1—N1—C5110.57 (11)C9—C10—H10B110.0
C1—N1—C9105.74 (11)C9—C10—C11108.33 (13)
C1—N1—C13111.35 (11)H10A—C10—H10B108.4
C5—N1—C9111.33 (10)C11—C10—H10A110.0
C5—N1—C13106.90 (10)C11—C10—H10B110.0
C9—N1—C13111.03 (11)C10—C11—H11A109.0
N1—C1—H1A108.2C10—C11—H11B109.0
N1—C1—H1B108.2H11A—C11—H11B107.8
N1—C1—C2116.39 (12)C12—C11—C10112.85 (15)
H1A—C1—H1B107.3C12—C11—H11A109.0
C2—C1—H1A108.2C12—C11—H11B109.0
C2—C1—H1B108.2C11—C12—H12A109.5
C1—C2—H2A110.0C11—C12—H12B109.5
C1—C2—H2B110.0C11—C12—H12C109.5
C1—C2—C3108.34 (12)H12A—C12—H12B109.5
H2A—C2—H2B108.4H12A—C12—H12C109.5
C3—C2—H2A110.0H12B—C12—H12C109.5
C3—C2—H2B110.0N1—C13—H13A108.5
C2—C3—H3A108.9N1—C13—H13B108.5
C2—C3—H3B108.9H13A—C13—H13B107.5
H3A—C3—H3B107.7C14—C13—N1115.09 (12)
C4—C3—C2113.43 (13)C14—C13—H13A108.5
C4—C3—H3A108.9C14—C13—H13B108.5
C4—C3—H3B108.9C13—C14—H14A109.5
N1—C5—H5A108.6C13—C14—H14B109.5
N1—C5—H5B108.6C13—C14—C15110.59 (13)
N1—C5—C6114.83 (12)H14A—C14—H14B108.1
H5A—C5—H5B107.5C15—C14—H14A109.5
C6—C5—H5A108.6C15—C14—H14B109.5
C6—C5—H5B108.6C14—C15—H15A109.3
C5—C6—H6A109.5C14—C15—H15B109.3
C5—C6—H6B109.5C14—C15—C16111.69 (15)
C5—C6—C7110.87 (12)H15A—C15—H15B107.9
H6A—C6—H6B108.1C16—C15—H15A109.3
C7—C6—H6A109.5C16—C15—H15B109.3
C7—C6—H6B109.5C15—C16—H16A109.5
C6—C7—H7A109.3C15—C16—H16B109.5
C6—C7—H7B109.3C15—C16—H16C109.5
H7A—C7—H7B108.0H16A—C16—H16B109.5
C8—C7—C6111.58 (13)H16A—C16—H16C109.5
C8—C7—H7A109.3H16B—C16—H16C109.5
C8—C7—H7B109.3C3—C4—H4A109.5
C7—C8—H8A109.5C3—C4—H4B109.5
C7—C8—H8B109.5C3—C4—H4C109.5
C7—C8—H8C109.5H4A—C4—H4B109.5
H8A—C8—H8B109.5H4A—C4—H4C109.5
H8A—C8—H8C109.5H4B—C4—H4C109.5
H8B—C8—H8C109.5N2—C17—B1178.7 (2)
N1—C9—H9A108.0C17—B1—H1C109.5
N1—C9—H9B108.0C17—B1—H1D109.5
H9A—C9—H9B107.3C17—B1—H1E109.5
C10—C9—N1117.12 (12)H1C—B1—H1D109.5
C10—C9—H9A108.0H1C—B1—H1E109.5
C10—C9—H9B108.0H1D—B1—H1E109.5
C9—C10—H10A110.0
N1—C1—C2—C3169.39 (12)C5—N1—C13—C14174.17 (12)
N1—C5—C6—C7178.31 (12)C5—C6—C7—C8179.12 (13)
N1—C9—C10—C11169.54 (12)C9—N1—C1—C2179.68 (12)
N1—C13—C14—C15178.00 (12)C9—N1—C5—C660.80 (16)
C1—N1—C5—C656.43 (15)C9—N1—C13—C1464.23 (15)
C1—N1—C9—C10176.84 (12)C9—C10—C11—C12176.50 (14)
C1—N1—C13—C1453.31 (15)C13—N1—C1—C259.62 (15)
C1—C2—C3—C4177.11 (14)C13—N1—C5—C6177.78 (12)
C5—N1—C1—C259.06 (16)C13—N1—C9—C1055.94 (16)
C5—N1—C9—C1063.04 (16)C13—C14—C15—C16176.90 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N2i0.972.583.515 (2)162
C2—H2B···N20.972.583.523 (2)165
C13—H13B···N20.972.593.474 (2)152
Symmetry code: (i) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N2i0.972.583.515 (2)162.0
C2—H2B···N20.972.583.523 (2)165.2
C13—H13B···N20.972.593.474 (2)152.0
Symmetry code: (i) x+1, y+1/2, z+1.
 

Acknowledgements

The Canada Foundation for Innovation, the Canada Research Chairs Program and the University of Montréal are acknowledged for financial support.

References

First citationAlder, R. W., Maunder, C. M. & Orpen, A. G. (1990). Tetrahedron Lett. 31, 6717–6720.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCustelcean, R. & Jackson, J. E. (1998). J. Am. Chem. Soc. 120, 12935–12941.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHutchins, R. O. & Kandasamy, D. (1973). J. Am. Chem. Soc. 95, 6131–6132.  CrossRef CAS Web of Science Google Scholar
First citationHutchins, R. O. & Markovitz, M. (1981). J. Org. Chem. 46, 3574–3575.  Google Scholar
First citationJaroń, T. & Grochala, W. (2011). Acta Cryst. E67, o2171.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaroń, T., Wegner, W., Cyrański, M. K., Dobrzycki, Ł. & Grochala, W. (2012). J. Solid State Chem. 191, 279–282.  Google Scholar
First citationKawamoto, T., Fukuya, T. & Ryu, I. (2012). J. Am. Chem. Soc. 134, 875–877.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds