organic compounds
Propyl 2-(1H-indol-3-yl)acetate
aDepartment of Chemical Engineering, Taizhou Institute of Science and Technology, NJUST, Meilan Dong Road No. 8 Taizhou, Taizhou 225300, People's Republic of China
*Correspondence e-mail: tgm333@126.com
In the title compound, C13H15NO2, the acetate group [C—C(=O)—O] makes a dihedral angle of 62.35 (13)° with the mean plane of the indole ring system [maximum deviation = 0.011 (3) Å]. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, forming helical chains propagating along [010].
CCDC reference: 965567
Related literature
For the use of the title compound as a starting material for the synthesis of platinum complexes with antitumor activity, see: Kim et al. (1994). For its use as an intermediate in organic synthesis, see: Pandey et al. (1997). For the synthesis of indole-3-acetic acid, see: Johnson & Donald (1973). For standard bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 965567
10.1107/S1600536813027633/su2653sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027633/su2653Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813027633/su2653Isup3.cml
Indole-3-acetic acid was synthesized following a literature procedure (Johnson & Donald, 1973). The title compound was synthesized by adding indole-3-acetic acid (10 g, 0.057 mol) and 100 mL of dichloromethane to a three-neck flask with stirring and cooled in an ice bath. 4.3 mL of thionyl chloride was added drop wise, after the solution was stirred for a further 10 min. 15 mL of 1-propanol was then added and the reaction was followed using TLC until completion. The title compound was obtained as a light yellow solid [Yield = 10.5 g, 0.048 mol]. Recrystallization with ethanol gave yellow block-like crystals, suitable for X-ray diffraction analysis.
H atoms were positioned geometrically (N-H = 0.86 Å, C—H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H atoms, respectively) and refined as riding atoms with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C13H15NO2 | F(000) = 464 |
Mr = 217.26 | Dx = 1.198 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 7.8230 (16) Å | θ = 10–13° |
b = 8.1740 (16) Å | µ = 0.08 mm−1 |
c = 18.994 (4) Å | T = 293 K |
β = 97.18 (3)° | Block, yellow |
V = 1205.1 (4) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1463 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.083 |
Graphite monochromator | θmax = 25.4°, θmin = 2.2° |
ω/2θ scans | h = 0→9 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→9 |
Tmin = 0.976, Tmax = 0.992 | l = −22→22 |
2387 measured reflections | 3 standard reflections every 200 reflections |
2210 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.183 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.3P] where P = (Fo2 + 2Fc2)/3 |
2210 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C13H15NO2 | V = 1205.1 (4) Å3 |
Mr = 217.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8230 (16) Å | µ = 0.08 mm−1 |
b = 8.1740 (16) Å | T = 293 K |
c = 18.994 (4) Å | 0.30 × 0.20 × 0.10 mm |
β = 97.18 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1463 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.083 |
Tmin = 0.976, Tmax = 0.992 | 3 standard reflections every 200 reflections |
2387 measured reflections | intensity decay: 1% |
2210 independent reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.183 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.22 e Å−3 |
2210 reflections | Δρmin = −0.30 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.4476 (3) | 0.5291 (3) | 0.76568 (11) | 0.0551 (6) | |
H1N | 0.4531 | 0.5727 | 0.8071 | 0.066* | |
O1 | 0.6827 (3) | 0.2944 (2) | 0.50091 (9) | 0.0572 (6) | |
C1 | 0.9681 (5) | 0.2675 (5) | 0.4162 (2) | 0.0913 (12) | |
H1A | 1.0120 | 0.2982 | 0.3731 | 0.137* | |
H1B | 1.0455 | 0.1909 | 0.4418 | 0.137* | |
H1C | 0.9582 | 0.3630 | 0.4448 | 0.137* | |
O2 | 0.6241 (3) | 0.1504 (2) | 0.59452 (9) | 0.0580 (6) | |
C2 | 0.7950 (5) | 0.1904 (4) | 0.39885 (15) | 0.0677 (9) | |
H2A | 0.8070 | 0.0929 | 0.3707 | 0.081* | |
H2B | 0.7205 | 0.2658 | 0.3700 | 0.081* | |
C3 | 0.7106 (5) | 0.1444 (4) | 0.46239 (16) | 0.0684 (9) | |
H3A | 0.6015 | 0.0904 | 0.4478 | 0.082* | |
H3B | 0.7838 | 0.0702 | 0.4925 | 0.082* | |
C4 | 0.6405 (3) | 0.2803 (3) | 0.56652 (12) | 0.0417 (6) | |
C5 | 0.6233 (3) | 0.4467 (3) | 0.59888 (13) | 0.0462 (6) | |
H5A | 0.7379 | 0.4897 | 0.6132 | 0.055* | |
H5B | 0.5672 | 0.5189 | 0.5626 | 0.055* | |
C6 | 0.5254 (3) | 0.4523 (3) | 0.66121 (12) | 0.0408 (6) | |
C7 | 0.5740 (3) | 0.5333 (3) | 0.72294 (13) | 0.0493 (7) | |
H7A | 0.6799 | 0.5847 | 0.7344 | 0.059* | |
C8 | 0.3090 (3) | 0.4439 (3) | 0.73219 (13) | 0.0461 (6) | |
C9 | 0.1503 (4) | 0.4081 (4) | 0.75382 (17) | 0.0608 (8) | |
H9A | 0.1222 | 0.4447 | 0.7973 | 0.073* | |
C10 | 0.0360 (4) | 0.3173 (4) | 0.7092 (2) | 0.0685 (9) | |
H10A | −0.0707 | 0.2901 | 0.7228 | 0.082* | |
C11 | 0.0784 (4) | 0.2654 (4) | 0.64391 (18) | 0.0637 (8) | |
H11A | −0.0011 | 0.2038 | 0.6145 | 0.076* | |
C12 | 0.2337 (3) | 0.3022 (3) | 0.62148 (15) | 0.0516 (7) | |
H12A | 0.2590 | 0.2669 | 0.5774 | 0.062* | |
C13 | 0.3536 (3) | 0.3938 (3) | 0.66602 (12) | 0.0401 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0693 (15) | 0.0572 (14) | 0.0401 (11) | −0.0058 (12) | 0.0115 (11) | −0.0130 (11) |
O1 | 0.0821 (14) | 0.0501 (11) | 0.0442 (10) | 0.0020 (9) | 0.0262 (10) | −0.0014 (8) |
C1 | 0.091 (3) | 0.092 (3) | 0.099 (3) | −0.007 (2) | 0.044 (2) | −0.015 (2) |
O2 | 0.0766 (14) | 0.0506 (11) | 0.0497 (11) | 0.0029 (10) | 0.0196 (10) | 0.0071 (9) |
C2 | 0.098 (3) | 0.0577 (19) | 0.0503 (17) | 0.0110 (17) | 0.0201 (17) | −0.0075 (14) |
C3 | 0.093 (2) | 0.0551 (18) | 0.0615 (18) | −0.0074 (16) | 0.0259 (17) | −0.0124 (15) |
C4 | 0.0379 (13) | 0.0513 (15) | 0.0365 (12) | 0.0005 (11) | 0.0068 (10) | 0.0026 (11) |
C5 | 0.0498 (14) | 0.0459 (14) | 0.0435 (14) | −0.0043 (12) | 0.0084 (12) | 0.0024 (11) |
C6 | 0.0408 (13) | 0.0426 (13) | 0.0385 (12) | 0.0022 (11) | 0.0028 (10) | −0.0013 (10) |
C7 | 0.0488 (14) | 0.0527 (16) | 0.0461 (14) | −0.0088 (12) | 0.0048 (12) | −0.0076 (12) |
C8 | 0.0525 (15) | 0.0414 (14) | 0.0464 (14) | 0.0074 (11) | 0.0139 (12) | −0.0012 (11) |
C9 | 0.0635 (18) | 0.0532 (17) | 0.072 (2) | 0.0104 (15) | 0.0338 (16) | 0.0031 (15) |
C10 | 0.0427 (16) | 0.0605 (19) | 0.105 (3) | 0.0053 (14) | 0.0206 (17) | 0.0063 (18) |
C11 | 0.0389 (15) | 0.0631 (19) | 0.086 (2) | 0.0008 (13) | −0.0035 (14) | −0.0015 (16) |
C12 | 0.0414 (14) | 0.0563 (17) | 0.0553 (15) | 0.0044 (12) | −0.0010 (12) | −0.0069 (13) |
C13 | 0.0388 (13) | 0.0414 (13) | 0.0390 (13) | 0.0027 (10) | 0.0012 (10) | 0.0004 (11) |
N1—C7 | 1.356 (3) | C5—C6 | 1.489 (3) |
N1—C8 | 1.375 (3) | C5—H5A | 0.9700 |
N1—H1N | 0.8600 | C5—H5B | 0.9700 |
O1—C4 | 1.333 (3) | C6—C7 | 1.359 (3) |
O1—C3 | 1.458 (3) | C6—C13 | 1.440 (3) |
C1—C2 | 1.493 (5) | C7—H7A | 0.9300 |
C1—H1A | 0.9600 | C8—C9 | 1.387 (4) |
C1—H1B | 0.9600 | C8—C13 | 1.407 (3) |
C1—H1C | 0.9600 | C9—C10 | 1.371 (4) |
O2—C4 | 1.201 (3) | C9—H9A | 0.9300 |
C2—C3 | 1.495 (4) | C10—C11 | 1.390 (5) |
C2—H2A | 0.9700 | C10—H10A | 0.9300 |
C2—H2B | 0.9700 | C11—C12 | 1.370 (4) |
C3—H3A | 0.9700 | C11—H11A | 0.9300 |
C3—H3B | 0.9700 | C12—C13 | 1.399 (4) |
C4—C5 | 1.506 (4) | C12—H12A | 0.9300 |
C7—N1—C8 | 109.1 (2) | C6—C5—H5B | 108.4 |
C7—N1—H1N | 125.4 | C4—C5—H5B | 108.4 |
C8—N1—H1N | 125.4 | H5A—C5—H5B | 107.4 |
C4—O1—C3 | 117.8 (2) | C7—C6—C13 | 105.7 (2) |
C2—C1—H1A | 109.5 | C7—C6—C5 | 125.8 (2) |
C2—C1—H1B | 109.5 | C13—C6—C5 | 128.1 (2) |
H1A—C1—H1B | 109.5 | N1—C7—C6 | 110.9 (2) |
C2—C1—H1C | 109.5 | N1—C7—H7A | 124.5 |
H1A—C1—H1C | 109.5 | C6—C7—H7A | 124.5 |
H1B—C1—H1C | 109.5 | N1—C8—C9 | 130.8 (3) |
C1—C2—C3 | 114.1 (3) | N1—C8—C13 | 107.0 (2) |
C1—C2—H2A | 108.7 | C9—C8—C13 | 122.3 (3) |
C3—C2—H2A | 108.7 | C10—C9—C8 | 118.1 (3) |
C1—C2—H2B | 108.7 | C10—C9—H9A | 121.0 |
C3—C2—H2B | 108.7 | C8—C9—H9A | 121.0 |
H2A—C2—H2B | 107.6 | C9—C10—C11 | 120.4 (3) |
O1—C3—C2 | 107.6 (2) | C9—C10—H10A | 119.8 |
O1—C3—H3A | 110.2 | C11—C10—H10A | 119.8 |
C2—C3—H3A | 110.2 | C12—C11—C10 | 122.0 (3) |
O1—C3—H3B | 110.2 | C12—C11—H11A | 119.0 |
C2—C3—H3B | 110.2 | C10—C11—H11A | 119.0 |
H3A—C3—H3B | 108.5 | C11—C12—C13 | 118.9 (3) |
O2—C4—O1 | 122.9 (2) | C11—C12—H12A | 120.6 |
O2—C4—C5 | 126.7 (2) | C13—C12—H12A | 120.6 |
O1—C4—C5 | 110.4 (2) | C12—C13—C8 | 118.3 (2) |
C6—C5—C4 | 115.7 (2) | C12—C13—C6 | 134.4 (2) |
C6—C5—H5A | 108.4 | C8—C13—C6 | 107.3 (2) |
C4—C5—H5A | 108.4 | ||
C4—O1—C3—C2 | −166.9 (2) | C13—C8—C9—C10 | 1.6 (4) |
C1—C2—C3—O1 | 62.5 (4) | C8—C9—C10—C11 | −1.0 (4) |
C3—O1—C4—O2 | −0.4 (4) | C9—C10—C11—C12 | 0.0 (5) |
C3—O1—C4—C5 | 177.9 (2) | C10—C11—C12—C13 | 0.5 (4) |
O2—C4—C5—C6 | −20.2 (4) | C11—C12—C13—C8 | 0.1 (4) |
O1—C4—C5—C6 | 161.6 (2) | C11—C12—C13—C6 | 179.0 (3) |
C4—C5—C6—C7 | 134.1 (3) | N1—C8—C13—C12 | 179.3 (2) |
C4—C5—C6—C13 | −54.7 (3) | C9—C8—C13—C12 | −1.2 (4) |
C8—N1—C7—C6 | −0.3 (3) | N1—C8—C13—C6 | 0.1 (3) |
C13—C6—C7—N1 | 0.3 (3) | C9—C8—C13—C6 | 179.6 (2) |
C5—C6—C7—N1 | 173.2 (2) | C7—C6—C13—C12 | −179.3 (3) |
C7—N1—C8—C9 | −179.4 (3) | C5—C6—C13—C12 | 8.2 (5) |
C7—N1—C8—C13 | 0.1 (3) | C7—C6—C13—C8 | −0.3 (3) |
N1—C8—C9—C10 | −179.0 (3) | C5—C6—C13—C8 | −172.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.86 | 2.13 | 2.953 (3) | 160 |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.86 | 2.13 | 2.953 (3) | 160 |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors thank Liu Bo Nian from Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for measuring the X-ray diffraction data.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Johnson, H. E. & Donald, G. C. (1973). Org. Synth. 5, 654–656. Google Scholar
Kim, D.-K., Kim, G., Gam, J., Cho, Y.-B., Kim, H.-T., Tai, J.-H., Kim, K. H., Hong, W.-S. & Park, J.-G. (1994). J. Med. Chem. 37, 1471–1485. CrossRef CAS PubMed Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indole derivatives are some of the most effective anticancer agents currently available. The title compound is a starting material for the synthesis of platinum complexes with antitumor activity (Kim et al., 1994) and is also an important intermediate in organic synthesis (Pandey et al., 1997). As part of our studies of the synthesis and characterization of such compounds, we herein report on the crystal structure of the title compound.
The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The acetate group [C5-C4(═O2)-O1] makes a dihedral angle of 62.35 (13) ° with the mean plane of the indole ring system [N1/C6-C13; maximum deviation = 0.011 (3) Å for atom C9].
In the crystal, molecules are linked by N—H···O hydrogen bonds forming helical chains propagating along the b axis direction (Table 1 and Fig 2).