organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­acet­yl)glycine

aSchool of Materials Science and Engineering, Changzhou University & High Technology, Research Institute of Nanjing University, Changzhou 213162, Jiangsu, People's Republic of China, and bHigh Technology Research Institute of Nanjing University, Changzhou 213162, Jiangsu, People's Republic of China
*Correspondence e-mail: zycqyc@hotmail.com

(Received 8 October 2013; accepted 22 October 2013; online 26 October 2013)

The title compound, C4H6ClNO3, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In each mol­ecule, there are N—H⋯O and N—H⋯Cl hydrogen bonds. Both mol­ecules are relatively planar, with the mean plane of the acetamide [N—C(=O)C] group being inclined to the mean plane of the acetate group [C—C(=O)O] by 9.23 (13)° in mol­ecule A and 6.23 (12)° in mol­ecule B. In the crystal, adjacent mol­ecules are linked by O—H⋯O hydrogen bonds and weak C—H⋯O contacts forming –AAA– and –BBB– parallel chains propagating along the a-axis direction.

Related literature

For the use of the title compound as an inter­mediate in the synthesis of polydespipeptides and their copolymers, which have a wide range of biomedical properties, see: Feng et al. (2010[Feng, Y., Lu, J., Behl, M. & Lendlein, A. (2010). Macromol. Biosci. 10, 1008-1021.]). For the synthetic procedure, see: Allmendenger et al. (1988[Allmendenger, T., Rihs, G. & Wetter, H. (1988). Helv. Chim. Acta, 71, 395-403.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the crystal structure of (2,2,2-tri­chloro­acte­yl)glycine, see: Dou et al. (1995[Dou, S., Kehrer, A., Ofial, A. R. & Weiss, A. (1995). J. Mol. Struct. 345, 11-29.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6ClNO3

  • Mr = 151.55

  • Monoclinic, P 21 /c

  • a = 18.001 (4) Å

  • b = 7.6371 (17) Å

  • c = 9.372 (2) Å

  • β = 105.025 (3)°

  • V = 1244.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.863, Tmax = 0.923

  • 9419 measured reflections

  • 2419 independent reflections

  • 2143 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections every 120 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.07

  • 2419 reflections

  • 167 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1′⋯Cl1 0.86 2.44 2.9422 (18) 118
N1—H1′⋯O2 0.86 2.24 2.618 (2) 106
N2—H2′⋯Cl2 0.86 2.46 2.9450 (18) 116
N2—H2′⋯O4 0.86 2.22 2.619 (2) 108
O1—H1⋯O3i 0.82 1.84 2.647 (2) 166
O5—H5⋯O6ii 0.82 1.85 2.657 (2) 167
C4—H4B⋯O2ii 0.97 2.57 3.080 (3) 113
C8—H8B⋯O4i 0.97 2.57 3.099 (3) 114
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important organic intermediate which has been used to synthesis polydespipeptides and their copolymers, that have a wide range of biomedical applications such as, tissue engineering, drug delivery, and the synthesis of artificial skin (Feng et al., 2010). Herein we report on its crystal structure.

The two indepedent molecules of the title compound are shown in Fig. 1. In each molecule the NH hydrogen atom is hydrogen bonded to the adjacent O and Cl atoms (Table 1 and Fig. 1). Both molecules are planar with a maximum deviation of and , respectively for the mean planes of the non-H atoms.

The bond lengths (Allen et al., 1987) and angles are within normal ranges. The bond distances are similar to those observed for the trichloro derivative, (2,2,2-Trichloroacteyl)glycine (Dou et al., 1995), which also crystallizes with two independent molecules in the asymmetric unit.

In each molecule of the title compound the NH hydrogen atom is hydrogen bonded to the adjacent O and Cl atoms (Table 1 and Fig. 1). Both molecules are relatively planar, with the mean plane of the acetamide [N-C(O)C] group being inclined to the mean plane of the acetate group [C-C(O)O] by 9.23 (13) ° in molecule A and 6.23 (12) ° in molecule B.

In the crystal, adjacent similar molecules are linked by O—H···O and hydrogen bonds and weak C-H···O contacts forming -A-A-A- and -B-B-B- parallel chains propagating along the a axis direction (Table 1 and Fig. 2).

Related literature top

For the use of the title compound as an intermediate in the synthesis of polydespipeptides and their copolymers, which have a wide range of biomedical properties, see: Feng et al. (2010). For the synthetic procedure, see: Allmendenger et al. (1988). For bond-length data, see: Allen et al. (1987). For the crystal structure of (2,2,2-trichloroacteyl)glycine, see: Dou et al. (1995).

Experimental top

The title compound was prepared by a method reported in the literature (Allmendenger et al., 1988). A solution of NaOH (93.75 ml, 4 mol/L) and 2-chloroacetyl chloride (22.6 ml, 0.3 mol) were added separately and slowly to a solution of N-(chloroacetyl)-glycine sodium salt [prepared by mixing NaOH (13.2 g, 0.3 mol) and glycine (25 g, 0.3 mol) at pH = 11 in an ice bath]. After stirring for 2 h at room temperature, HCl was added to adjust the pH to 2. Then ethyl acetate was added, and the solvent filtered. The organic phase was evaporated on a rotary evaporator and the title compound was obtained. Colourless block-like crystals were obtained by slow evaporation of an ethyl acetate solution for 5 days at room temperature.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms: N—H = 0.86 Å, O—H = 0.82 Å, C-H = 0.97 Å with Uiso(H) = 1.5Ueq(O) and = 1.2Ueq(C), while for the NH H atoms Uiso(H) was refined.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N-H···O and N-H···Cl hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. The various hydrogen bonds and short contacts are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
N-(2-Chloroacetyl)glycine top
Crystal data top
C4H6ClNO3F(000) = 624
Mr = 151.55Dx = 1.618 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4385 reflections
a = 18.001 (4) Åθ = 3.5–27.1°
b = 7.6371 (17) ŵ = 0.54 mm1
c = 9.372 (2) ÅT = 296 K
β = 105.025 (3)°Block, colourless
V = 1244.4 (5) Å30.28 × 0.22 × 0.15 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2143 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
phi and ω scansh = 2222
Absorption correction: ψ scan
(North et al., 1968)
k = 79
Tmin = 0.863, Tmax = 0.923l = 1011
9419 measured reflections3 standard reflections every 120 reflections
2419 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.3706P]
where P = (Fo2 + 2Fc2)/3
2419 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C4H6ClNO3V = 1244.4 (5) Å3
Mr = 151.55Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.001 (4) ŵ = 0.54 mm1
b = 7.6371 (17) ÅT = 296 K
c = 9.372 (2) Å0.28 × 0.22 × 0.15 mm
β = 105.025 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2143 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.863, Tmax = 0.9233 standard reflections every 120 reflections
9419 measured reflections intensity decay: 1%
2419 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
2419 reflectionsΔρmin = 0.30 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34036 (11)0.8173 (2)0.8783 (2)0.0378 (4)
C20.31910 (11)0.6313 (2)0.8351 (2)0.0386 (4)
H2A0.26490.61230.82720.046*
H2B0.32880.60580.74010.046*
C30.36784 (10)0.3480 (2)0.9359 (2)0.0345 (4)
C40.42198 (13)0.2461 (3)1.0570 (2)0.0486 (5)
H4A0.45490.17521.01290.058*
H4B0.39180.16691.10030.058*
C50.16319 (11)0.1528 (2)0.0418 (2)0.0382 (4)
C60.18026 (11)0.3394 (2)0.0134 (2)0.0374 (4)
H6A0.23450.36370.05470.045*
H6B0.16780.36140.09210.045*
C70.13138 (10)0.6218 (2)0.06725 (18)0.0338 (4)
C80.07865 (12)0.7218 (3)0.1386 (2)0.0463 (5)
H8A0.04490.79350.06360.056*
H8B0.10970.80050.21140.056*
Cl10.48117 (3)0.37273 (7)1.20038 (5)0.05350 (18)
Cl20.02089 (3)0.59470 (7)0.22620 (6)0.05211 (18)
N10.36524 (9)0.5190 (2)0.94747 (17)0.0395 (4)
H1'0.39550.56541.02450.057 (7)*
N20.13446 (9)0.4500 (2)0.08162 (17)0.0373 (4)
H2'0.10550.40000.12930.045 (6)*
O10.30581 (9)0.92850 (18)0.77700 (15)0.0498 (4)
H10.31931.02830.80400.075*
O20.38362 (11)0.85625 (19)0.99322 (17)0.0647 (5)
O30.32736 (8)0.26765 (17)0.82999 (15)0.0456 (3)
O40.12139 (12)0.1121 (2)0.1163 (2)0.0708 (5)
O50.19929 (9)0.04173 (18)0.02249 (17)0.0508 (4)
H50.18780.05850.00520.076*
O60.16923 (8)0.70336 (17)0.00271 (15)0.0430 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0450 (10)0.0252 (9)0.0410 (9)0.0029 (7)0.0074 (8)0.0003 (7)
C20.0450 (10)0.0246 (9)0.0432 (10)0.0002 (7)0.0058 (8)0.0014 (7)
C30.0409 (9)0.0252 (9)0.0403 (9)0.0002 (7)0.0160 (8)0.0000 (7)
C40.0645 (13)0.0306 (10)0.0441 (10)0.0010 (9)0.0024 (9)0.0013 (8)
C50.0492 (10)0.0274 (9)0.0415 (10)0.0003 (8)0.0184 (8)0.0007 (7)
C60.0457 (10)0.0268 (9)0.0437 (9)0.0013 (7)0.0186 (8)0.0002 (7)
C70.0403 (9)0.0262 (9)0.0335 (8)0.0012 (7)0.0069 (7)0.0001 (7)
C80.0573 (12)0.0326 (10)0.0559 (11)0.0008 (9)0.0271 (10)0.0003 (9)
Cl10.0568 (3)0.0499 (3)0.0471 (3)0.0053 (2)0.0013 (2)0.0023 (2)
Cl20.0526 (3)0.0510 (3)0.0600 (3)0.0071 (2)0.0276 (2)0.0024 (2)
N10.0512 (9)0.0226 (8)0.0415 (8)0.0009 (7)0.0063 (7)0.0007 (6)
N20.0466 (9)0.0264 (8)0.0435 (8)0.0025 (6)0.0198 (7)0.0008 (6)
O10.0692 (10)0.0246 (7)0.0456 (7)0.0040 (6)0.0030 (7)0.0001 (5)
O20.0922 (12)0.0266 (8)0.0540 (9)0.0004 (7)0.0193 (9)0.0022 (6)
O30.0582 (8)0.0242 (7)0.0478 (7)0.0002 (6)0.0020 (6)0.0020 (5)
O40.1108 (14)0.0295 (8)0.1007 (13)0.0073 (8)0.0786 (12)0.0046 (8)
O50.0690 (10)0.0273 (7)0.0676 (9)0.0004 (6)0.0386 (8)0.0027 (6)
O60.0562 (8)0.0276 (7)0.0514 (8)0.0035 (6)0.0250 (6)0.0058 (6)
Geometric parameters (Å, º) top
C1—O21.192 (2)C5—C61.496 (3)
C1—O11.305 (2)C6—N21.441 (2)
C1—C21.499 (2)C6—H6A0.9700
C2—N11.443 (2)C6—H6B0.9700
C2—H2A0.9700C7—O61.230 (2)
C2—H2B0.9700C7—N21.318 (2)
C3—O31.232 (2)C7—C81.504 (3)
C3—N11.312 (2)C8—Cl21.772 (2)
C3—C41.507 (3)C8—H8A0.9700
C4—Cl11.770 (2)C8—H8B0.9700
C4—H4A0.9700N1—H1'0.8597
C4—H4B0.9700N2—H2'0.8598
C5—O41.192 (2)O1—H10.8200
C5—O51.307 (2)O5—H50.8200
O2—C1—O1124.83 (17)N2—C6—H6A110.1
O2—C1—C2122.81 (17)C5—C6—H6A110.1
O1—C1—C2112.35 (15)N2—C6—H6B110.1
N1—C2—C1107.95 (15)C5—C6—H6B110.1
N1—C2—H2A110.1H6A—C6—H6B108.4
C1—C2—H2A110.1O6—C7—N2122.95 (17)
N1—C2—H2B110.1O6—C7—C8118.69 (16)
C1—C2—H2B110.1N2—C7—C8118.35 (16)
H2A—C2—H2B108.4C7—C8—Cl2116.19 (14)
O3—C3—N1122.43 (17)C7—C8—H8A108.2
O3—C3—C4118.78 (17)Cl2—C8—H8A108.2
N1—C3—C4118.79 (16)C7—C8—H8B108.2
C3—C4—Cl1115.73 (14)Cl2—C8—H8B108.2
C3—C4—H4A108.3H8A—C8—H8B107.4
Cl1—C4—H4A108.3C3—N1—C2123.89 (16)
C3—C4—H4B108.3C3—N1—H1'116.8
Cl1—C4—H4B108.3C2—N1—H1'119.1
H4A—C4—H4B107.4C7—N2—C6123.51 (15)
O4—C5—O5124.44 (18)C7—N2—H2'118.7
O4—C5—C6122.84 (17)C6—N2—H2'117.7
O5—C5—C6112.73 (16)C1—O1—H1109.5
N2—C6—C5108.19 (15)C5—O5—H5109.5
O2—C1—C2—N15.6 (3)N2—C7—C8—Cl23.8 (2)
O1—C1—C2—N1174.91 (17)O3—C3—N1—C24.0 (3)
O3—C3—C4—Cl1177.13 (15)C4—C3—N1—C2176.34 (18)
N1—C3—C4—Cl13.2 (3)C1—C2—N1—C3171.64 (17)
O4—C5—C6—N23.7 (3)O6—C7—N2—C62.1 (3)
O5—C5—C6—N2176.72 (16)C8—C7—N2—C6177.35 (17)
O6—C7—C8—Cl2175.65 (14)C5—C6—N2—C7174.44 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.442.9422 (18)118
N1—H1···O20.862.242.618 (2)106
N2—H2···Cl20.862.462.9450 (18)116
N2—H2···O40.862.222.619 (2)108
O1—H1···O3i0.821.842.647 (2)166
O5—H5···O6ii0.821.852.657 (2)167
C4—H4B···O2ii0.972.573.080 (3)113
C8—H8B···O4i0.972.573.099 (3)114
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1'···Cl10.862.442.9422 (18)118
N1—H1'···O20.862.242.618 (2)106
N2—H2'···Cl20.862.462.9450 (18)116
N2—H2'···O40.862.222.619 (2)108
O1—H1···O3i0.821.842.647 (2)166
O5—H5···O6ii0.821.852.657 (2)167
C4—H4B···O2ii0.972.573.080 (3)113
C8—H8B···O4i0.972.573.099 (3)114
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAllmendenger, T., Rihs, G. & Wetter, H. (1988). Helv. Chim. Acta, 71, 395–403.  Google Scholar
First citationDou, S., Kehrer, A., Ofial, A. R. & Weiss, A. (1995). J. Mol. Struct. 345, 11–29.  CSD CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFeng, Y., Lu, J., Behl, M. & Lendlein, A. (2010). Macromol. Biosci. 10, 1008–1021.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds