organic compounds
1-[4-(4-Hydroxyphenyl)piperazin-1-yl]ethanone
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C12H16N2O2, the piperazine ring has a chair conformation. The dihedral angle between the mean planes of the benzene ring and the acetyl group is 48.7 (1)°. In the crystal, molecules are linked via O—H⋯O hydrogen bonds, forming chains propagating along [010].
CCDC reference: 966190
Related literature
For the biological activity of piperazine derivatives, see: Bogatcheva et al. (2006); Brockunier et al. (2004); Elliott (2011); Kharb et al. (2012). For the crystal structures of related compounds, see: Dayananda et al. (2012); Kavitha et al. (2013a,b); Peeters et al. (1979, 2004). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 966190
10.1107/S1600536813028031/su2656sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028031/su2656Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813028031/su2656Isup3.cml
The title compound was purchased from Sigma-Aldrich and was recrystallized from ethanol by slow evaporation to give irregular block-like colourless crystals (M.p. = 453 K).
All of the H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), and O-H = 0.82 Å, with Uiso(H) = 1.5Ueq(C-methyl and O) and = 1.2Ueq(C) for other H atoms.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C12H16N2O2 | F(000) = 472 |
Mr = 220.27 | Dx = 1.339 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 6.13183 (19) Å | Cell parameters from 3201 reflections |
b = 12.0106 (4) Å | θ = 3.7–72.1° |
c = 14.8704 (5) Å | µ = 0.75 mm−1 |
β = 94.025 (3)° | T = 173 K |
V = 1092.46 (6) Å3 | Block, colourless |
Z = 4 | 0.48 × 0.46 × 0.32 mm |
Agilent Xcalibur (Eos, Gemini) diffractometer | 2134 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1944 reflections with I > 2σ(I) |
Detector resolution: 16.0416 pixels mm-1 | Rint = 0.025 |
ω scans | θmax = 72.3°, θmin = 4.7° |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | h = −7→5 |
Tmin = 0.833, Tmax = 1.000 | k = −14→14 |
6224 measured reflections | l = −17→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.063P)2 + 0.2496P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2134 reflections | Δρmax = 0.22 e Å−3 |
147 parameters | Δρmin = −0.18 e Å−3 |
C12H16N2O2 | V = 1092.46 (6) Å3 |
Mr = 220.27 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 6.13183 (19) Å | µ = 0.75 mm−1 |
b = 12.0106 (4) Å | T = 173 K |
c = 14.8704 (5) Å | 0.48 × 0.46 × 0.32 mm |
β = 94.025 (3)° |
Agilent Xcalibur (Eos, Gemini) diffractometer | 2134 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 1944 reflections with I > 2σ(I) |
Tmin = 0.833, Tmax = 1.000 | Rint = 0.025 |
6224 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.22 e Å−3 |
2134 reflections | Δρmin = −0.18 e Å−3 |
147 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.76473 (18) | −0.03376 (8) | 0.41180 (7) | 0.0420 (3) | |
O2 | 0.92639 (18) | 0.80536 (7) | 0.30904 (7) | 0.0375 (3) | |
H2 | 0.8626 | 0.8514 | 0.3383 | 0.056* | |
N1 | 0.62601 (17) | 0.13923 (9) | 0.41758 (7) | 0.0273 (3) | |
N2 | 0.71764 (16) | 0.37192 (8) | 0.41491 (7) | 0.0244 (3) | |
C1 | 0.6095 (2) | 0.03108 (10) | 0.39631 (8) | 0.0285 (3) | |
C2 | 0.44858 (19) | 0.22001 (10) | 0.40349 (9) | 0.0299 (3) | |
H2A | 0.3914 | 0.2384 | 0.4608 | 0.036* | |
H2B | 0.3309 | 0.1879 | 0.3649 | 0.036* | |
C3 | 0.5312 (2) | 0.32459 (10) | 0.36038 (9) | 0.0305 (3) | |
H3A | 0.5754 | 0.3072 | 0.3006 | 0.037* | |
H3B | 0.4143 | 0.3791 | 0.3542 | 0.037* | |
C4 | 0.89577 (19) | 0.29095 (10) | 0.42176 (8) | 0.0262 (3) | |
H4A | 1.0203 | 0.3222 | 0.4569 | 0.031* | |
H4B | 0.9407 | 0.2738 | 0.3620 | 0.031* | |
C5 | 0.8215 (2) | 0.18508 (10) | 0.46652 (9) | 0.0290 (3) | |
H5A | 0.9381 | 0.1304 | 0.4680 | 0.035* | |
H5B | 0.7897 | 0.2012 | 0.5282 | 0.035* | |
C6 | 0.77423 (19) | 0.48149 (10) | 0.38735 (8) | 0.0238 (3) | |
C7 | 0.6271 (2) | 0.56832 (10) | 0.39795 (8) | 0.0276 (3) | |
H7 | 0.4959 | 0.5540 | 0.4235 | 0.033* | |
C8 | 0.6738 (2) | 0.67575 (10) | 0.37087 (8) | 0.0293 (3) | |
H8 | 0.5713 | 0.7319 | 0.3766 | 0.035* | |
C9 | 0.8717 (2) | 0.70046 (10) | 0.33537 (8) | 0.0275 (3) | |
C10 | 1.0194 (2) | 0.61483 (11) | 0.32474 (9) | 0.0315 (3) | |
H10 | 1.1523 | 0.6299 | 0.3008 | 0.038* | |
C11 | 0.9702 (2) | 0.50671 (10) | 0.34968 (9) | 0.0290 (3) | |
H11 | 1.0700 | 0.4500 | 0.3411 | 0.035* | |
C12 | 0.3937 (2) | −0.01011 (11) | 0.35382 (10) | 0.0366 (3) | |
H12A | 0.4010 | −0.0892 | 0.3450 | 0.055* | |
H12B | 0.3631 | 0.0260 | 0.2967 | 0.055* | |
H12C | 0.2796 | 0.0067 | 0.3927 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0495 (6) | 0.0251 (5) | 0.0499 (6) | 0.0119 (4) | −0.0068 (5) | −0.0033 (4) |
O2 | 0.0524 (6) | 0.0219 (5) | 0.0390 (5) | −0.0023 (4) | 0.0087 (4) | 0.0006 (4) |
N1 | 0.0268 (5) | 0.0210 (5) | 0.0336 (6) | 0.0034 (4) | −0.0010 (4) | −0.0004 (4) |
N2 | 0.0215 (5) | 0.0200 (5) | 0.0314 (5) | 0.0030 (4) | −0.0008 (4) | 0.0000 (4) |
C1 | 0.0396 (7) | 0.0221 (6) | 0.0238 (6) | 0.0032 (5) | 0.0016 (5) | 0.0015 (4) |
C2 | 0.0229 (6) | 0.0235 (6) | 0.0431 (7) | 0.0027 (5) | −0.0002 (5) | −0.0042 (5) |
C3 | 0.0257 (6) | 0.0229 (6) | 0.0415 (7) | 0.0045 (5) | −0.0071 (5) | 0.0006 (5) |
C4 | 0.0226 (6) | 0.0232 (6) | 0.0323 (6) | 0.0048 (5) | −0.0021 (5) | 0.0008 (5) |
C5 | 0.0281 (6) | 0.0233 (6) | 0.0348 (6) | 0.0034 (5) | −0.0045 (5) | 0.0023 (5) |
C6 | 0.0259 (6) | 0.0209 (6) | 0.0239 (6) | 0.0026 (4) | −0.0028 (4) | −0.0013 (4) |
C7 | 0.0286 (6) | 0.0249 (6) | 0.0294 (6) | 0.0048 (5) | 0.0037 (5) | −0.0004 (5) |
C8 | 0.0363 (7) | 0.0226 (6) | 0.0290 (6) | 0.0077 (5) | 0.0023 (5) | −0.0015 (5) |
C9 | 0.0383 (7) | 0.0204 (6) | 0.0233 (6) | −0.0009 (5) | −0.0023 (5) | −0.0011 (4) |
C10 | 0.0274 (6) | 0.0299 (7) | 0.0371 (7) | −0.0019 (5) | 0.0024 (5) | 0.0008 (5) |
C11 | 0.0246 (6) | 0.0235 (6) | 0.0386 (7) | 0.0041 (5) | 0.0013 (5) | −0.0006 (5) |
C12 | 0.0500 (8) | 0.0229 (6) | 0.0354 (7) | −0.0018 (6) | −0.0080 (6) | −0.0012 (5) |
O1—C1 | 1.2387 (16) | C4—C5 | 1.5200 (17) |
O2—H2 | 0.8200 | C5—H5A | 0.9700 |
O2—C9 | 1.3681 (15) | C5—H5B | 0.9700 |
N1—C1 | 1.3391 (16) | C6—C7 | 1.3950 (17) |
N1—C2 | 1.4618 (15) | C6—C11 | 1.3943 (18) |
N1—C5 | 1.4651 (16) | C7—H7 | 0.9300 |
N2—C3 | 1.4688 (15) | C7—C8 | 1.3875 (18) |
N2—C4 | 1.4607 (14) | C8—H8 | 0.9300 |
N2—C6 | 1.4284 (15) | C8—C9 | 1.3888 (19) |
C1—C12 | 1.5096 (18) | C9—C10 | 1.3869 (18) |
C2—H2A | 0.9700 | C10—H10 | 0.9300 |
C2—H2B | 0.9700 | C10—C11 | 1.3896 (18) |
C2—C3 | 1.5136 (18) | C11—H11 | 0.9300 |
C3—H3A | 0.9700 | C12—H12A | 0.9600 |
C3—H3B | 0.9700 | C12—H12B | 0.9600 |
C4—H4A | 0.9700 | C12—H12C | 0.9600 |
C4—H4B | 0.9700 | ||
C9—O2—H2 | 109.5 | N1—C5—H5A | 109.5 |
C1—N1—C2 | 124.54 (11) | N1—C5—H5B | 109.5 |
C1—N1—C5 | 121.83 (10) | C4—C5—H5A | 109.5 |
C2—N1—C5 | 113.35 (10) | C4—C5—H5B | 109.5 |
C4—N2—C3 | 109.27 (9) | H5A—C5—H5B | 108.0 |
C6—N2—C3 | 113.18 (9) | C7—C6—N2 | 118.97 (11) |
C6—N2—C4 | 115.97 (9) | C11—C6—N2 | 123.30 (10) |
O1—C1—N1 | 121.45 (13) | C11—C6—C7 | 117.74 (11) |
O1—C1—C12 | 120.76 (12) | C6—C7—H7 | 119.5 |
N1—C1—C12 | 117.78 (11) | C8—C7—C6 | 120.95 (12) |
N1—C2—H2A | 109.6 | C8—C7—H7 | 119.5 |
N1—C2—H2B | 109.6 | C7—C8—H8 | 119.6 |
N1—C2—C3 | 110.09 (10) | C7—C8—C9 | 120.83 (11) |
H2A—C2—H2B | 108.2 | C9—C8—H8 | 119.6 |
C3—C2—H2A | 109.6 | O2—C9—C8 | 122.96 (11) |
C3—C2—H2B | 109.6 | O2—C9—C10 | 118.35 (12) |
N2—C3—C2 | 110.98 (10) | C10—C9—C8 | 118.68 (11) |
N2—C3—H3A | 109.4 | C9—C10—H10 | 119.8 |
N2—C3—H3B | 109.4 | C9—C10—C11 | 120.45 (12) |
C2—C3—H3A | 109.4 | C11—C10—H10 | 119.8 |
C2—C3—H3B | 109.4 | C6—C11—H11 | 119.3 |
H3A—C3—H3B | 108.0 | C10—C11—C6 | 121.31 (11) |
N2—C4—H4A | 109.7 | C10—C11—H11 | 119.3 |
N2—C4—H4B | 109.7 | C1—C12—H12A | 109.5 |
N2—C4—C5 | 109.99 (10) | C1—C12—H12B | 109.5 |
H4A—C4—H4B | 108.2 | C1—C12—H12C | 109.5 |
C5—C4—H4A | 109.7 | H12A—C12—H12B | 109.5 |
C5—C4—H4B | 109.7 | H12A—C12—H12C | 109.5 |
N1—C5—C4 | 110.90 (10) | H12B—C12—H12C | 109.5 |
O2—C9—C10—C11 | −179.37 (11) | C4—N2—C6—C7 | −166.26 (11) |
N1—C2—C3—N2 | −56.20 (14) | C4—N2—C6—C11 | 14.00 (16) |
N2—C4—C5—N1 | 56.23 (13) | C5—N1—C1—O1 | −4.88 (19) |
N2—C6—C7—C8 | −179.02 (11) | C5—N1—C1—C12 | 174.25 (11) |
N2—C6—C11—C10 | −179.29 (11) | C5—N1—C2—C3 | 52.56 (14) |
C1—N1—C2—C3 | −133.46 (13) | C6—N2—C3—C2 | −168.28 (10) |
C1—N1—C5—C4 | 132.86 (12) | C6—N2—C4—C5 | 170.42 (10) |
C2—N1—C1—O1 | −178.37 (12) | C6—C7—C8—C9 | −2.28 (19) |
C2—N1—C1—C12 | 0.76 (18) | C7—C6—C11—C10 | 0.97 (19) |
C2—N1—C5—C4 | −52.98 (14) | C7—C8—C9—O2 | −178.98 (11) |
C3—N2—C4—C5 | −60.23 (13) | C7—C8—C9—C10 | 2.06 (19) |
C3—N2—C6—C7 | 66.31 (14) | C8—C9—C10—C11 | −0.36 (19) |
C3—N2—C6—C11 | −113.43 (13) | C9—C10—C11—C6 | −1.2 (2) |
C4—N2—C3—C2 | 60.86 (13) | C11—C6—C7—C8 | 0.74 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.88 | 2.6953 (14) | 170 |
Symmetry code: (i) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.88 | 2.6953 (14) | 170 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for permission to carry out research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. Web of Science CrossRef PubMed CAS Google Scholar
Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dayananda, A. S., Yathirajan, H. S., Keeley, A. C. & Jasinski, J. P. (2012). Acta Cryst. E68, o2237. CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elliott, S. (2011). Drug Test Anal. 3, 430–438. Web of Science CrossRef CAS PubMed Google Scholar
Kavitha, C. N., Butcher, R. J., Jasinski, J. P., Yathirajan, H. S. & Dayananda, A. S. (2013a). Acta Cryst. E69, o485–o486. CSD CrossRef CAS IUCr Journals Google Scholar
Kavitha, C. N., Jasinski, J. P., Matar, S. M., Yathirajan, H. S. & Ramesha, A. R. (2013b). Acta Cryst. E69, o1344. CSD CrossRef IUCr Journals Google Scholar
Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488. CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Peeters, O. M., Blaton, N. M., Gerber, J. G. & Gal, J. (2004). Acta Cryst. E60, o367–o369. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is used to synthesize ketoconazole which is a antifungal agent. A valuable insight into recent advances on antimicrobial activity of piperazine derivatives has been reported by (Kharb et al., 2012). Many currently notable drugs contain a piperazine ring as part of their molecular structure. Piperazines are also among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011). The crystal structures of some related compounds, viz., cis-1-acetyl-4-(4-{[2-(2,4-dichlorophenyl)-2-(1H-1-imidazolyl methyl)-1,3-dioxolan-4-yl]methoxy}phenyl) piperazine: ketoconazole. A crystal structure with disorder (Peeters et al., 1979), (+)-cis-1-acetyl-4-(4-{[(2R,4S)-2-(2,4-dichlorophenyl)-2-(1H- imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy}phenyl)piperazine [(2R,4S)-(+)-ketoconazole] (Peeters et al., 2004), 1-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl}ethanone (Dayananda et al. , 2012), cinnarizinium bis(p-toluenesulfonate)dihydrate (Kavitha et al., 2013a) and flunarizinium hydrogen maleate (Kavitha et al., 2013b) have been reported. In view of the importance of the title compound this paper reports its crystal structure.
The molecular structure of the title compound is illustrated in Fig. 1. The piperazine ring has a chair conformation with puckering parameters (Cremer & Pople, 1975), Q, θ, and ϕ = 0.5661 (13) Å, 174.05 (12)° and 0.9 (13)°, respectively. The dihedral angle between the mean planes of the benzene ring (C6-C11) and the acetyl group (N1/C1/C12/O1) is 48.7 (1)°. Bond lengths are in normal ranges (Allen et al., 1987).
In the crystal, O—H···O hydrogen bonds (Table 1) are observed which link the molecules into chains along [0 1 0], as shown in Fig. 2.