organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,14-Di­ethyl-2,13-di­aza-6,17-diazonia­tri­cyclo­[16.4.0.07,12]do­cosane dichloride tetra­hydrate from synchrotron radiation

aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, bDepartment of Chemistry, Shah Jalal University of Science and Technology, Sylhet, Bangladesh, and cDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@andong.ac.kr

(Received 2 October 2013; accepted 3 October 2013; online 9 October 2013)

The asymmetric unit of title hydrated salt, C22H46N42+·2Cl·4H2O, comprises half a centrosymmetric dication, one Cl anion and two water mol­ecules of crystallization. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms, and that the dication features intra­molecular N—H⋯N hydrogen bonds. In the crystal, a three-dimensional artchitecture is formed by O—H⋯Cl/N and N—H⋯Cl/O hydrogen bonds.

Related literature

For background to the coordination chemistry of tetra­aza­macrocycles, see: Choi et al. (2010[Choi, J.-H., Clegg, W. & Nichol, G. S. (2010). Z. Anorg. Allg. Chem. 636, 1612-1616.]); De Clercq (2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]). For the synthesis of the precursor macrocycle, see: Lim et al. (2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]). For related structures, see: Choi et al. (2006[Choi, J.-H., Clegg, W., Harrington, R. W., Yoon, H.-M. & Hong, Y. P. (2006). Acta Cryst. E62, o644-o646.], 2011[Choi, J.-H., Subhan, M. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2173-o2174.]).

[Scheme 1]

Experimental

Crystal data
  • C22H46N42+·2Cl·4H2O

  • Mr = 509.59

  • Monoclinic, C 2/c

  • a = 22.122 (4) Å

  • b = 13.616 (3) Å

  • c = 10.565 (2) Å

  • β = 115.23 (3)°

  • V = 2878.5 (10) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.72000 Å

  • μ = 0.27 mm−1

  • T = 95 K

  • 0.31 × 0.28 × 0.25 mm

Data collection
  • ADSC Q210 CCD area-detector diffractometer

  • Absorption correction: empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.922, Tmax = 0.937

  • 13046 measured reflections

  • 3663 independent reflections

  • 3446 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.05

  • 3663 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯Cl1 0.909 (13) 2.182 (14) 3.0900 (9) 177.3 (12)
N1—H2N1⋯N2i 0.907 (13) 2.200 (13) 2.9348 (11) 137.6 (10)
N2—H1N2⋯O1Wii 0.887 (13) 2.262 (13) 3.1242 (12) 164.1 (11)
O1W—H1O1⋯Cl1 0.833 (19) 2.400 (19) 3.2329 (14) 178.6 (17)
O1W—H2O1⋯Cl1iii 0.820 (18) 2.335 (18) 3.1479 (10) 171.1 (15)
O2W—H1O2⋯O1Wiv 0.84 (2) 2.06 (2) 2.9021 (15) 178.1 (18)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]); cell refinement: HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL3000sm; program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013; molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The coordination chemistry of tetraazamacrocycles with steric hindrance on the macrocyclic ring, and their complexes are of interest because of their various applications (Choi et al., 2010). Recently, the constrained cyclam derivatives have been reported to exhibit anti-HIV effects and to stimulate the activity of stem cells from the bone marrow (De Clercq, 2010).

The title compound, Fig. 1, containing a positively charged macrocycle, Cl- and water molecules was characterized during the studies of di-N-substituted macrocyclic ligands as well as their corresponding copper(II) complexes. The macrocylic ligand lies on a center-of-inversion. Thus, the asymmetric unit contains half of a macrocylic dication, one chloride anion and two water molecules. The four N atoms are coplanar, and the ethyl substituents are anti with respect to the macrocyclic plane as a result of the symmetry of the molecule. The C—C and C—N lengths and associated angles are in the normal range (Choi et al., 2006, 2011). As expected, the N–C distances involving the protonated nitrogen atom, N1 are slightly longer than the other N–C distances. The cyclohexane ring that is fused to the 14-membered ring exists in a stable chair conformation, and the N1—C2—C3—N2 torsion angle displays a gauche conformation. The crystal structure is stabilized by different types of hydrogen bonds, Table 1.

Related literature top

For background to the coordination chemistry of tetraazamacrocycles, see: Choi et al. (2010); De Clercq (2010). For the synthesis of the precursor macrocycle, see: Lim et al. (2006). For related structures, see: Choi et al. (2006, 2011).

Experimental top

The starting material, the macrocycle 3,14-diethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12)docosane (L) was prepared according to published procedure (Lim et al., 2006). L (0.67 g, 0.2 mmol) was taken in a round bottomed flask in EtOH (10 ml). 2-Chloro-N,N-diethylacetamide (0.0936 g, 0.5 mmol) in EtOH (5 ml) was added. Then triethylamine (1.33 g, 0.2 mmol) in EtOH (2 ml) was added. The mixture was heated to reflux for 24 h. Colourless crystals suitable for X-ray analysis were obtained from the solution at 298 K over a period of a few days.

Refinement top

The C-bound H-atoms were placed in calculated positions (C—H = 0.98–1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O- and N-bound H-atoms were located in a difference Fourier map and refined freely. One of the H atoms of the O2w water molecule was disordered over two sites of equal weight.

Computing details top

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with displacements ellipsoids drawn at the 50% probability level for non-H atoms. Primed atoms are related by the symmetry operation 1/2-x, 1/2-y, 1-z.
3,14-Diethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.07,12]docosane dichloride tetrahydrate top
Crystal data top
C22H46N42+·2Cl·4H2OF(000) = 1120
Mr = 509.59Dx = 1.176 Mg m3
Monoclinic, C2/cSynchrotron radiation, λ = 0.72000 Å
a = 22.122 (4) ÅCell parameters from 31113 reflections
b = 13.616 (3) Åθ = 1.3–66.4°
c = 10.565 (2) ŵ = 0.27 mm1
β = 115.23 (3)°T = 95 K
V = 2878.5 (10) Å3Block, colourless
Z = 40.31 × 0.28 × 0.25 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
3663 independent reflections
Radiation source: PLSII 2D bending magnet3446 reflections with I > 2σ(I)
Si(111) double crystal monochromatorRint = 0.028
ω scanθmax = 29.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(HKL-3000 SCALEPACK; Otwinowski & Minor, 1997)
h = 2929
Tmin = 0.922, Tmax = 0.937k = 1818
13046 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0412P)2 + 2.157P]
where P = (Fo2 + 2Fc2)/3
3663 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C22H46N42+·2Cl·4H2OV = 2878.5 (10) Å3
Mr = 509.59Z = 4
Monoclinic, C2/cSynchrotron radiation, λ = 0.72000 Å
a = 22.122 (4) ŵ = 0.27 mm1
b = 13.616 (3) ÅT = 95 K
c = 10.565 (2) Å0.31 × 0.28 × 0.25 mm
β = 115.23 (3)°
Data collection top
ADSC Q210 CCD area-detector
diffractometer
3663 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL-3000 SCALEPACK; Otwinowski & Minor, 1997)
3446 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.937Rint = 0.028
13046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.46 e Å3
3663 reflectionsΔρmin = 0.35 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.24338 (3)0.30241 (5)0.30460 (7)0.00545 (13)
H1N10.2484 (6)0.3678 (10)0.3234 (13)0.013 (3)*
H2N10.2370 (6)0.2756 (9)0.3766 (13)0.014 (3)*
N20.34493 (3)0.23871 (5)0.55886 (7)0.00584 (14)
H1N20.3460 (6)0.1738 (10)0.5533 (13)0.012 (3)*
C10.18207 (4)0.28405 (6)0.17163 (8)0.00738 (15)
H1A0.18310.21600.13980.009*
H1B0.18190.32930.09810.009*
C20.30641 (4)0.26138 (6)0.30527 (8)0.00612 (15)
H20.30040.18910.28720.007*
C30.32229 (4)0.30822 (7)0.19167 (8)0.01049 (16)
H3A0.32890.37980.20830.013*
H3B0.28440.29800.09900.013*
C40.38574 (4)0.26195 (8)0.19333 (9)0.01451 (18)
H4A0.37750.19160.16800.017*
H4B0.39710.29470.12260.017*
C50.44453 (4)0.27145 (8)0.33736 (9)0.01465 (18)
H5A0.48360.23580.33770.018*
H5B0.45690.34150.35720.018*
C60.42661 (4)0.22968 (7)0.45105 (9)0.01216 (17)
H6A0.46450.24030.54360.015*
H6B0.41940.15800.43700.015*
C70.36367 (4)0.27744 (6)0.44987 (8)0.00632 (15)
H70.37180.34970.46510.008*
C80.39051 (4)0.27036 (6)0.70259 (8)0.00656 (15)
H80.43750.26350.71340.008*
C90.38146 (4)0.20090 (6)0.80803 (8)0.00776 (15)
H9A0.38200.13240.77700.009*
H9B0.42030.20890.89980.009*
C100.37854 (4)0.37876 (6)0.72406 (9)0.01032 (16)
H10A0.38250.41820.64920.012*
H10B0.33240.38650.71530.012*
C110.42749 (5)0.41859 (7)0.86611 (10)0.01776 (19)
H11A0.42270.38150.94080.027*
H11B0.41790.48810.87340.027*
H11C0.47330.41170.87530.027*
Cl10.256487 (11)0.526092 (15)0.35905 (2)0.01378 (8)
O1W0.16965 (4)0.51673 (5)0.02378 (8)0.01737 (15)
H1O10.1926 (9)0.5195 (12)0.110 (2)0.038 (4)*
H2O10.1952 (8)0.5022 (12)0.0111 (17)0.033 (4)*
O2W0.52804 (5)0.02912 (8)0.40229 (12)0.0354 (2)
H1O20.5693 (11)0.0172 (13)0.4382 (19)0.044 (5)*
H2O20.512 (2)0.016 (3)0.328 (5)0.062 (14)*0.50
H3O20.5140 (19)0.015 (3)0.457 (4)0.041 (10)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0030 (3)0.0080 (3)0.0048 (3)0.0006 (2)0.0011 (2)0.0001 (2)
N20.0045 (3)0.0083 (3)0.0045 (3)0.0011 (2)0.0017 (2)0.0001 (2)
C10.0037 (3)0.0124 (4)0.0044 (3)0.0012 (3)0.0001 (3)0.0005 (3)
C20.0030 (3)0.0095 (3)0.0061 (3)0.0000 (3)0.0021 (3)0.0009 (3)
C30.0072 (4)0.0190 (4)0.0057 (3)0.0013 (3)0.0032 (3)0.0007 (3)
C40.0084 (4)0.0291 (5)0.0080 (4)0.0005 (3)0.0054 (3)0.0023 (3)
C50.0058 (4)0.0308 (5)0.0093 (4)0.0008 (3)0.0050 (3)0.0001 (3)
C60.0050 (3)0.0232 (4)0.0093 (4)0.0032 (3)0.0040 (3)0.0019 (3)
C70.0032 (3)0.0109 (4)0.0049 (3)0.0011 (3)0.0018 (3)0.0000 (3)
C80.0036 (3)0.0099 (4)0.0053 (3)0.0008 (3)0.0010 (3)0.0002 (3)
C90.0041 (3)0.0111 (4)0.0069 (3)0.0010 (3)0.0012 (3)0.0023 (3)
C100.0131 (4)0.0091 (4)0.0081 (3)0.0011 (3)0.0039 (3)0.0007 (3)
C110.0209 (5)0.0151 (4)0.0129 (4)0.0049 (4)0.0030 (3)0.0055 (3)
Cl10.01970 (12)0.00834 (11)0.01508 (12)0.00076 (7)0.00912 (9)0.00064 (7)
O1W0.0187 (3)0.0182 (3)0.0168 (3)0.0023 (3)0.0092 (3)0.0010 (3)
O2W0.0226 (5)0.0488 (6)0.0330 (5)0.0101 (4)0.0101 (4)0.0081 (4)
Geometric parameters (Å, º) top
N1—C21.4995 (10)C6—C71.5320 (11)
N1—C11.5003 (12)C6—H6A0.9900
N1—H1N10.909 (13)C6—H6B0.9900
N1—H2N10.907 (13)C7—H71.0000
N2—C71.4774 (10)C8—C101.5333 (12)
N2—C81.4842 (11)C8—C91.5381 (11)
N2—H1N20.887 (13)C8—H81.0000
C1—C9i1.5234 (11)C9—C1i1.5233 (11)
C1—H1A0.9900C9—H9A0.9900
C1—H1B0.9900C9—H9B0.9900
C2—C31.5264 (11)C10—C111.5276 (13)
C2—C71.5285 (12)C10—H10A0.9900
C2—H21.0000C10—H10B0.9900
C3—C41.5318 (12)C11—H11A0.9800
C3—H3A0.9900C11—H11B0.9800
C3—H3B0.9900C11—H11C0.9800
C4—C51.5286 (13)O1W—H1O10.833 (19)
C4—H4A0.9900O1W—H2O10.820 (18)
C4—H4B0.9900O2W—H1O20.84 (2)
C5—C61.5262 (12)O2W—H2O20.73 (4)
C5—H5A0.9900O2W—H3O20.78 (4)
C5—H5B0.9900
C2—N1—C1114.20 (6)C5—C6—H6A109.2
C2—N1—H1N1109.7 (8)C7—C6—H6A109.2
C1—N1—H1N1110.2 (8)C5—C6—H6B109.2
C2—N1—H2N1108.8 (8)C7—C6—H6B109.2
C1—N1—H2N1108.5 (8)H6A—C6—H6B107.9
H1N1—N1—H2N1105.0 (11)N2—C7—C2109.85 (6)
C7—N2—C8113.56 (6)N2—C7—C6113.46 (7)
C7—N2—H1N2106.2 (8)C2—C7—C6108.08 (7)
C8—N2—H1N2109.4 (8)N2—C7—H7108.4
N1—C1—C9i111.44 (7)C2—C7—H7108.4
N1—C1—H1A109.3C6—C7—H7108.4
C9i—C1—H1A109.3N2—C8—C10110.24 (6)
N1—C1—H1B109.3N2—C8—C9108.72 (6)
C9i—C1—H1B109.3C10—C8—C9113.61 (7)
H1A—C1—H1B108.0N2—C8—H8108.0
N1—C2—C3111.46 (7)C10—C8—H8108.0
N1—C2—C7108.91 (7)C9—C8—H8108.0
C3—C2—C7110.83 (7)C1i—C9—C8115.61 (7)
N1—C2—H2108.5C1i—C9—H9A108.4
C3—C2—H2108.5C8—C9—H9A108.4
C7—C2—H2108.5C1i—C9—H9B108.4
C2—C3—C4109.63 (7)C8—C9—H9B108.4
C2—C3—H3A109.7H9A—C9—H9B107.4
C4—C3—H3A109.7C11—C10—C8113.10 (7)
C2—C3—H3B109.7C11—C10—H10A109.0
C4—C3—H3B109.7C8—C10—H10A109.0
H3A—C3—H3B108.2C11—C10—H10B109.0
C5—C4—C3111.30 (7)C8—C10—H10B109.0
C5—C4—H4A109.4H10A—C10—H10B107.8
C3—C4—H4A109.4C10—C11—H11A109.5
C5—C4—H4B109.4C10—C11—H11B109.5
C3—C4—H4B109.4H11A—C11—H11B109.5
H4A—C4—H4B108.0C10—C11—H11C109.5
C6—C5—C4110.83 (7)H11A—C11—H11C109.5
C6—C5—H5A109.5H11B—C11—H11C109.5
C4—C5—H5A109.5H1O1—O1W—H2O1106.6 (16)
C6—C5—H5B109.5H1O2—O2W—H2O2111 (4)
C4—C5—H5B109.5H1O2—O2W—H3O2108 (3)
H5A—C5—H5B108.1H2O2—O2W—H3O2124 (5)
C5—C6—C7112.06 (7)
C2—N1—C1—C9i162.93 (7)C3—C2—C7—N2175.38 (6)
C1—N1—C2—C362.08 (9)N1—C2—C7—C6176.69 (7)
C1—N1—C2—C7175.33 (6)C3—C2—C7—C660.34 (9)
N1—C2—C3—C4178.28 (7)C5—C6—C7—N2179.94 (7)
C7—C2—C3—C460.24 (9)C5—C6—C7—C257.97 (9)
C2—C3—C4—C556.36 (10)C7—N2—C8—C1073.59 (8)
C3—C4—C5—C654.06 (11)C7—N2—C8—C9161.26 (6)
C4—C5—C6—C755.52 (11)N2—C8—C9—C1i75.02 (9)
C8—N2—C7—C2167.13 (6)C10—C8—C9—C1i48.13 (9)
C8—N2—C7—C671.78 (9)N2—C8—C10—C11175.53 (7)
N1—C2—C7—N252.42 (8)C9—C8—C10—C1162.15 (9)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl10.909 (13)2.182 (14)3.0900 (9)177.3 (12)
N1—H2N1···N2i0.907 (13)2.200 (13)2.9348 (11)137.6 (10)
N2—H1N2···O1Wii0.887 (13)2.262 (13)3.1242 (12)164.1 (11)
O1W—H1O1···Cl10.833 (19)2.400 (19)3.2329 (14)178.6 (17)
O1W—H2O1···Cl1iii0.820 (18)2.335 (18)3.1479 (10)171.1 (15)
O2W—H1O2···O1Wiv0.84 (2)2.06 (2)2.9021 (15)178.1 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl10.909 (13)2.182 (14)3.0900 (9)177.3 (12)
N1—H2N1···N2i0.907 (13)2.200 (13)2.9348 (11)137.6 (10)
N2—H1N2···O1Wii0.887 (13)2.262 (13)3.1242 (12)164.1 (11)
O1W—H1O1···Cl10.833 (19)2.400 (19)3.2329 (14)178.6 (17)
O1W—H2O1···Cl1iii0.820 (18)2.335 (18)3.1479 (10)171.1 (15)
O2W—H1O2···O1Wiv0.84 (2)2.06 (2)2.9021 (15)178.1 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The experiment at the PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChoi, J.-H., Clegg, W., Harrington, R. W., Yoon, H.-M. & Hong, Y. P. (2006). Acta Cryst. E62, o644–o646.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J.-H., Clegg, W. & Nichol, G. S. (2010). Z. Anorg. Allg. Chem. 636, 1612–1616.  CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Subhan, M. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2173–o2174.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDe Clercq, E. (2010). J. Med. Chem. 53, 1438–1450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821–7827.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds