organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­nitro­phenyl furan-2-carboxyl­ate

aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 7 October 2013; accepted 14 October 2013; online 23 October 2013)

In the title carboxyl­ate derivative, C11H5N3O9, the picryl ring forms an angle of 75.79 (7)° with the ester fragment, indicating a near perpendicular disposition. The nitro substituents are variously oriented with respect to the picryl ring [dihedral angles = 3.22 (10), 16.03 (12) and 36.63 (10)°]. In the crystal, mol­ecules form helical chains sustained by C—H⋯O inter­actions along [010]. The furanyl residue is disordered, having two coplanar slightly displaced orientations [major component = 0.730 (9)].

Related literature

For similar esters, see: Moreno-Fuquen et al. (2012[Moreno-Fuquen, R., Mosquera, F., Kennedy, A. R., Morrison, C. A. & De Almeida Santos, R. H. (2012). Acta Cryst. E68, o3493.], 2013[Moreno-Fuquen, R., Mosquera, F., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013). Acta Cryst. E69, o966.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C11H5N3O9

  • Mr = 323.18

  • Orthorhombic, P 21 21 21

  • a = 7.0982 (3) Å

  • b = 8.4931 (4) Å

  • c = 20.4970 (9) Å

  • V = 1235.68 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 123 K

  • 0.35 × 0.22 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • 4861 measured reflections

  • 2669 independent reflections

  • 2395 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.095

  • S = 1.06

  • 2669 reflections

  • 224 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O8i 0.95 2.32 3.270 (2) 180
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In the present work, the structure of the 2,4,6-trinitrophenyl furan 2-carboxylate (I) has been determined as a part of an in-depth study of picryl substituted-esters carried out in our research group. Descriptions of similar structures have been published recently: 2,4,6-trinitrophenyl 3-chlorobenzoate (Moreno-Fuquen et al., 2013), and 2,4,6-trinitrophenyl benzoate (Moreno-Fuquen et al., 2012). The molecular structure of (I) is shown in Fig. 1. Bond distances and angles agree with the molecular features exhibited by other picryl substituted-esters, as described in detail in previous work (Moreno-Fuquen et al., 2012 and 2013). The picryl ring forms an angle of 75.79 (7)° with the ester fragment. The nitro groups form dihedral angles with the adjacent benzene ring of 3.22 (10), 16.03 (12) and 36.63 (10)° for O1—N1—O2, O3—N2—O4 and O5—N3—O6, respectively. The atoms at the furanyl ring are disordered over two positions with occupancies refined to 0.730 (9) and 0.270 (9) for C8A–C11A/O9A and C8B–C11B/O9B, respectively. Appropriate restraints were required (see experimental section) to give chemically acceptable geometries for these fragments. In the crystal the molecules are linked by weak C—H···O interactions, forming one-dimensional helical chains running along [010], as shown in Fig. 2 & Table 1. The C5 atom of the benzene ring at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O8 at (-x+1, +y-1/2, -z+1/2) (see Nardelli, 1995).

Related literature top

For similar esters, see: Moreno-Fuquen et al. (2012, 2013). For hydrogen bonding, see: Nardelli (1995).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was synthesized using equimolar quantities of 2-furoyl chloride (0.252 g, 1.931 mmol) and picric acid (0.442 g). The reagents were dissolved in acetonitrile and the solution was taken to reflux for about an hour. A pale-yellow solid was obtained after leaving the solvent to evaporate. The solid was washed with distilled water and cold methanol to eliminate impurities. Crystals of good quality and suitable for single-crystal X-ray diffraction were grown from its acetonitrile solution. IR spectra were recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. Pale Yellow crystals; yield 52%; m.p 383 (1) K. IR (KBr) 3088.17 cm-1 (aromatic C—H); 1764.94 cm-1 (ester C=O); 1544.08 cm-1, 1343.48 cm-1 (–NO2); 1234.50 cm-1 (C(=O)—O).

Refinement top

Bond lengths of the disordered furanyl ring were restrained to 1.37 (1) Å for C—O and 1.325 (20) and 1.45 (2) Å for the formally double and single C—C bonds, respectively. Restraints were also applied to force equivalence of displacement parameters for each pair of disordered atoms. All H-atoms were positioned at geometrically idealized positions with C—H distances of 0.95 Å, and with Uiso(H) = 1.2Ueq of the parent C-atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. In the disordered furanyl residue, the atoms labelled with an "a" have site occupancy factors of 0.730 (9).
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of helical chains which running along [010]. Symmetry code: (i) -x, +y-1/2, -z+1/2. The C—H···O interactions are shown as dashed lines.
2,4,6-Trinitrophenyl furan-2-carboxylate top
Crystal data top
C11H5N3O9Dx = 1.737 Mg m3
Mr = 323.18Melting point: 435(1) K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4861 reflections
a = 7.0982 (3) Åθ = 3.0–27.0°
b = 8.4931 (4) ŵ = 0.16 mm1
c = 20.4970 (9) ÅT = 123 K
V = 1235.68 (10) Å3Block, pale-yellow
Z = 40.35 × 0.22 × 0.11 mm
F(000) = 656
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2395 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 27.0°, θmin = 3.0°
ω scansh = 99
4861 measured reflectionsk = 108
2669 independent reflectionsl = 2620
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1241P]
where P = (Fo2 + 2Fc2)/3
2669 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.27 e Å3
12 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H5N3O9V = 1235.68 (10) Å3
Mr = 323.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0982 (3) ŵ = 0.16 mm1
b = 8.4931 (4) ÅT = 123 K
c = 20.4970 (9) Å0.35 × 0.22 × 0.11 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2395 reflections with I > 2σ(I)
4861 measured reflectionsRint = 0.022
2669 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03912 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
2669 reflectionsΔρmin = 0.27 e Å3
224 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.18433 (19)0.8534 (2)0.26898 (7)0.0305 (4)
O20.1529 (2)0.8749 (2)0.37311 (8)0.0363 (5)
O30.4160 (2)0.7394 (3)0.48267 (7)0.0428 (5)
O40.6111 (2)0.5845 (2)0.43352 (8)0.0375 (4)
O50.5765 (2)0.53627 (19)0.19586 (8)0.0293 (4)
O60.4404 (2)0.7359 (2)0.15032 (7)0.0401 (5)
O70.08707 (19)0.73046 (16)0.19797 (6)0.0204 (3)
O80.11722 (19)0.99352 (16)0.18492 (7)0.0215 (3)
N10.0930 (2)0.8411 (2)0.31894 (8)0.0215 (4)
N20.4759 (2)0.6722 (2)0.43417 (8)0.0253 (4)
N30.4676 (2)0.6478 (2)0.19627 (8)0.0225 (4)
C10.1840 (3)0.7368 (2)0.25609 (9)0.0164 (4)
C20.1026 (3)0.7816 (2)0.31521 (9)0.0178 (4)
C30.1979 (3)0.7648 (3)0.37363 (10)0.0194 (4)
H30.14250.79730.41360.023*
C40.3760 (3)0.6994 (2)0.37219 (9)0.0199 (4)
C50.4643 (3)0.6543 (2)0.31504 (9)0.0188 (4)
H50.58590.60770.31530.023*
C60.3678 (3)0.6802 (2)0.25754 (9)0.0182 (4)
C70.0627 (3)0.8691 (2)0.16480 (9)0.0169 (4)
C8A0.032 (7)0.8401 (19)0.1031 (12)0.020 (2)0.730 (9)
O9A0.0526 (9)0.9683 (6)0.0630 (3)0.0319 (8)0.730 (9)
C9A0.1062 (9)0.7071 (7)0.0776 (2)0.0194 (10)0.730 (9)
H90.11150.60580.09720.023*0.730 (9)
C10A0.1754 (5)0.7519 (7)0.0143 (2)0.0298 (12)0.730 (9)
H100.23330.68480.01690.036*0.730 (9)
C11A0.1425 (7)0.9074 (7)0.0077 (2)0.0316 (11)0.730 (9)
H110.17580.96780.02960.038*0.730 (9)
C8B0.044 (19)0.835 (5)0.105 (3)0.020 (2)0.270 (9)
O9B0.077 (3)0.9350 (19)0.0532 (8)0.0319 (8)0.270 (9)
C9B0.103 (3)0.687 (2)0.0960 (7)0.0194 (10)0.270 (9)
H9B0.09020.59780.12380.023*0.270 (9)
C10B0.1880 (18)0.6968 (18)0.0363 (6)0.0298 (12)0.270 (9)
H10B0.25240.61150.01630.036*0.270 (9)
C11B0.171 (2)0.840 (2)0.0088 (7)0.0316 (11)0.270 (9)
H11B0.21510.86980.03320.038*0.270 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0175 (7)0.0428 (11)0.0313 (8)0.0018 (8)0.0020 (6)0.0103 (8)
O20.0285 (8)0.0485 (12)0.0320 (9)0.0119 (8)0.0068 (7)0.0089 (9)
O30.0451 (10)0.0646 (13)0.0187 (8)0.0105 (11)0.0038 (7)0.0073 (9)
O40.0357 (9)0.0426 (11)0.0341 (9)0.0117 (9)0.0114 (8)0.0043 (8)
O50.0273 (7)0.0241 (8)0.0364 (9)0.0105 (7)0.0031 (7)0.0032 (7)
O60.0455 (10)0.0491 (11)0.0256 (8)0.0213 (10)0.0083 (7)0.0133 (9)
O70.0236 (7)0.0165 (7)0.0212 (7)0.0004 (6)0.0081 (6)0.0001 (6)
O80.0218 (7)0.0184 (8)0.0243 (8)0.0004 (6)0.0002 (7)0.0004 (7)
N10.0178 (8)0.0186 (8)0.0280 (9)0.0005 (7)0.0033 (7)0.0012 (9)
N20.0263 (10)0.0300 (11)0.0196 (9)0.0045 (8)0.0051 (7)0.0023 (9)
N30.0205 (8)0.0255 (10)0.0215 (9)0.0041 (8)0.0007 (7)0.0002 (8)
C10.0185 (9)0.0115 (10)0.0191 (9)0.0028 (8)0.0032 (8)0.0023 (8)
C20.0148 (8)0.0128 (9)0.0257 (10)0.0009 (7)0.0016 (8)0.0030 (8)
C30.0214 (10)0.0171 (10)0.0198 (9)0.0040 (8)0.0033 (8)0.0019 (9)
C40.0209 (9)0.0180 (11)0.0208 (10)0.0039 (8)0.0048 (8)0.0027 (8)
C50.0158 (8)0.0159 (9)0.0247 (10)0.0013 (7)0.0035 (8)0.0022 (10)
C60.0192 (9)0.0154 (10)0.0200 (10)0.0006 (8)0.0018 (8)0.0010 (8)
C70.0127 (8)0.0189 (11)0.0191 (9)0.0027 (8)0.0016 (7)0.0009 (8)
C8A0.017 (6)0.0232 (14)0.0196 (17)0.0038 (12)0.002 (3)0.0022 (11)
O9A0.039 (2)0.032 (3)0.025 (2)0.0024 (17)0.0090 (14)0.0029 (16)
C9A0.0214 (10)0.018 (2)0.018 (3)0.0009 (13)0.009 (2)0.004 (2)
C10A0.0299 (14)0.036 (3)0.023 (3)0.002 (2)0.0067 (18)0.005 (2)
C11A0.034 (2)0.042 (3)0.0184 (14)0.006 (2)0.0097 (13)0.001 (2)
C8B0.017 (6)0.0232 (14)0.0196 (17)0.0038 (12)0.002 (3)0.0022 (11)
O9B0.039 (2)0.032 (3)0.025 (2)0.0024 (17)0.0090 (14)0.0029 (16)
C9B0.0214 (10)0.018 (2)0.018 (3)0.0009 (13)0.009 (2)0.004 (2)
C10B0.0299 (14)0.036 (3)0.023 (3)0.002 (2)0.0067 (18)0.005 (2)
C11B0.034 (2)0.042 (3)0.0184 (14)0.006 (2)0.0097 (13)0.001 (2)
Geometric parameters (Å, º) top
O1—N11.216 (2)C5—H50.9500
O2—N11.223 (2)C7—C8A1.453 (7)
O3—N21.223 (2)C7—C8B1.471 (17)
O4—N21.215 (2)C8A—C9A1.352 (7)
O5—N31.223 (2)C8A—O9A1.372 (6)
O6—N31.218 (2)O9A—C11A1.400 (5)
O7—C71.371 (2)C9A—C10A1.439 (5)
O7—C11.377 (2)C9A—H90.9500
O8—C71.198 (2)C10A—C11A1.348 (5)
N1—C21.479 (2)C10A—H100.9500
N2—C41.473 (2)C11A—H110.9500
N3—C61.468 (2)C8B—C9B1.345 (18)
C1—C61.391 (3)C8B—O9B1.376 (10)
C1—C21.395 (3)O9B—C11B1.388 (9)
C2—C31.383 (3)C9B—C10B1.365 (12)
C3—C41.381 (3)C9B—H9B0.9500
C3—H30.9500C10B—C11B1.344 (13)
C4—C51.383 (3)C10B—H10B0.9500
C5—C61.381 (3)C11B—H11B0.9500
C7—O7—C1117.29 (15)O7—C7—C8A110.1 (4)
O1—N1—O2123.95 (16)O8—C7—C8B128.7 (12)
O1—N1—C2119.09 (16)O7—C7—C8B108.1 (10)
O2—N1—C2116.96 (16)C9A—C8A—O9A113.0 (5)
O4—N2—O3124.75 (18)C9A—C8A—C7131.2 (6)
O4—N2—C4117.84 (17)O9A—C8A—C7115.8 (6)
O3—N2—C4117.40 (18)C8A—O9A—C11A103.9 (5)
O6—N3—O5124.81 (17)C8A—C9A—C10A105.1 (4)
O6—N3—C6118.03 (17)C8A—C9A—H9127.5
O5—N3—C6117.13 (17)C10A—C9A—H9127.5
O7—C1—C6118.28 (17)C11A—C10A—C9A106.9 (4)
O7—C1—C2123.73 (17)C11A—C10A—H10126.6
C6—C1—C2117.64 (17)C9A—C10A—H10126.6
C3—C2—C1121.45 (17)C10A—C11A—O9A111.1 (4)
C3—C2—N1116.71 (17)C10A—C11A—H11124.5
C1—C2—N1121.77 (17)O9A—C11A—H11124.5
C4—C3—C2118.07 (18)C9B—C8B—O9B114.8 (15)
C4—C3—H3121.0C9B—C8B—C7117.3 (16)
C2—C3—H3121.0O9B—C8B—C7127.7 (18)
C3—C4—C5123.00 (18)C8B—O9B—C11B103.2 (13)
C3—C4—N2119.04 (18)C8B—C9B—C10B101.5 (13)
C5—C4—N2117.95 (17)C8B—C9B—H9B129.3
C6—C5—C4117.01 (16)C10B—C9B—H9B129.3
C6—C5—H5121.5C11B—C10B—C9B113.3 (13)
C4—C5—H5121.5C11B—C10B—H10B123.4
C5—C6—C1122.59 (18)C9B—C10B—H10B123.4
C5—C6—N3117.46 (16)C10B—C11B—O9B107.1 (13)
C1—C6—N3119.95 (17)C10B—C11B—H11B126.5
O8—C7—O7123.08 (17)O9B—C11B—H11B126.5
O8—C7—C8A126.8 (4)
C7—O7—C1—C6105.5 (2)C1—O7—C7—O81.9 (3)
C7—O7—C1—C281.4 (2)C1—O7—C7—C8A177 (2)
O7—C1—C2—C3170.67 (19)C1—O7—C7—C8B180 (6)
C6—C1—C2—C32.5 (3)O8—C7—C8A—C9A176 (3)
O7—C1—C2—N16.0 (3)O7—C7—C8A—C9A5 (6)
C6—C1—C2—N1179.10 (17)C8B—C7—C8A—C9A55 (71)
O1—N1—C2—C3177.87 (19)O8—C7—C8A—O9A3 (5)
O2—N1—C2—C32.0 (3)O7—C7—C8A—O9A175 (3)
O1—N1—C2—C11.1 (3)C8B—C7—C8A—O9A125 (80)
O2—N1—C2—C1178.8 (2)C9A—C8A—O9A—C11A2 (4)
C1—C2—C3—C41.2 (3)C7—C8A—O9A—C11A179 (3)
N1—C2—C3—C4175.64 (18)O9A—C8A—C9A—C10A2 (4)
C2—C3—C4—C51.8 (3)C7—C8A—C9A—C10A178 (4)
C2—C3—C4—N2176.63 (19)C8A—C9A—C10A—C11A2 (3)
O4—N2—C4—C3164.0 (2)C9A—C10A—C11A—O9A0.8 (6)
O3—N2—C4—C315.7 (3)C8A—O9A—C11A—C10A0 (2)
O4—N2—C4—C514.5 (3)O8—C7—C8B—C9B174 (6)
O3—N2—C4—C5165.8 (2)O7—C7—C8B—C9B4 (13)
C3—C4—C5—C61.3 (3)C8A—C7—C8B—C9B125 (87)
N2—C4—C5—C6179.71 (18)O8—C7—C8B—O9B12 (18)
C4—C5—C6—C15.2 (3)O7—C7—C8B—O9B170 (11)
C4—C5—C6—N3173.92 (19)C8A—C7—C8B—O9B49 (64)
O7—C1—C6—C5167.74 (19)C9B—C8B—O9B—C11B2 (12)
C2—C1—C6—C55.8 (3)C7—C8B—O9B—C11B176 (11)
O7—C1—C6—N313.2 (3)O9B—C8B—C9B—C10B3 (12)
C2—C1—C6—N3173.29 (18)C7—C8B—C9B—C10B178 (9)
O6—N3—C6—C5142.3 (2)C8B—C9B—C10B—C11B4 (7)
O5—N3—C6—C535.7 (3)C9B—C10B—C11B—O9B3 (2)
O6—N3—C6—C136.8 (3)C8B—O9B—C11B—C10B1 (7)
O5—N3—C6—C1145.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O8i0.952.323.270 (2)180
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O8i0.952.323.270 (2)180
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

RMF thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Mosquera, F., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013). Acta Cryst. E69, o966.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Mosquera, F., Kennedy, A. R., Morrison, C. A. & De Almeida Santos, R. H. (2012). Acta Cryst. E68, o3493.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds