organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(1,3-Benzodioxol-5-yl)meth­yl]benzene­sulfonamide: an analogue of capsaicin

aDepartment of Physics, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and bDepartment of Pharmacy, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
*Correspondence e-mail: stellamaganhi@gmail.com

(Received 14 October 2013; accepted 16 October 2013; online 23 October 2013)

The title compound, C14H13NO4S, an analogue of capsaicin, differs from the latter by having a 1,3-benzodioxole ring rather than a 2-meth­oxy­phenol moiety, and having a benzene­sulfonamide group instead of an aliphatic amide chain. The five-membered ring is in an envelope conformation with the methyl­ene C atom lying 0.221 (6) Å out of the plane formed by the other four atoms. The dihedral angle between the phenyl ring and the mean plane of the 1,3-benzodioxole fused-ring system is 84.65 (4)°. In the crystal, mol­ecules aggregate into supra­molecular layers in the ac plane through C—H⋯O, N—H⋯O and C—H⋯π inter­actions.

Related literature

For background and the biological activity of capsaicin, see: Lee et al. (2011[Lee, M., Kim, C., Kim, I. & Kim, Y. (2011). Phytother. Res. 25, 935-939.]); Malagarie-Cazenave et al. (2011[Malagarie-Cazenave, S., Olea-Herrero, N., Vara, D., Morell, C. & Díaz-Laviada, I. (2011). Cytokine, 54, 330-337.]). For the synthesis and cytoxicity of the title compound, see: De Sá-Junior et al. (2013[De Sá-Junior, P. L., Ferreira, A. K., Pasqualoto, K. F. M., Tavares, M. T., Damiao, M. C. F. C. B., Azevedo, R. A., Camara, D. A. D., Pereira, A., Souza, D. M. & Parise-Filho, R. (2013). Toxicol. Appl. Pharmacol. 266, 385-398.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO4S

  • Mr = 291.32

  • Orthorhombic, P b c a

  • a = 18.0158 (4) Å

  • b = 5.9346 (1) Å

  • c = 25.5480 (8) Å

  • V = 2731.51 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 290 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer with Bruker APEXII CCD areadetector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.930, Tmax = 0.948

  • 2652 measured reflections

  • 2652 independent reflections

  • 1860 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.149

  • S = 1.04

  • 2652 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.99 2.00 2.945 (3) 157
C14—H14⋯O1ii 0.93 2.59 3.486 (3) 161
C10—H10⋯Cg1iii 0.93 2.74 3.563 (3) 147
C8—H8BCg2iv 0.97 2.82 3.511 (3) 129
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Capsaicin is the common name of trans-8-methyl-N-vanillyl-6-nonenamide, the main pungent component produced by hot red and chili peppers (Lee et al., 2011). It is a product of secondary metabolism from several species of the genus Capsicum (Malagarie-Cazenave et al. 2011) The beneficial effects of capsaicinoids are well known, such as their antitumoral activity. Thus, by rational approaches, the capsaicinoid structure could be used as an important prototype for the design of novel analogues. With this in mind, we intended to design a capsaicin-like analogue with potential activity against cancer cells. The title molecule, (I), N-(benzo[d][1,3]dioxol-5-ylmethyl)benzenesulfonamide was designed by converting the vanillyl system on the capsaicinoid structure to a benzodioxol group, and modifying the alkyl-lipophilic chain by an aromatic ring. The amide bond was replaced by a sulfonamide bond using bioisosteric concepts. Molecule (I) showed relevant cytotoxicity against MCF7 breast cancer cell line presenting an IC50 = 32 µM (De Sá-Junior et al., 2013). The compound, Fig. 1, shows an envelope configuration in the 1,3-dioxole five membered ring, with the C7 atom lying 0,221 (6) Å out of the plane formed by the other four atoms. The ring puckering parameters are q2 = 0.140 (3) Å and ϕ2 = 145.7 (1)o (Cremer & Pople, 1975). The crystal packing of (I), Table 1, is sustained by N—H···O and C—H···π interactions, leading to supramolecular layers in the ac plane.

Related literature top

For background and the biological activity of capsaicin, see: Lee et al. (2011); Malagarie-Cazenave et al. (2011). For the synthesis and cytoxicity of the title compound, see: De Sá-Junior et al. (2013). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

The synthesis has been already described (De Sá-Junior et al., 2013). Crystals were obtained by slow evaporation from a hexane/chloroform (4:1) solution.

Refinement top

The H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N—H H atom was located in a difference map and placed in that position with Uiso(H) = 1.2Ueq(N).

The data collection was not ideal but, in spite of that, the structure is unambiguous and fine.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing atom labels and 50% displacement ellipsoids.
N-[(1,3-Benzodioxol-5-yl)methyl]benzenesulfonamide top
Crystal data top
C14H13NO4SDx = 1.417 Mg m3
Mr = 291.32Melting point = 350.1–350.6 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3351 reflections
a = 18.0158 (4) Åθ = 1.4–27.1°
b = 5.9346 (1) ŵ = 0.25 mm1
c = 25.5480 (8) ÅT = 290 K
V = 2731.51 (11) Å3Irregular, colourless
Z = 80.25 × 0.22 × 0.20 mm
F(000) = 1216
Data collection top
Nonius KappaCCD with Bruker APEXII CCD area detector
diffractometer
2652 independent reflections
Radiation source: fine-focus sealed tube1860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 022
Tmin = 0.930, Tmax = 0.948k = 07
2652 measured reflectionsl = 310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0843P)2 + 0.6245P]
where P = (Fo2 + 2Fc2)/3
2652 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H13NO4SV = 2731.51 (11) Å3
Mr = 291.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.0158 (4) ŵ = 0.25 mm1
b = 5.9346 (1) ÅT = 290 K
c = 25.5480 (8) Å0.25 × 0.22 × 0.20 mm
Data collection top
Nonius KappaCCD with Bruker APEXII CCD area detector
diffractometer
2652 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1860 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.948Rint = 0.000
2652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
2652 reflectionsΔρmin = 0.29 e Å3
181 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14422 (14)0.0794 (4)0.26877 (9)0.0610 (6)
H1A0.19390.11900.25740.073*
H1B0.12830.05070.24870.073*
C20.14588 (11)0.0187 (4)0.32636 (9)0.0493 (5)
C30.17158 (12)0.1926 (4)0.34057 (10)0.0561 (6)
H30.18360.29580.31450.067*
C40.17986 (13)0.2546 (4)0.39256 (10)0.0596 (6)
H40.19750.39620.40190.071*
C50.16096 (13)0.0985 (4)0.42922 (9)0.0550 (6)
C60.13417 (14)0.1100 (4)0.41568 (9)0.0559 (6)
C70.12552 (13)0.1742 (4)0.36469 (8)0.0547 (6)
H70.10690.31540.35590.066*
C80.1485 (2)0.1023 (6)0.50195 (12)0.0966 (11)
H8A0.19360.17210.51480.116*
H8B0.11320.09480.53060.116*
C90.09760 (11)0.2425 (4)0.15195 (8)0.0492 (5)
C100.02961 (13)0.2300 (4)0.12712 (10)0.0625 (6)
H100.00930.32240.13770.075*
C110.01987 (15)0.0799 (5)0.08658 (11)0.0748 (8)
H110.02580.07190.06970.090*
C120.07628 (17)0.0566 (5)0.07097 (11)0.0805 (8)
H120.06890.15770.04360.097*
C130.14451 (16)0.0459 (5)0.09547 (11)0.0806 (9)
H130.18300.13900.08450.097*
C140.15560 (13)0.1045 (5)0.13662 (10)0.0647 (7)
H140.20130.11200.15350.078*
O10.18306 (9)0.4975 (3)0.20769 (7)0.0703 (5)
O20.04895 (10)0.5823 (3)0.20637 (6)0.0654 (5)
O30.16399 (11)0.1167 (3)0.48341 (7)0.0764 (6)
O40.11841 (13)0.2327 (3)0.46019 (6)0.0841 (6)
N10.09406 (10)0.2681 (3)0.25825 (7)0.0558 (5)
H1N0.04050.23230.26300.067*
S10.10836 (3)0.42069 (10)0.20672 (2)0.0518 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0711 (16)0.0610 (14)0.0509 (14)0.0106 (12)0.0004 (11)0.0038 (11)
C20.0490 (12)0.0500 (13)0.0487 (13)0.0012 (10)0.0018 (9)0.0018 (10)
C30.0558 (13)0.0492 (14)0.0632 (15)0.0037 (10)0.0044 (11)0.0060 (11)
C40.0576 (14)0.0483 (12)0.0728 (17)0.0033 (11)0.0017 (12)0.0047 (11)
C50.0579 (13)0.0551 (13)0.0519 (13)0.0040 (10)0.0008 (10)0.0085 (11)
C60.0698 (15)0.0511 (13)0.0467 (13)0.0008 (11)0.0029 (11)0.0035 (10)
C70.0679 (14)0.0463 (12)0.0497 (13)0.0031 (11)0.0018 (11)0.0017 (10)
C80.156 (3)0.084 (2)0.0500 (16)0.010 (2)0.0048 (18)0.0069 (15)
C90.0487 (12)0.0559 (12)0.0431 (12)0.0012 (10)0.0049 (9)0.0026 (9)
C100.0515 (13)0.0768 (16)0.0592 (14)0.0030 (12)0.0026 (11)0.0098 (12)
C110.0678 (17)0.0909 (19)0.0657 (17)0.0066 (14)0.0029 (13)0.0167 (15)
C120.099 (2)0.0810 (18)0.0619 (17)0.0034 (17)0.0010 (15)0.0185 (14)
C130.091 (2)0.089 (2)0.0620 (17)0.0302 (17)0.0082 (15)0.0123 (15)
C140.0592 (14)0.0821 (17)0.0526 (14)0.0156 (12)0.0001 (11)0.0023 (12)
O10.0522 (10)0.0763 (12)0.0823 (13)0.0131 (9)0.0035 (8)0.0066 (9)
O20.0653 (11)0.0623 (11)0.0686 (11)0.0126 (8)0.0045 (8)0.0066 (8)
O30.1040 (14)0.0704 (12)0.0548 (11)0.0079 (10)0.0014 (9)0.0142 (8)
O40.1363 (18)0.0690 (12)0.0471 (10)0.0244 (11)0.0015 (10)0.0023 (9)
N10.0522 (11)0.0670 (12)0.0482 (11)0.0010 (9)0.0026 (8)0.0001 (9)
S10.0522 (4)0.0525 (4)0.0507 (4)0.0022 (2)0.0016 (2)0.0017 (2)
Geometric parameters (Å, º) top
C1—N11.464 (3)C8—H8B0.9700
C1—C21.515 (3)C9—C101.382 (3)
C1—H1A0.9700C9—C141.384 (3)
C1—H1B0.9700C9—S11.765 (2)
C2—C31.385 (3)C10—C111.377 (3)
C2—C71.395 (3)C10—H100.9300
C3—C41.386 (3)C11—C121.360 (4)
C3—H30.9300C11—H110.9300
C4—C51.361 (3)C12—C131.381 (4)
C4—H40.9300C12—H120.9300
C5—C61.372 (3)C13—C141.393 (4)
C5—O31.390 (3)C13—H130.9300
C6—C71.366 (3)C14—H140.9300
C6—O41.380 (3)O1—S11.4210 (17)
C7—H70.9300O2—S11.4372 (18)
C8—O31.411 (4)N1—S11.6186 (19)
C8—O41.425 (3)N1—H1N0.9947
C8—H8A0.9700
N1—C1—C2111.85 (18)C10—C9—C14120.5 (2)
N1—C1—H1A109.2C10—C9—S1119.57 (17)
C2—C1—H1A109.2C14—C9—S1119.74 (18)
N1—C1—H1B109.2C11—C10—C9119.5 (2)
C2—C1—H1B109.2C11—C10—H10120.2
H1A—C1—H1B107.9C9—C10—H10120.2
C3—C2—C7120.2 (2)C12—C11—C10120.7 (2)
C3—C2—C1118.4 (2)C12—C11—H11119.6
C7—C2—C1121.3 (2)C10—C11—H11119.6
C2—C3—C4121.8 (2)C11—C12—C13120.3 (3)
C2—C3—H3119.1C11—C12—H12119.8
C4—C3—H3119.1C13—C12—H12119.8
C5—C4—C3116.9 (2)C12—C13—C14119.9 (2)
C5—C4—H4121.6C12—C13—H13120.0
C3—C4—H4121.6C14—C13—H13120.0
C4—C5—C6121.9 (2)C9—C14—C13119.0 (2)
C4—C5—O3128.5 (2)C9—C14—H14120.5
C6—C5—O3109.6 (2)C13—C14—H14120.5
C7—C6—C5122.1 (2)C5—O3—C8104.8 (2)
C7—C6—O4128.0 (2)C6—O4—C8104.6 (2)
C5—C6—O4109.9 (2)C1—N1—S1118.62 (15)
C6—C7—C2117.0 (2)C1—N1—H1N114.4
C6—C7—H7121.5S1—N1—H1N111.9
C2—C7—H7121.5O1—S1—O2119.43 (12)
O3—C8—O4108.9 (2)O1—S1—N1108.42 (11)
O3—C8—H8A109.9O2—S1—N1105.06 (10)
O4—C8—H8A109.9O1—S1—C9108.06 (10)
O3—C8—H8B109.9O2—S1—C9108.26 (10)
O4—C8—H8B109.9N1—S1—C9106.99 (11)
H8A—C8—H8B108.3
N1—C1—C2—C3160.6 (2)C10—C9—C14—C130.5 (4)
N1—C1—C2—C722.4 (3)S1—C9—C14—C13175.8 (2)
C7—C2—C3—C41.8 (3)C12—C13—C14—C90.5 (4)
C1—C2—C3—C4175.2 (2)C4—C5—O3—C8171.9 (3)
C2—C3—C4—C50.5 (3)C6—C5—O3—C88.6 (3)
C3—C4—C5—C60.7 (4)O4—C8—O3—C514.5 (3)
C3—C4—C5—O3179.9 (2)C7—C6—O4—C8171.0 (3)
C4—C5—C6—C70.6 (4)C5—C6—O4—C89.3 (3)
O3—C5—C6—C7179.8 (2)O3—C8—O4—C614.8 (4)
C4—C5—C6—O4179.0 (2)C2—C1—N1—S1155.52 (16)
O3—C5—C6—O40.5 (3)C1—N1—S1—O153.6 (2)
C5—C6—C7—C20.6 (4)C1—N1—S1—O2177.62 (16)
O4—C6—C7—C2179.8 (2)C1—N1—S1—C962.69 (19)
C3—C2—C7—C61.8 (3)C10—C9—S1—O1149.4 (2)
C1—C2—C7—C6175.1 (2)C14—C9—S1—O135.3 (2)
C14—C9—C10—C110.4 (4)C10—C9—S1—O218.7 (2)
S1—C9—C10—C11175.7 (2)C14—C9—S1—O2165.94 (19)
C9—C10—C11—C120.3 (4)C10—C9—S1—N194.0 (2)
C10—C11—C12—C130.3 (5)C14—C9—S1—N181.3 (2)
C11—C12—C13—C140.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.992.002.945 (3)157
C14—H14···O1ii0.932.593.486 (3)161
C10—H10···Cg1iii0.932.743.563 (3)147
C8—H8B···Cg2iv0.972.823.511 (3)129
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.992.002.945 (3)157
C14—H14···O1ii0.932.593.486 (3)161
C10—H10···Cg1iii0.932.743.563 (3)147
C8—H8B···Cg2iv0.972.823.511 (3)129
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z1/2.
 

Acknowledgements

We thank FAPESP (grant no. 2012/22524–9), the São Paulo Research Foundation (SMH), CNPq and CAPES for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. http://www.chemaxon.com.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDe Sá-Junior, P. L., Ferreira, A. K., Pasqualoto, K. F. M., Tavares, M. T., Damiao, M. C. F. C. B., Azevedo, R. A., Camara, D. A. D., Pereira, A., Souza, D. M. & Parise-Filho, R. (2013). Toxicol. Appl. Pharmacol. 266, 385–398.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, M., Kim, C., Kim, I. & Kim, Y. (2011). Phytother. Res. 25, 935–939.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMalagarie-Cazenave, S., Olea-Herrero, N., Vara, D., Morell, C. & Díaz-Laviada, I. (2011). Cytokine, 54, 330–337.  Web of Science CAS PubMed Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds