organic compounds
3,14-Diethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.07,12]docosane dichloride tetrahydrate from synchrotron radiation
aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, bDepartment of Chemistry, Shah Jalal University of Science and Technology, Sylhet, Bangladesh, and cDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@andong.ac.kr
The 22H46N42+·2Cl−·4H2O, comprises half a centrosymmetric dication, one Cl− anion and two water molecules of crystallization. The reveals that protonation has occurred at diagonally opposite amine N atoms, and that the dication features intramolecular N—H⋯N hydrogen bonds. In the crystal, a three-dimensional artchitecture is formed by O—H⋯Cl/N and N—H⋯Cl/O hydrogen bonds.
of title hydrated salt, CCCDC reference: 891186
Related literature
For background to the coordination chemistry of tetraazamacrocycles, see: Choi et al. (2010); De Clercq (2010). For the synthesis of the precursor macrocycle, see: Lim et al. (2006). For related structures, see: Choi et al. (2006, 2011).
Experimental
Crystal data
|
Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm; program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013; molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 891186
10.1107/S1600536813027232/tk5261sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027232/tk5261Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813027232/tk5261Isup3.cml
The starting material, the macrocycle 3,14-diethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12)docosane (L) was prepared according to published procedure (Lim et al., 2006). L (0.67 g, 0.2 mmol) was taken in a round bottomed flask in EtOH (10 ml). 2-Chloro-N,N-diethylacetamide (0.0936 g, 0.5 mmol) in EtOH (5 ml) was added. Then triethylamine (1.33 g, 0.2 mmol) in EtOH (2 ml) was added. The mixture was heated to reflux for 24 h. Colourless crystals suitable for X-ray analysis were obtained from the solution at 298 K over a period of a few days.
The C-bound H-atoms were placed in calculated positions (C—H = 0.98–1.00 Å) and were included in the
in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O- and N-bound H-atoms were located in a difference Fourier map and refined freely. One of the H atoms of the O2w water molecule was disordered over two sites of equal weight.Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXL2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of title compound with displacements ellipsoids drawn at the 50% probability level for non-H atoms. Primed atoms are related by the symmetry operation 1/2-x, 1/2-y, 1-z. |
C22H46N42+·2Cl−·4H2O | F(000) = 1120 |
Mr = 509.59 | Dx = 1.176 Mg m−3 |
Monoclinic, C2/c | Synchrotron radiation, λ = 0.72000 Å |
a = 22.122 (4) Å | Cell parameters from 31113 reflections |
b = 13.616 (3) Å | θ = 1.3–66.4° |
c = 10.565 (2) Å | µ = 0.27 mm−1 |
β = 115.23 (3)° | T = 95 K |
V = 2878.5 (10) Å3 | Block, colourless |
Z = 4 | 0.31 × 0.28 × 0.25 mm |
ADSC Q210 CCD area-detector diffractometer | 3663 independent reflections |
Radiation source: PLSII 2D bending magnet | 3446 reflections with I > 2σ(I) |
Si(111) double crystal monochromator | Rint = 0.028 |
ω scan | θmax = 29.0°, θmin = 1.8° |
Absorption correction: empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997) | h = −29→29 |
Tmin = 0.922, Tmax = 0.937 | k = −18→18 |
13046 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0412P)2 + 2.157P] where P = (Fo2 + 2Fc2)/3 |
3663 reflections | (Δ/σ)max < 0.001 |
178 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C22H46N42+·2Cl−·4H2O | V = 2878.5 (10) Å3 |
Mr = 509.59 | Z = 4 |
Monoclinic, C2/c | Synchrotron radiation, λ = 0.72000 Å |
a = 22.122 (4) Å | µ = 0.27 mm−1 |
b = 13.616 (3) Å | T = 95 K |
c = 10.565 (2) Å | 0.31 × 0.28 × 0.25 mm |
β = 115.23 (3)° |
ADSC Q210 CCD area-detector diffractometer | 3663 independent reflections |
Absorption correction: empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997) | 3446 reflections with I > 2σ(I) |
Tmin = 0.922, Tmax = 0.937 | Rint = 0.028 |
13046 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.46 e Å−3 |
3663 reflections | Δρmin = −0.35 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.24338 (3) | 0.30241 (5) | 0.30460 (7) | 0.00545 (13) | |
H1N1 | 0.2484 (6) | 0.3678 (10) | 0.3234 (13) | 0.013 (3)* | |
H2N1 | 0.2370 (6) | 0.2756 (9) | 0.3766 (13) | 0.014 (3)* | |
N2 | 0.34493 (3) | 0.23871 (5) | 0.55886 (7) | 0.00584 (14) | |
H1N2 | 0.3460 (6) | 0.1738 (10) | 0.5533 (13) | 0.012 (3)* | |
C1 | 0.18207 (4) | 0.28405 (6) | 0.17163 (8) | 0.00738 (15) | |
H1A | 0.1831 | 0.2160 | 0.1398 | 0.009* | |
H1B | 0.1819 | 0.3293 | 0.0981 | 0.009* | |
C2 | 0.30641 (4) | 0.26138 (6) | 0.30527 (8) | 0.00612 (15) | |
H2 | 0.3004 | 0.1891 | 0.2872 | 0.007* | |
C3 | 0.32229 (4) | 0.30822 (7) | 0.19167 (8) | 0.01049 (16) | |
H3A | 0.3289 | 0.3798 | 0.2083 | 0.013* | |
H3B | 0.2844 | 0.2980 | 0.0990 | 0.013* | |
C4 | 0.38574 (4) | 0.26195 (8) | 0.19333 (9) | 0.01451 (18) | |
H4A | 0.3775 | 0.1916 | 0.1680 | 0.017* | |
H4B | 0.3971 | 0.2947 | 0.1226 | 0.017* | |
C5 | 0.44453 (4) | 0.27145 (8) | 0.33736 (9) | 0.01465 (18) | |
H5A | 0.4836 | 0.2358 | 0.3377 | 0.018* | |
H5B | 0.4569 | 0.3415 | 0.3572 | 0.018* | |
C6 | 0.42661 (4) | 0.22968 (7) | 0.45105 (9) | 0.01216 (17) | |
H6A | 0.4645 | 0.2403 | 0.5436 | 0.015* | |
H6B | 0.4194 | 0.1580 | 0.4370 | 0.015* | |
C7 | 0.36367 (4) | 0.27744 (6) | 0.44987 (8) | 0.00632 (15) | |
H7 | 0.3718 | 0.3497 | 0.4651 | 0.008* | |
C8 | 0.39051 (4) | 0.27036 (6) | 0.70259 (8) | 0.00656 (15) | |
H8 | 0.4375 | 0.2635 | 0.7134 | 0.008* | |
C9 | 0.38146 (4) | 0.20090 (6) | 0.80803 (8) | 0.00776 (15) | |
H9A | 0.3820 | 0.1324 | 0.7770 | 0.009* | |
H9B | 0.4203 | 0.2089 | 0.8998 | 0.009* | |
C10 | 0.37854 (4) | 0.37876 (6) | 0.72406 (9) | 0.01032 (16) | |
H10A | 0.3825 | 0.4182 | 0.6492 | 0.012* | |
H10B | 0.3324 | 0.3865 | 0.7153 | 0.012* | |
C11 | 0.42749 (5) | 0.41859 (7) | 0.86611 (10) | 0.01776 (19) | |
H11A | 0.4227 | 0.3815 | 0.9408 | 0.027* | |
H11B | 0.4179 | 0.4881 | 0.8734 | 0.027* | |
H11C | 0.4733 | 0.4117 | 0.8753 | 0.027* | |
Cl1 | 0.256487 (11) | 0.526092 (15) | 0.35905 (2) | 0.01378 (8) | |
O1W | 0.16965 (4) | 0.51673 (5) | 0.02378 (8) | 0.01737 (15) | |
H1O1 | 0.1926 (9) | 0.5195 (12) | 0.110 (2) | 0.038 (4)* | |
H2O1 | 0.1952 (8) | 0.5022 (12) | −0.0111 (17) | 0.033 (4)* | |
O2W | 0.52804 (5) | 0.02912 (8) | 0.40229 (12) | 0.0354 (2) | |
H1O2 | 0.5693 (11) | 0.0172 (13) | 0.4382 (19) | 0.044 (5)* | |
H2O2 | 0.512 (2) | 0.016 (3) | 0.328 (5) | 0.062 (14)* | 0.50 |
H3O2 | 0.5140 (19) | 0.015 (3) | 0.457 (4) | 0.041 (10)* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0030 (3) | 0.0080 (3) | 0.0048 (3) | −0.0006 (2) | 0.0011 (2) | −0.0001 (2) |
N2 | 0.0045 (3) | 0.0083 (3) | 0.0045 (3) | −0.0011 (2) | 0.0017 (2) | −0.0001 (2) |
C1 | 0.0037 (3) | 0.0124 (4) | 0.0044 (3) | −0.0012 (3) | 0.0001 (3) | 0.0005 (3) |
C2 | 0.0030 (3) | 0.0095 (3) | 0.0061 (3) | 0.0000 (3) | 0.0021 (3) | −0.0009 (3) |
C3 | 0.0072 (4) | 0.0190 (4) | 0.0057 (3) | −0.0013 (3) | 0.0032 (3) | 0.0007 (3) |
C4 | 0.0084 (4) | 0.0291 (5) | 0.0080 (4) | −0.0005 (3) | 0.0054 (3) | −0.0023 (3) |
C5 | 0.0058 (4) | 0.0308 (5) | 0.0093 (4) | −0.0008 (3) | 0.0050 (3) | −0.0001 (3) |
C6 | 0.0050 (3) | 0.0232 (4) | 0.0093 (4) | 0.0032 (3) | 0.0040 (3) | 0.0019 (3) |
C7 | 0.0032 (3) | 0.0109 (4) | 0.0049 (3) | −0.0011 (3) | 0.0018 (3) | 0.0000 (3) |
C8 | 0.0036 (3) | 0.0099 (4) | 0.0053 (3) | −0.0008 (3) | 0.0010 (3) | −0.0002 (3) |
C9 | 0.0041 (3) | 0.0111 (4) | 0.0069 (3) | 0.0010 (3) | 0.0012 (3) | 0.0023 (3) |
C10 | 0.0131 (4) | 0.0091 (4) | 0.0081 (3) | −0.0011 (3) | 0.0039 (3) | −0.0007 (3) |
C11 | 0.0209 (5) | 0.0151 (4) | 0.0129 (4) | −0.0049 (4) | 0.0030 (3) | −0.0055 (3) |
Cl1 | 0.01970 (12) | 0.00834 (11) | 0.01508 (12) | −0.00076 (7) | 0.00912 (9) | 0.00064 (7) |
O1W | 0.0187 (3) | 0.0182 (3) | 0.0168 (3) | 0.0023 (3) | 0.0092 (3) | 0.0010 (3) |
O2W | 0.0226 (5) | 0.0488 (6) | 0.0330 (5) | 0.0101 (4) | 0.0101 (4) | 0.0081 (4) |
N1—C2 | 1.4995 (10) | C6—C7 | 1.5320 (11) |
N1—C1 | 1.5003 (12) | C6—H6A | 0.9900 |
N1—H1N1 | 0.909 (13) | C6—H6B | 0.9900 |
N1—H2N1 | 0.907 (13) | C7—H7 | 1.0000 |
N2—C7 | 1.4774 (10) | C8—C10 | 1.5333 (12) |
N2—C8 | 1.4842 (11) | C8—C9 | 1.5381 (11) |
N2—H1N2 | 0.887 (13) | C8—H8 | 1.0000 |
C1—C9i | 1.5234 (11) | C9—C1i | 1.5233 (11) |
C1—H1A | 0.9900 | C9—H9A | 0.9900 |
C1—H1B | 0.9900 | C9—H9B | 0.9900 |
C2—C3 | 1.5264 (11) | C10—C11 | 1.5276 (13) |
C2—C7 | 1.5285 (12) | C10—H10A | 0.9900 |
C2—H2 | 1.0000 | C10—H10B | 0.9900 |
C3—C4 | 1.5318 (12) | C11—H11A | 0.9800 |
C3—H3A | 0.9900 | C11—H11B | 0.9800 |
C3—H3B | 0.9900 | C11—H11C | 0.9800 |
C4—C5 | 1.5286 (13) | O1W—H1O1 | 0.833 (19) |
C4—H4A | 0.9900 | O1W—H2O1 | 0.820 (18) |
C4—H4B | 0.9900 | O2W—H1O2 | 0.84 (2) |
C5—C6 | 1.5262 (12) | O2W—H2O2 | 0.73 (4) |
C5—H5A | 0.9900 | O2W—H3O2 | 0.78 (4) |
C5—H5B | 0.9900 | ||
C2—N1—C1 | 114.20 (6) | C5—C6—H6A | 109.2 |
C2—N1—H1N1 | 109.7 (8) | C7—C6—H6A | 109.2 |
C1—N1—H1N1 | 110.2 (8) | C5—C6—H6B | 109.2 |
C2—N1—H2N1 | 108.8 (8) | C7—C6—H6B | 109.2 |
C1—N1—H2N1 | 108.5 (8) | H6A—C6—H6B | 107.9 |
H1N1—N1—H2N1 | 105.0 (11) | N2—C7—C2 | 109.85 (6) |
C7—N2—C8 | 113.56 (6) | N2—C7—C6 | 113.46 (7) |
C7—N2—H1N2 | 106.2 (8) | C2—C7—C6 | 108.08 (7) |
C8—N2—H1N2 | 109.4 (8) | N2—C7—H7 | 108.4 |
N1—C1—C9i | 111.44 (7) | C2—C7—H7 | 108.4 |
N1—C1—H1A | 109.3 | C6—C7—H7 | 108.4 |
C9i—C1—H1A | 109.3 | N2—C8—C10 | 110.24 (6) |
N1—C1—H1B | 109.3 | N2—C8—C9 | 108.72 (6) |
C9i—C1—H1B | 109.3 | C10—C8—C9 | 113.61 (7) |
H1A—C1—H1B | 108.0 | N2—C8—H8 | 108.0 |
N1—C2—C3 | 111.46 (7) | C10—C8—H8 | 108.0 |
N1—C2—C7 | 108.91 (7) | C9—C8—H8 | 108.0 |
C3—C2—C7 | 110.83 (7) | C1i—C9—C8 | 115.61 (7) |
N1—C2—H2 | 108.5 | C1i—C9—H9A | 108.4 |
C3—C2—H2 | 108.5 | C8—C9—H9A | 108.4 |
C7—C2—H2 | 108.5 | C1i—C9—H9B | 108.4 |
C2—C3—C4 | 109.63 (7) | C8—C9—H9B | 108.4 |
C2—C3—H3A | 109.7 | H9A—C9—H9B | 107.4 |
C4—C3—H3A | 109.7 | C11—C10—C8 | 113.10 (7) |
C2—C3—H3B | 109.7 | C11—C10—H10A | 109.0 |
C4—C3—H3B | 109.7 | C8—C10—H10A | 109.0 |
H3A—C3—H3B | 108.2 | C11—C10—H10B | 109.0 |
C5—C4—C3 | 111.30 (7) | C8—C10—H10B | 109.0 |
C5—C4—H4A | 109.4 | H10A—C10—H10B | 107.8 |
C3—C4—H4A | 109.4 | C10—C11—H11A | 109.5 |
C5—C4—H4B | 109.4 | C10—C11—H11B | 109.5 |
C3—C4—H4B | 109.4 | H11A—C11—H11B | 109.5 |
H4A—C4—H4B | 108.0 | C10—C11—H11C | 109.5 |
C6—C5—C4 | 110.83 (7) | H11A—C11—H11C | 109.5 |
C6—C5—H5A | 109.5 | H11B—C11—H11C | 109.5 |
C4—C5—H5A | 109.5 | H1O1—O1W—H2O1 | 106.6 (16) |
C6—C5—H5B | 109.5 | H1O2—O2W—H2O2 | 111 (4) |
C4—C5—H5B | 109.5 | H1O2—O2W—H3O2 | 108 (3) |
H5A—C5—H5B | 108.1 | H2O2—O2W—H3O2 | 124 (5) |
C5—C6—C7 | 112.06 (7) | ||
C2—N1—C1—C9i | 162.93 (7) | C3—C2—C7—N2 | 175.38 (6) |
C1—N1—C2—C3 | 62.08 (9) | N1—C2—C7—C6 | 176.69 (7) |
C1—N1—C2—C7 | −175.33 (6) | C3—C2—C7—C6 | −60.34 (9) |
N1—C2—C3—C4 | −178.28 (7) | C5—C6—C7—N2 | −179.94 (7) |
C7—C2—C3—C4 | 60.24 (9) | C5—C6—C7—C2 | 57.97 (9) |
C2—C3—C4—C5 | −56.36 (10) | C7—N2—C8—C10 | 73.59 (8) |
C3—C4—C5—C6 | 54.06 (11) | C7—N2—C8—C9 | −161.26 (6) |
C4—C5—C6—C7 | −55.52 (11) | N2—C8—C9—C1i | −75.02 (9) |
C8—N2—C7—C2 | −167.13 (6) | C10—C8—C9—C1i | 48.13 (9) |
C8—N2—C7—C6 | 71.78 (9) | N2—C8—C10—C11 | −175.53 (7) |
N1—C2—C7—N2 | 52.42 (8) | C9—C8—C10—C11 | 62.15 (9) |
Symmetry code: (i) −x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···Cl1 | 0.909 (13) | 2.182 (14) | 3.0900 (9) | 177.3 (12) |
N1—H2N1···N2i | 0.907 (13) | 2.200 (13) | 2.9348 (11) | 137.6 (10) |
N2—H1N2···O1Wii | 0.887 (13) | 2.262 (13) | 3.1242 (12) | 164.1 (11) |
O1W—H1O1···Cl1 | 0.833 (19) | 2.400 (19) | 3.2329 (14) | 178.6 (17) |
O1W—H2O1···Cl1iii | 0.820 (18) | 2.335 (18) | 3.1479 (10) | 171.1 (15) |
O2W—H1O2···O1Wiv | 0.84 (2) | 2.06 (2) | 2.9021 (15) | 178.1 (18) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, −y+1, z−1/2; (iv) x+1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···Cl1 | 0.909 (13) | 2.182 (14) | 3.0900 (9) | 177.3 (12) |
N1—H2N1···N2i | 0.907 (13) | 2.200 (13) | 2.9348 (11) | 137.6 (10) |
N2—H1N2···O1Wii | 0.887 (13) | 2.262 (13) | 3.1242 (12) | 164.1 (11) |
O1W—H1O1···Cl1 | 0.833 (19) | 2.400 (19) | 3.2329 (14) | 178.6 (17) |
O1W—H2O1···Cl1iii | 0.820 (18) | 2.335 (18) | 3.1479 (10) | 171.1 (15) |
O2W—H1O2···O1Wiv | 0.84 (2) | 2.06 (2) | 2.9021 (15) | 178.1 (18) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, −y+1, z−1/2; (iv) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
The experiment at the PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.
References
Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA. Google Scholar
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Choi, J.-H., Clegg, W., Harrington, R. W., Yoon, H.-M. & Hong, Y. P. (2006). Acta Cryst. E62, o644–o646. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Choi, J.-H., Clegg, W. & Nichol, G. S. (2010). Z. Anorg. Allg. Chem. 636, 1612–1616. CSD CrossRef CAS Google Scholar
Choi, J.-H., Subhan, M. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2173–o2174. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
De Clercq, E. (2010). J. Med. Chem. 53, 1438–1450. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821–7827. Web of Science CSD CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of tetraazamacrocycles with steric hindrance on the macrocyclic ring, and their complexes are of interest because of their various applications (Choi et al., 2010). Recently, the constrained cyclam derivatives have been reported to exhibit anti-HIV effects and to stimulate the activity of stem cells from the bone marrow (De Clercq, 2010).
The title compound, Fig. 1, containing a positively charged macrocycle, Cl- and water molecules was characterized during the studies of di-N-substituted macrocyclic ligands as well as their corresponding copper(II) complexes. The macrocylic ligand lies on a center-of-inversion. Thus, the asymmetric unit contains half of a macrocylic dication, one chloride anion and two water molecules. The four N atoms are coplanar, and the ethyl substituents are anti with respect to the macrocyclic plane as a result of the symmetry of the molecule. The C—C and C—N lengths and associated angles are in the normal range (Choi et al., 2006, 2011). As expected, the N–C distances involving the protonated nitrogen atom, N1 are slightly longer than the other N–C distances. The cyclohexane ring that is fused to the 14-membered ring exists in a stable chair conformation, and the N1—C2—C3—N2 torsion angle displays a gauche conformation. The crystal structure is stabilized by different types of hydrogen bonds, Table 1.