organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-N-(4,6-di­methyl­pyrimidin-2-yl)benzene­sulfonamide–1,4-di­aza­bi­cyclo­[2.2.2]octane (2/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 30 September 2013; accepted 1 October 2013; online 5 October 2013)

The asymmetric unit of the title co-crystal, C12H14N4O2S·0.5C6H12N2, comprises the sulfonamide mol­ecule and half a mol­ecule of 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO), the latter being disposed about a crystallographic twofold rotation axis. In the sulfonamide mol­ecule, the aromatic rings are almost perpendicular to one another [dihedral angle = 75.01 (8)°]. In the crystal, mol­ecules are connected into a three-mol­ecule aggregate via amide–DABCO N—H⋯N hydrogen bonds, and these are connected into a three-dimensional architecture via amino–DABCO N—H⋯O and amino-pyrimidine N—H⋯N hydrogen bonds.

Related literature

For the structure of the sulfonamide, see: Tiwari et al. (1984[Tiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655-657.]). For related studies of co-crystal formation, see: Ellis et al. (2009[Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352-1361.]); Arman & Tiekink (2013[Arman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. Cryst. Mat. 228, 289-294.]). For co-crystals of the sulfonamide with carb­oxy­lic acids, see: Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2430.]); Ghosh et al. (2011[Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489-3503.]); Smith & Wermuth (2013[Smith, G. & Wermuth, U. D. (2013). Acta Cryst. E69, o234.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N4O2S·0.5C6H12N2

  • Mr = 334.42

  • Orthorhombic, P b c n

  • a = 26.488 (3) Å

  • b = 9.7886 (11) Å

  • c = 12.2163 (13) Å

  • V = 3167.4 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 98 K

  • 0.35 × 0.31 × 0.21 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • 7965 measured reflections

  • 3616 independent reflections

  • 3264 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 0.99

  • 3616 reflections

  • 219 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N5i 0.88 (2) 1.90 (2) 2.768 (2) 169 (2)
N4—H2N⋯O2ii 0.88 (1) 2.48 (2) 3.058 (2) 124 (2)
N4—H2N⋯N2ii 0.88 (1) 2.59 (2) 3.376 (2) 149 (2)
N4—H3N⋯O1iii 0.88 (2) 2.15 (2) 3.032 (2) 178 (2)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: Crystal­Clear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title co-crystal was formed in continuation of on-going structural studies of co-crystals (Ellis et al., 2009; Arman & Tiekink, 2013). While co-crystals of the title sulfonamide with carboxylic acids are known (Arman, et al. 2010; Ghosh et al. 2011; Smith & Wermuth, 2013), the present investigation appears to be the first describing a co-crystal of the sulfonamide with an amine.

The asymmetric unit of the title compound contains a molecule of the sulfonamide in a general position, and half a molecule of 1,4-diazabicyclo[2.2.2]octane (DABCO) which is disposed about a crystallographic two-fold rotation axis, Fig. 1. The overall shape of the sulfonamide approximates the letter L with the dihedral angle between the two aromatic rings being 75.01 (8)°, which compares to 78.1 (6)° found in the parent sulfonamide compound (Tiwari et al., 1984). However, this is a little misleading as there is a difference in the conformation of the two sulfonamides. In the title sulfonamide the SOC6H4NH2 residue lies to one side of the pyrimidinyl ring with the remaining O atom, O2, being co-planar giving the L-shape, whereas in the parent sulfonamide (Tiwari et al., 1984) the SO2 O atoms lie to one side of the pyrimidinyl ring and the C6H4NH2 residue to the other.

A three-dimensional architecture is formed in the crystal structure by N—H···O and N-H···N hydrogen bonds (Fig. 2 and Table 1). The amide group, N1—H1N, forms a hydrogen bond to a DABCO N atom, N5, so that a three-molecule aggregate results. The amino group H atom, N4—H2N, is bifurcated, forming hydrogen bonds to the sulfonamide atom O2 and to the pyrimidinyl atom N2. The second amino group H atom, N4—H3N, forms a hydrogen bond to the second sulfonamide O atom, O1.

Related literature top

For the structure of the sulfonamide, see: Tiwari et al. (1984). For related studies of co-crystal formation, see: Ellis et al. (2009); Arman & Tiekink (2013). For co-crystals of the sulfonamide with carboxylic acids, see: Arman et al. (2010); Ghosh et al. (2011); Smith & Wermuth (2013).

Experimental top

Crystals of the title compound were obtained by the co-crystallization of the sulfonamide (ACROS, 0.18 mmol) and 1,4-diazabicyclo[2.2.2]octane (DABCO; Sigma-Aldrich, 0.10 mmol) in methanol. Block-like colourless crystals were obtained by slow evaporation (M.p. = 479–485 K).

Refinement top

The N-bound H-atoms were located in a difference Fourier map and refined with a distance restraint: N—H = 0.88 (1) Å with Uiso(H) = 1.2Ueq(N). The C-bound H-atoms were placed in calculated positions and included in the refinement in the riding model approximation: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the components of the title compound, with atom labelling: (a) the sulfonamide and (b) DABCO. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A viewed in projection along the c axis of the crystal packing of the title compound. The N-H···O and N-H···N hydrogen bonds are shown as orange and blue dashed lines, respectively.
4-Amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide–1,4-diazabicyclo[2.2.2]octane (2/1) top
Crystal data top
C12H14N4O2S·0.5C6H12N2F(000) = 1416
Mr = 334.42Dx = 1.403 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 11130 reflections
a = 26.488 (3) Åθ = 2.1–40.3°
b = 9.7886 (11) ŵ = 0.22 mm1
c = 12.2163 (13) ÅT = 98 K
V = 3167.4 (6) Å3Block, colourless
Z = 80.35 × 0.31 × 0.21 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3264 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω scansh = 1034
7965 measured reflectionsk = 812
3616 independent reflectionsl = 1510
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0551P)2 + 2.7774P]
where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = 0.48 e Å3
Crystal data top
C12H14N4O2S·0.5C6H12N2V = 3167.4 (6) Å3
Mr = 334.42Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 26.488 (3) ŵ = 0.22 mm1
b = 9.7886 (11) ÅT = 98 K
c = 12.2163 (13) Å0.35 × 0.31 × 0.21 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3264 reflections with I > 2σ(I)
7965 measured reflectionsRint = 0.032
3616 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.41 e Å3
3616 reflectionsΔρmin = 0.48 e Å3
219 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.132415 (15)0.06565 (4)0.45540 (3)0.01333 (12)
O10.11533 (5)0.05810 (12)0.50942 (10)0.0173 (3)
O20.13901 (5)0.05841 (13)0.33849 (10)0.0183 (3)
N10.09018 (5)0.17725 (15)0.48968 (11)0.0148 (3)
H1N0.0745 (7)0.152 (2)0.5494 (11)0.018*
N20.12538 (5)0.36203 (15)0.39075 (11)0.0160 (3)
N30.07074 (6)0.39389 (15)0.54545 (11)0.0160 (3)
N40.32337 (6)0.25427 (17)0.65547 (13)0.0218 (3)
H2N0.3284 (9)0.250 (2)0.7267 (8)0.026*
H3N0.3418 (8)0.308 (2)0.6139 (16)0.026*
C10.09647 (6)0.31690 (17)0.47297 (13)0.0148 (3)
C20.12939 (6)0.49905 (19)0.38156 (14)0.0166 (3)
C30.10504 (7)0.58644 (18)0.45383 (14)0.0181 (4)
H30.10850.68270.44740.022*
C40.07545 (7)0.52934 (18)0.53588 (14)0.0169 (3)
C50.16111 (8)0.55243 (19)0.28925 (15)0.0226 (4)
H5A0.19680.53530.30500.034*
H5B0.15550.65090.28120.034*
H5C0.15170.50600.22120.034*
C60.04783 (7)0.61545 (19)0.61820 (15)0.0223 (4)
H6A0.01200.59090.61800.033*
H6B0.05150.71220.59900.033*
H6C0.06200.59950.69120.033*
C70.18946 (6)0.11773 (17)0.51417 (13)0.0144 (3)
C80.19655 (6)0.10442 (17)0.62712 (14)0.0159 (3)
H80.17100.06400.67120.019*
C90.24078 (6)0.15020 (18)0.67437 (14)0.0173 (3)
H90.24560.13960.75090.021*
C100.27886 (7)0.21239 (18)0.61103 (14)0.0172 (3)
C110.27024 (7)0.2272 (2)0.49774 (15)0.0211 (4)
H110.29500.27070.45350.025*
C120.22649 (7)0.17962 (19)0.45039 (14)0.0192 (4)
H120.22160.18900.37370.023*
N50.02978 (6)0.88272 (15)0.16824 (11)0.0165 (3)
C130.05365 (6)0.80970 (18)0.26139 (13)0.0168 (3)
H13A0.08620.85350.27990.020*
H13B0.06040.71370.24070.020*
C140.01889 (8)1.02566 (18)0.20149 (15)0.0234 (4)
H14A0.00431.07650.13890.028*
H14B0.05061.07160.22360.028*
C150.01819 (6)0.81388 (19)0.13850 (14)0.0180 (3)
H15A0.01110.71970.11330.022*
H15B0.03470.86390.07790.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0140 (2)0.0121 (2)0.0139 (2)0.00069 (14)0.00026 (15)0.00111 (14)
O10.0176 (6)0.0125 (6)0.0219 (6)0.0016 (5)0.0005 (5)0.0000 (5)
O20.0206 (6)0.0201 (6)0.0142 (6)0.0009 (5)0.0005 (5)0.0043 (5)
N10.0135 (6)0.0136 (7)0.0174 (6)0.0002 (5)0.0036 (5)0.0003 (5)
N20.0162 (7)0.0152 (7)0.0166 (7)0.0004 (5)0.0013 (6)0.0005 (6)
N30.0162 (7)0.0162 (7)0.0157 (6)0.0013 (6)0.0006 (5)0.0005 (5)
N40.0188 (7)0.0266 (8)0.0198 (7)0.0053 (6)0.0043 (6)0.0018 (6)
C10.0123 (7)0.0162 (8)0.0158 (7)0.0002 (6)0.0018 (6)0.0000 (6)
C20.0150 (7)0.0174 (8)0.0174 (8)0.0003 (6)0.0006 (6)0.0022 (7)
C30.0188 (8)0.0132 (7)0.0225 (9)0.0012 (6)0.0007 (7)0.0011 (6)
C40.0158 (8)0.0172 (8)0.0176 (8)0.0027 (6)0.0017 (6)0.0012 (6)
C50.0255 (9)0.0181 (8)0.0243 (9)0.0014 (7)0.0057 (8)0.0028 (7)
C60.0246 (9)0.0188 (8)0.0234 (9)0.0047 (7)0.0034 (7)0.0024 (7)
C70.0121 (7)0.0140 (7)0.0171 (7)0.0002 (6)0.0002 (6)0.0008 (6)
C80.0162 (8)0.0155 (8)0.0160 (7)0.0004 (6)0.0034 (6)0.0001 (6)
C90.0181 (8)0.0181 (8)0.0157 (7)0.0007 (7)0.0015 (6)0.0012 (6)
C100.0154 (8)0.0156 (8)0.0204 (8)0.0002 (6)0.0008 (7)0.0006 (7)
C110.0163 (8)0.0255 (9)0.0214 (8)0.0039 (7)0.0018 (7)0.0064 (7)
C120.0154 (8)0.0251 (9)0.0172 (8)0.0008 (7)0.0005 (7)0.0053 (7)
N50.0166 (7)0.0174 (7)0.0154 (6)0.0021 (6)0.0007 (5)0.0016 (6)
C130.0151 (8)0.0194 (8)0.0159 (7)0.0004 (6)0.0001 (6)0.0003 (6)
C140.0300 (10)0.0144 (8)0.0258 (9)0.0003 (7)0.0000 (8)0.0028 (7)
C150.0141 (7)0.0234 (9)0.0165 (7)0.0010 (7)0.0009 (6)0.0013 (7)
Geometric parameters (Å, º) top
S1—O21.4406 (12)C6—H6C0.9800
S1—O11.4518 (12)C7—C121.392 (2)
S1—N11.6188 (14)C7—C81.399 (2)
S1—C71.7488 (17)C8—C91.381 (2)
N1—C11.392 (2)C8—H80.9500
N1—H1N0.876 (9)C9—C101.409 (2)
N2—C11.338 (2)C9—H90.9500
N2—C21.350 (2)C10—C111.410 (2)
N3—C41.337 (2)C11—C121.377 (2)
N3—C11.348 (2)C11—H110.9500
N4—C101.361 (2)C12—H120.9500
N4—H2N0.881 (9)N5—C151.483 (2)
N4—H3N0.877 (10)N5—C141.485 (2)
C2—C31.388 (2)N5—C131.485 (2)
C2—C51.500 (2)C13—C15i1.542 (2)
C3—C41.390 (2)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C61.502 (2)C14—C14i1.551 (4)
C5—H5A0.9800C14—H14A0.9900
C5—H5B0.9800C14—H14B0.9900
C5—H5C0.9800C15—C13i1.542 (2)
C6—H6A0.9800C15—H15A0.9900
C6—H6B0.9800C15—H15B0.9900
O2—S1—O1116.57 (7)C12—C7—S1120.40 (13)
O2—S1—N1111.93 (8)C8—C7—S1119.60 (13)
O1—S1—N1103.30 (7)C9—C8—C7119.74 (16)
O2—S1—C7108.46 (8)C9—C8—H8120.1
O1—S1—C7109.02 (8)C7—C8—H8120.1
N1—S1—C7107.11 (8)C8—C9—C10121.19 (15)
C1—N1—S1122.82 (12)C8—C9—H9119.4
C1—N1—H1N117.0 (14)C10—C9—H9119.4
S1—N1—H1N110.8 (14)N4—C10—C11120.04 (16)
C1—N2—C2115.81 (15)N4—C10—C9122.07 (16)
C4—N3—C1116.74 (15)C11—C10—C9117.86 (16)
C10—N4—H2N120.7 (15)C12—C11—C10120.92 (16)
C10—N4—H3N115.6 (15)C12—C11—H11119.5
H2N—N4—H3N121 (2)C10—C11—H11119.5
N2—C1—N3126.72 (16)C11—C12—C7120.37 (16)
N2—C1—N1120.18 (15)C11—C12—H12119.8
N3—C1—N1113.09 (15)C7—C12—H12119.8
N2—C2—C3121.51 (16)C15—N5—C14109.18 (14)
N2—C2—C5116.91 (15)C15—N5—C13109.49 (13)
C3—C2—C5121.58 (16)C14—N5—C13109.06 (13)
C2—C3—C4118.22 (16)N5—C13—C15i109.61 (13)
C2—C3—H3120.9N5—C13—H13A109.7
C4—C3—H3120.9C15i—C13—H13A109.7
N3—C4—C3120.97 (16)N5—C13—H13B109.7
N3—C4—C6116.90 (16)C15i—C13—H13B109.7
C3—C4—C6122.13 (16)H13A—C13—H13B108.2
C2—C5—H5A109.5N5—C14—C14i109.52 (9)
C2—C5—H5B109.5N5—C14—H14A109.8
H5A—C5—H5B109.5C14i—C14—H14A109.8
C2—C5—H5C109.5N5—C14—H14B109.8
H5A—C5—H5C109.5C14i—C14—H14B109.8
H5B—C5—H5C109.5H14A—C14—H14B108.2
C4—C6—H6A109.5N5—C15—C13i109.84 (13)
C4—C6—H6B109.5N5—C15—H15A109.7
H6A—C6—H6B109.5C13i—C15—H15A109.7
C4—C6—H6C109.5N5—C15—H15B109.7
H6A—C6—H6C109.5C13i—C15—H15B109.7
H6B—C6—H6C109.5H15A—C15—H15B108.2
C12—C7—C8119.89 (15)
O2—S1—N1—C166.25 (15)O2—S1—C7—C8166.16 (13)
O1—S1—N1—C1167.54 (13)O1—S1—C7—C838.28 (16)
C7—S1—N1—C152.51 (15)N1—S1—C7—C872.86 (15)
C2—N2—C1—N31.0 (3)C12—C7—C8—C91.4 (3)
C2—N2—C1—N1179.64 (15)S1—C7—C8—C9177.55 (13)
C4—N3—C1—N21.6 (3)C7—C8—C9—C101.0 (3)
C4—N3—C1—N1179.01 (15)C8—C9—C10—N4177.89 (17)
S1—N1—C1—N228.3 (2)C8—C9—C10—C110.4 (3)
S1—N1—C1—N3152.26 (12)N4—C10—C11—C12176.87 (18)
C1—N2—C2—C30.3 (2)C9—C10—C11—C121.5 (3)
C1—N2—C2—C5179.32 (15)C10—C11—C12—C71.1 (3)
N2—C2—C3—C41.0 (3)C8—C7—C12—C110.3 (3)
C5—C2—C3—C4178.66 (16)S1—C7—C12—C11176.48 (15)
C1—N3—C4—C30.8 (2)C15—N5—C13—C15i61.24 (15)
C1—N3—C4—C6178.58 (15)C14—N5—C13—C15i58.17 (18)
C2—C3—C4—N30.4 (3)C15—N5—C14—C14i57.7 (2)
C2—C3—C4—C6179.74 (16)C13—N5—C14—C14i61.9 (2)
O2—S1—C7—C1217.69 (17)C14—N5—C15—C13i61.68 (17)
O1—S1—C7—C12145.57 (14)C13—N5—C15—C13i57.66 (16)
N1—S1—C7—C12103.29 (15)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N5ii0.88 (2)1.90 (2)2.768 (2)169 (2)
N4—H2N···O2iii0.88 (1)2.48 (2)3.058 (2)124 (2)
N4—H2N···N2iii0.88 (1)2.59 (2)3.376 (2)149 (2)
N4—H3N···O1iv0.88 (2)2.15 (2)3.032 (2)178 (2)
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N5i0.875 (15)1.904 (16)2.768 (2)168.9 (17)
N4—H2N···O2ii0.881 (11)2.475 (18)3.058 (2)124.2 (16)
N4—H2N···N2ii0.881 (11)2.592 (16)3.376 (2)148.8 (18)
N4—H3N···O1iii0.88 (2)2.15 (2)3.032 (2)178.1 (19)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

We are grateful to the Ministry of Higher Education (Malaysia) and the University of Malaya (UM) for funding structural studies through the High-Impact Research scheme (UM·C/HIR-MOHE/SC/03).

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. Cryst. Mat. 228, 289–294.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEllis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489–3503.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2013). Acta Cryst. E69, o234.  CSD CrossRef IUCr Journals Google Scholar
First citationTiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655–657.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds