metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(nitrato-κ2O,O′)barium]-bis­­(μ-L-histidine-κ3O,O′:O]

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, professormohan@yahoo.co.in

(Received 28 September 2013; accepted 6 October 2013; online 12 October 2013)

In the polymeric title compound, [Ba(NO3)2(C6H9N3O2)2]n, the BaII atom is located on a crystallographic twofold axis and is coordinated by ten O atoms. Six are derived from two zwitterionic L-histidine mol­ecules that simultaneously chelate one BaII atom and bridge to another. The remaining four O atoms are derived from two chelating nitrates. The mol­ecules assemble to form a chain along [010]. In the crystal, chains are linked via N—H⋯O and N—H⋯N hydrogen bonds, generating a three-dimensional network.

Related literature

For the biological activity of histidine, see: Eichler et al. (2005[Eichler, J. F., Cramer, J. C., Kirk, K. L. & Bann, J. G. (2005). ChemBioChem, 6, 2170-2173.]); Wimalasena et al. (2007[Wimalasena, D. S., Cramer, J. C., Janowiak, B. E., Juris, S. J., Melnyk, R. A., Anderson, D. E., Kirk, K. L., Collier, R. J. & Bann, J. G. (2007). Biochemistry, 46, 14928-14936.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Andra et al. (2010[Andra, K. K., Bullinger, J. C., Bann, J. G. & Eichhorn, D. M. (2010). Acta Cryst. E66, o2713.]); Gokul Raj et al. (2006[Gokul Raj, S., Ramesh Kumar, G., Raghavalu, T., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, o1178-o1180.]).

[Scheme 1]

Experimental

Crystal data
  • [Ba(NO3)2(C6H9N3O2)2]

  • Mr = 571.68

  • Monoclinic, C 2

  • a = 24.9063 (8) Å

  • b = 4.7226 (1) Å

  • c = 8.3180 (3) Å

  • β = 105.432 (1)°

  • V = 943.11 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 295 K

  • 0.18 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.695, Tmax = 0.780

  • 6598 measured reflections

  • 3281 independent reflections

  • 3281 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.15

  • 3281 reflections

  • 142 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −1.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1164 Friedel pairs

  • Absolute structure parameter: 0.004 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.29 2.854 (3) 123
N1—H1⋯O5ii 0.86 2.37 3.121 (3) 146
N3—H3B⋯O1iii 0.89 2.19 3.029 (2) 158
N3—H3C⋯O3iv 0.89 2.05 2.867 (3) 153
N3—H3A⋯N2v 0.89 1.94 2.827 (3) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (iii) -x+1, y, -z+1; (iv) x, y+1, z-1; (v) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Histidine derivatives are used in enzyme mechanisms and biomolecular interactions (Eichler et al., 2005; Wimalasena et al., 2007). We herein, report the crystal structure of the title compound (I), (Fig. 1). The geometric parameters of L-histidine moiety of (I) are comparable with the reported related structures (Andra et al., 2010; Gokul Raj et al., 2006).

The Ba atom sits on a crystallographic twofold axis and is co-ordinated by 10 O atoms, with six O atoms from carboxylate groups of L-Histidine and four O atoms from two nitrates. The Ba—O distances, ranging from 2.767 (5) to 2.966 (2) Å, are within normal range (Allen et al., 1987).

The molecule coordinate through O to form a one dimensional chain, extending along [010]. The chains are interlinked through N—H···N and N—H···O hydrogen bonds (Table 1 & Fig. 2).

Related literature top

For the biological activity of histidine, see: Eichler et al. (2005); Wimalasena et al. (2007). For standard bond lengths, see: Allen et al. (1987). For related structures, see: Andra et al. (2010); Gokul Raj et al. (2006).

Experimental top

The title compound was synthesized from the starting materials of L –histidine (3.1030 g) and barium nitrate (2.6133 g) which were taken in water. Single crystals suitable for X-ray diffraction were grown by the slow evaporation technique at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C). For N-bound H atoms, N—H = 0.86–0.89 Å, and Uiso(H) = 1.2–1.5 Ueq(N). The components of anisotropic displacement parameters in the direction of the N1—C3 bond were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in SHELXL97 (Sheldrick, 2008). The maximum and minimum residual electron density peaks of 1.40 and -1.32 eÅ-3, respectively, were located 0.69 Å and 0.73 Å from the Ba atom, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the polymeric structure in (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. The symmetry codes are : (a) x, -1+y, z; (c) 1-x, -1+y, 2-z; (d) 1-x, y, 2-z.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
catena-Poly[[bis(nitrato-κ2O,O')barium]-bis(µ-L-histidine-κ3O,O':O] top
Crystal data top
[Ba(NO3)2(C6H9N3O2)2]F(000) = 564
Mr = 571.68Dx = 2.013 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 6604 reflections
a = 24.9063 (8) Åθ = 2.6–34.9°
b = 4.7226 (1) ŵ = 2.18 mm1
c = 8.3180 (3) ÅT = 295 K
β = 105.432 (1)°Block, colourless
V = 943.11 (5) Å30.18 × 0.14 × 0.12 mm
Z = 2
Data collection top
Bruker Kappa APEXII
diffractometer
3281 independent reflections
Radiation source: fine-focus sealed tube3281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scanθmax = 34.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3940
Tmin = 0.695, Tmax = 0.780k = 67
6598 measured reflectionsl = 1311
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
3281 reflectionsΔρmax = 1.40 e Å3
142 parametersΔρmin = 1.32 e Å3
2 restraintsAbsolute structure: Flack (1983), 1164 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (13)
Crystal data top
[Ba(NO3)2(C6H9N3O2)2]V = 943.11 (5) Å3
Mr = 571.68Z = 2
Monoclinic, C2Mo Kα radiation
a = 24.9063 (8) ŵ = 2.18 mm1
b = 4.7226 (1) ÅT = 295 K
c = 8.3180 (3) Å0.18 × 0.14 × 0.12 mm
β = 105.432 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
3281 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3281 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.780Rint = 0.030
6598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.048Δρmax = 1.40 e Å3
S = 1.15Δρmin = 1.32 e Å3
3281 reflectionsAbsolute structure: Flack (1983), 1164 Friedel pairs
142 parametersAbsolute structure parameter: 0.004 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31466 (7)0.2871 (5)0.4170 (3)0.0239 (4)
C20.26202 (8)0.1922 (6)0.3475 (3)0.0304 (4)
H20.24510.03430.37950.036*
C30.27774 (8)0.5757 (17)0.2181 (3)0.0335 (5)
H30.27220.72640.14360.040*
C40.35756 (8)0.1666 (6)0.5623 (3)0.0290 (5)
H4A0.34390.01180.59350.035*
H4B0.36230.29480.65610.035*
C50.41435 (6)0.1163 (13)0.5298 (2)0.0215 (7)
H50.42970.30010.50990.026*
C60.45415 (7)0.0175 (5)0.6835 (2)0.0210 (3)
N10.23922 (7)0.3754 (6)0.2217 (3)0.0325 (4)
H10.20620.36560.15590.039*
N20.32423 (7)0.5272 (4)0.3354 (3)0.0295 (5)
N30.40970 (7)0.0632 (4)0.3806 (2)0.0228 (3)
H3A0.38300.19140.37370.034*
H3B0.44200.15080.38890.034*
H3C0.40140.04470.28960.034*
N40.37614 (8)0.6072 (6)1.0220 (3)0.0332 (4)
O10.47815 (7)0.2417 (4)0.6626 (2)0.0307 (3)
O20.45918 (6)0.1055 (13)0.81973 (19)0.0294 (4)
O30.41918 (7)0.6466 (7)1.1390 (3)0.0470 (6)
O40.33641 (9)0.7646 (8)1.0069 (4)0.0721 (10)
O50.37673 (8)0.4073 (15)0.9258 (3)0.0556 (6)
Ba10.50000.41231.00000.01742 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (6)0.0295 (10)0.0223 (8)0.0045 (7)0.0037 (6)0.0027 (7)
C20.0230 (7)0.0366 (11)0.0318 (10)0.0004 (7)0.0078 (7)0.0016 (9)
C30.0314 (7)0.0362 (14)0.0296 (8)0.0084 (12)0.0024 (6)0.004 (2)
C40.0245 (7)0.0423 (15)0.0203 (8)0.0088 (7)0.0060 (6)0.0015 (7)
C50.0199 (5)0.026 (2)0.0174 (6)0.0013 (9)0.0026 (4)0.0025 (9)
C60.0183 (6)0.0243 (8)0.0183 (7)0.0019 (6)0.0015 (5)0.0044 (6)
N10.0196 (6)0.0449 (12)0.0288 (9)0.0058 (7)0.0007 (6)0.0050 (8)
N20.0245 (6)0.0315 (14)0.0288 (8)0.0010 (6)0.0006 (6)0.0009 (7)
N30.0214 (6)0.0292 (9)0.0173 (7)0.0016 (6)0.0043 (5)0.0019 (6)
N40.0239 (7)0.0451 (13)0.0306 (10)0.0018 (8)0.0074 (7)0.0103 (9)
O10.0340 (7)0.0345 (9)0.0228 (7)0.0136 (7)0.0059 (6)0.0055 (6)
O20.0357 (5)0.0258 (12)0.0207 (5)0.0022 (12)0.0031 (4)0.0052 (12)
O30.0274 (7)0.0762 (18)0.0357 (10)0.0054 (9)0.0056 (7)0.0222 (11)
O40.0427 (11)0.092 (2)0.088 (2)0.0382 (13)0.0288 (13)0.0513 (19)
O50.0467 (9)0.0721 (16)0.0462 (11)0.020 (2)0.0091 (8)0.018 (3)
Ba10.01895 (5)0.01937 (6)0.01343 (5)0.0000.00342 (3)0.000
Geometric parameters (Å, º) top
C1—C21.360 (3)N3—H3B0.8900
C1—N21.374 (3)N3—H3C0.8900
C1—C41.496 (3)N4—O41.217 (3)
C2—N11.360 (4)N4—O51.240 (6)
C2—H20.9300N4—O31.255 (3)
C3—N21.320 (3)N4—Ba13.271 (2)
C3—N11.353 (7)O1—Ba12.8300 (17)
C3—H30.9300O2—Ba1i2.767 (5)
C4—C51.528 (3)O2—Ba12.907 (5)
C4—H4A0.9700O3—Ba12.8022 (19)
C4—H4B0.9700O5—Ba12.9664 (18)
C5—N31.482 (4)Ba1—O2ii2.767 (5)
C5—C61.530 (3)Ba1—O2iii2.767 (5)
C5—H50.9800Ba1—O3iv2.8022 (19)
C6—O21.249 (4)Ba1—O1iv2.8300 (17)
C6—O11.251 (3)Ba1—O2iv2.907 (5)
C6—Ba13.180 (2)Ba1—O5iv2.9664 (18)
N1—H10.8600Ba1—C6iv3.180 (2)
N3—H3A0.8900
C2—C1—N2109.63 (19)O3—Ba1—O1iv70.91 (6)
C2—C1—C4128.2 (2)O2ii—Ba1—O175.58 (9)
N2—C1—C4122.15 (19)O2iii—Ba1—O1135.86 (7)
N1—C2—C1106.0 (2)O3iv—Ba1—O170.91 (6)
N1—C2—H2127.0O3—Ba1—O1123.50 (5)
C1—C2—H2127.0O1iv—Ba1—O1146.92 (9)
N2—C3—N1110.5 (5)O2ii—Ba1—O2iv178.12 (13)
N2—C3—H3124.8O2iii—Ba1—O2iv112.65 (5)
N1—C3—H3124.8O3iv—Ba1—O2iv110.73 (6)
C1—C4—C5114.35 (19)O3—Ba1—O2iv108.08 (8)
C1—C4—H4A108.7O1iv—Ba1—O2iv45.61 (7)
C5—C4—H4A108.7O1—Ba1—O2iv102.75 (7)
C1—C4—H4B108.7O2ii—Ba1—O2112.65 (5)
C5—C4—H4B108.7O2iii—Ba1—O2178.12 (14)
H4A—C4—H4B107.6O3iv—Ba1—O2108.08 (8)
N3—C5—C4111.5 (2)O3—Ba1—O2110.73 (6)
N3—C5—C6110.6 (3)O1iv—Ba1—O2102.75 (7)
C4—C5—C6109.95 (18)O1—Ba1—O245.61 (7)
N3—C5—H5108.2O2iv—Ba1—O265.47 (13)
C4—C5—H5108.2O2ii—Ba1—O5iv109.27 (11)
C6—C5—H5108.2O2iii—Ba1—O5iv71.53 (14)
O2—C6—O1125.7 (3)O3iv—Ba1—O5iv43.25 (9)
O2—C6—C5116.9 (3)O3—Ba1—O5iv137.28 (10)
O1—C6—C5117.4 (2)O1iv—Ba1—O5iv82.88 (6)
O2—C6—Ba166.1 (3)O1—Ba1—O5iv96.85 (7)
O1—C6—Ba162.55 (11)O2iv—Ba1—O5iv71.66 (13)
C5—C6—Ba1160.70 (18)O2—Ba1—O5iv107.53 (13)
C3—N1—C2107.9 (2)O2ii—Ba1—O571.53 (14)
C3—N1—H1126.0O2iii—Ba1—O5109.27 (11)
C2—N1—H1126.0O3iv—Ba1—O5137.28 (10)
C3—N2—C1105.9 (3)O3—Ba1—O543.25 (9)
C5—N3—H3A109.5O1iv—Ba1—O596.85 (7)
C5—N3—H3B109.5O1—Ba1—O582.88 (6)
H3A—N3—H3B109.5O2iv—Ba1—O5107.53 (13)
C5—N3—H3C109.5O2—Ba1—O571.66 (13)
H3A—N3—H3C109.5O5iv—Ba1—O5179.1 (3)
H3B—N3—H3C109.5O2ii—Ba1—C6iv158.50 (8)
O4—N4—O5123.2 (3)O2iii—Ba1—C6iv91.99 (9)
O4—N4—O3119.5 (3)O3iv—Ba1—C6iv115.73 (5)
O5—N4—O3117.3 (2)O3—Ba1—C6iv91.67 (7)
O4—N4—Ba1156.8 (2)O1iv—Ba1—C6iv23.09 (6)
O5—N4—Ba164.94 (12)O1—Ba1—C6iv125.88 (6)
O3—N4—Ba157.42 (12)O2iv—Ba1—C6iv23.14 (7)
C6—O1—Ba194.36 (13)O2—Ba1—C6iv86.16 (8)
C6—O2—Ba1i143.9 (3)O5iv—Ba1—C6iv72.50 (9)
C6—O2—Ba190.8 (3)O5—Ba1—C6iv106.94 (10)
Ba1i—O2—Ba1112.65 (5)O2ii—Ba1—C691.99 (9)
N4—O3—Ba1100.40 (16)O2iii—Ba1—C6158.50 (8)
N4—O5—Ba192.81 (15)O3iv—Ba1—C691.67 (7)
O2ii—Ba1—O2iii69.23 (15)O3—Ba1—C6115.73 (5)
O2ii—Ba1—O3iv69.64 (6)O1iv—Ba1—C6125.88 (6)
O2iii—Ba1—O3iv72.42 (8)O1—Ba1—C623.09 (6)
O2ii—Ba1—O372.42 (8)O2iv—Ba1—C686.16 (8)
O2iii—Ba1—O369.64 (6)O2—Ba1—C623.14 (7)
O3iv—Ba1—O3133.48 (13)O5iv—Ba1—C6106.94 (10)
O2ii—Ba1—O1iv135.86 (7)O5—Ba1—C672.50 (9)
O2iii—Ba1—O1iv75.58 (9)C6iv—Ba1—C6108.20 (8)
O3iv—Ba1—O1iv123.50 (5)
N2—C1—C2—N10.3 (3)C6—O2—Ba1—O1iv178.66 (13)
C4—C1—C2—N1178.7 (2)Ba1i—O2—Ba1—O1iv26.92 (7)
C2—C1—C4—C5129.1 (3)C6—O2—Ba1—O19.91 (11)
N2—C1—C4—C552.6 (4)Ba1i—O2—Ba1—O1141.84 (10)
C1—C4—C5—N354.6 (4)C6—O2—Ba1—O2iv151.75 (17)
C1—C4—C5—C6177.8 (3)Ba1i—O2—Ba1—O2iv0.0
N3—C5—C6—O2176.0 (3)C6—O2—Ba1—O5iv92.20 (15)
C4—C5—C6—O252.3 (4)Ba1i—O2—Ba1—O5iv59.54 (9)
N3—C5—C6—O13.0 (3)C6—O2—Ba1—O588.25 (17)
C4—C5—C6—O1126.7 (3)Ba1i—O2—Ba1—O5120.00 (11)
N3—C5—C6—Ba181.9 (5)C6—O2—Ba1—C6iv162.49 (12)
C4—C5—C6—Ba141.8 (9)Ba1i—O2—Ba1—C6iv10.74 (6)
N2—C3—N1—C20.4 (4)Ba1i—O2—Ba1—C6151.75 (17)
C1—C2—N1—C30.4 (3)N4—O5—Ba1—O2ii69.8 (3)
N1—C3—N2—C10.3 (4)N4—O5—Ba1—O2iii10.7 (3)
C2—C1—N2—C30.0 (3)N4—O5—Ba1—O3iv95.3 (2)
C4—C1—N2—C3178.6 (3)N4—O5—Ba1—O313.90 (19)
O2—C6—O1—Ba120.7 (3)N4—O5—Ba1—O1iv66.4 (3)
C5—C6—O1—Ba1158.23 (19)N4—O5—Ba1—O1146.9 (3)
O1—C6—O2—Ba1i112.2 (4)N4—O5—Ba1—O2iv111.9 (3)
C5—C6—O2—Ba1i68.9 (4)N4—O5—Ba1—O2167.6 (3)
Ba1—C6—O2—Ba1i132.2 (3)N4—O5—Ba1—C6iv87.7 (3)
O1—C6—O2—Ba120.0 (3)N4—O5—Ba1—C6168.1 (3)
C5—C6—O2—Ba1158.9 (2)O2—C6—Ba1—O2ii154.08 (15)
O4—N4—O3—Ba1153.1 (2)O1—C6—Ba1—O2ii44.19 (13)
O5—N4—O3—Ba126.4 (3)C5—C6—Ba1—O2ii50.8 (6)
O4—N4—O5—Ba1155.0 (3)O2—C6—Ba1—O2iii177.57 (18)
O3—N4—O5—Ba124.4 (3)O1—C6—Ba1—O2iii15.8 (2)
N4—O3—Ba1—O2ii67.5 (2)C5—C6—Ba1—O2iii79.2 (6)
N4—O3—Ba1—O2iii141.3 (2)O2—C6—Ba1—O3iv136.24 (14)
N4—O3—Ba1—O3iv104.1 (2)O1—C6—Ba1—O3iv25.49 (14)
N4—O3—Ba1—O1iv137.5 (2)C5—C6—Ba1—O3iv120.5 (6)
N4—O3—Ba1—O19.1 (2)O2—C6—Ba1—O382.67 (16)
N4—O3—Ba1—O2iv110.6 (2)O1—C6—Ba1—O3115.60 (14)
N4—O3—Ba1—O240.7 (2)C5—C6—Ba1—O320.6 (6)
N4—O3—Ba1—O5iv167.1 (2)O2—C6—Ba1—O1iv1.61 (15)
N4—O3—Ba1—O514.0 (2)O1—C6—Ba1—O1iv160.12 (10)
N4—O3—Ba1—C6iv127.2 (2)C5—C6—Ba1—O1iv104.9 (6)
N4—O3—Ba1—C616.0 (2)O2—C6—Ba1—O1161.7 (2)
C6—O1—Ba1—O2ii134.00 (14)C5—C6—Ba1—O195.0 (6)
C6—O1—Ba1—O2iii171.74 (13)O2—C6—Ba1—O2iv25.57 (16)
C6—O1—Ba1—O3iv152.92 (15)O1—C6—Ba1—O2iv136.16 (13)
C6—O1—Ba1—O376.98 (16)C5—C6—Ba1—O2iv128.8 (6)
C6—O1—Ba1—O1iv30.33 (12)O1—C6—Ba1—O2161.7 (2)
C6—O1—Ba1—O2iv45.12 (14)C5—C6—Ba1—O2103.3 (6)
C6—O1—Ba1—O29.93 (12)O2—C6—Ba1—O5iv95.07 (16)
C6—O1—Ba1—O5iv117.80 (18)O1—C6—Ba1—O5iv66.65 (17)
C6—O1—Ba1—O561.31 (18)C5—C6—Ba1—O5iv161.7 (6)
C6—O1—Ba1—C6iv44.47 (16)O2—C6—Ba1—O584.17 (19)
C6—O2—Ba1—O2ii28.25 (17)O1—C6—Ba1—O5114.11 (18)
Ba1i—O2—Ba1—O2ii180.000 (1)C5—C6—Ba1—O519.1 (6)
C6—O2—Ba1—O3iv46.66 (15)O2—C6—Ba1—C6iv18.42 (12)
Ba1i—O2—Ba1—O3iv105.09 (7)O1—C6—Ba1—C6iv143.31 (14)
C6—O2—Ba1—O3107.18 (14)C5—C6—Ba1—C6iv121.7 (6)
Ba1i—O2—Ba1—O3101.07 (8)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y1, z+2; (iv) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4v0.862.292.854 (3)123
N1—H1···O5vi0.862.373.121 (3)146
N3—H3B···O1vii0.892.193.029 (2)158
N3—H3C···O3viii0.892.052.867 (3)153
N3—H3A···N2ii0.891.942.827 (3)174
Symmetry codes: (ii) x, y1, z; (v) x+1/2, y+3/2, z+1; (vi) x+1/2, y+1/2, z+1; (vii) x+1, y, z+1; (viii) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.292.854 (3)123
N1—H1···O5ii0.862.373.121 (3)146
N3—H3B···O1iii0.892.193.029 (2)158
N3—H3C···O3iv0.892.052.867 (3)153
N3—H3A···N2v0.891.942.827 (3)174
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y, z+1; (iv) x, y+1, z1; (v) x, y1, z.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAndra, K. K., Bullinger, J. C., Bann, J. G. & Eichhorn, D. M. (2010). Acta Cryst. E66, o2713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEichler, J. F., Cramer, J. C., Kirk, K. L. & Bann, J. G. (2005). ChemBioChem, 6, 2170–2173.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGokul Raj, S., Ramesh Kumar, G., Raghavalu, T., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, o1178–o1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWimalasena, D. S., Cramer, J. C., Janowiak, B. E., Juris, S. J., Melnyk, R. A., Anderson, D. E., Kirk, K. L., Collier, R. J. & Bann, J. G. (2007). Biochemistry, 46, 14928–14936.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds