organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1H-Benzotriazole–4-hy­dr­oxy­benzoic acid (1/1)

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cDepartment of Physics, Presidency College, Chennai 600 005, India, and dKunthavai Naacchiyaar Govt. Arts College (W), Thanjavur 613 007, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, kan_uma6@yahoo.com

(Received 23 September 2013; accepted 29 September 2013; online 2 October 2013)

The asymmetric unit of the title compound, C6H5N3·C7H6O3, comprises independent benzotriazole and 4-hydroxybenzoic acid molecules. The dihedral angle between the benzene ring and the benzotriazole ring system is 15.18 (7)°. The mean plane of the carb­oxyl group is twisted at an angle of 18.55 (1)° with respect to the benzene ring. The crystal structure is stabilized by weak inter­molecular N—H⋯N, O—H⋯N, O—H⋯O and C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For biological activities of benzotriazole derivates, see: Dubey et al. (2011[Dubey, A., Srivastava, S. K. & Srivastava, S. D. (2011). Bioorg. Med. Chem. Lett. 21, 569-573.]); Gaikwad, et al. (2012[Gaikwad, N. D., Patil, S. V. & Bodade, V. D. (2012). Bioorg. Med. Chem. Lett. 22, 3449-3454.]). For reported structures, see: Sieroń (2007[Sieroń, L. (2007). Acta Cryst. E63, o2089-o2090.]); Sudhahar et al.(2013[Sudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.]); Yang et al. (2010[Yang, Y. X., Li, K., Wang, Y. J. & Li, Q. (2010). Beijing Shifan Dax. Xue. Zir. Kex. (J. B. Norm. Univ.), 46, 160-165.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5N3·C7H6O3

  • Mr = 257.25

  • Orthorhombic, P n a 21

  • a = 17.3634 (13) Å

  • b = 11.4669 (9) Å

  • c = 6.0818 (4) Å

  • V = 1210.91 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.976

  • 6611 measured reflections

  • 2195 independent reflections

  • 1925 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.074

  • S = 1.04

  • 2195 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.20 2.982 (2) 152
O2—H2A⋯N3ii 0.82 1.87 2.6817 (19) 169
O3—H3A⋯O1iii 0.82 1.88 2.6912 (17) 171
C13—H13⋯O3iv 0.93 2.49 3.373 (2) 159
Symmetry codes: (i) [-x, -y+2, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzotriazole derivates exhibit numerous essential bioactivitities, especially in antitubercular and antimicrobial (Dubey et al., 2011; Gaikwad et al., 2012) activities. We herewith report the crystal structure of the title compound (I) (Fig.1). The geometric parameters are comparable with reported structures (Sieroń , 2007; Sudhahar et al., 2013; Yang et al., 2010).

The benzene ring (C1-C6) is planar, with the maximum deviation of 0.010 (2) Å. The dihedral angle between the benzene ring and benzotriazole ring system is 15.18 (7)°. The mean plane of carboxyl group is twisted at an angle of 18.55 (1)° with the benzene ring. The crystal structure is stabilized by weak intermolecular N—H···N, O—H···N, O—H···O, C—H···O (Table 1 & Fig. 2) interactions to form a three dimensional network.

Related literature top

For biological activities of benzotriazole derivates, see: Dubey et al. (2011); Gaikwad, et al. (2012). For reported structures, see: Sieroń (2007); Sudhahar et al.(2013); Yang et al. (2010).

Experimental top

Benzotriazole (C6H5N3, 1.1913 g) and p-hydroxy benzoic acid (C7H6O3, 1.3812 g) were mixed in equimolar ratio in methanol and the prepared solution was allowed for slow evaporation at room temperature. Good quality crystals suitable for X-ray intensity data collection were collected in a period of 10 days.

Refinement top

H atoms were positioned geometrically and refined using riding model with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for CH, N-H = 0.86 Å and Uiso(H) = 1.2Ueq(C) for NH, O-H = 0.82 Å and Uiso(H) = 1.5Ueq(C) for OH.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down c axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
1H-Benzotriazole–4-hydroxybenzoic acid (1/1) top
Crystal data top
C6H5N3·C7H6O3F(000) = 536
Mr = 257.25Dx = 1.411 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2578 reflections
a = 17.3634 (13) Åθ = 2.1–25.2°
b = 11.4669 (9) ŵ = 0.10 mm1
c = 6.0818 (4) ÅT = 295 K
V = 1210.91 (15) Å3Block, colourless
Z = 40.30 × 0.26 × 0.24 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2195 independent reflections
Radiation source: fine-focus sealed tube1925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scanθmax = 26.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2022
Tmin = 0.970, Tmax = 0.976k = 1314
6611 measured reflectionsl = 74
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.0577P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2195 reflectionsΔρmax = 0.15 e Å3
174 parametersΔρmin = 0.11 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (2)
Crystal data top
C6H5N3·C7H6O3V = 1210.91 (15) Å3
Mr = 257.25Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.3634 (13) ŵ = 0.10 mm1
b = 11.4669 (9) ÅT = 295 K
c = 6.0818 (4) Å0.30 × 0.26 × 0.24 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2195 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1925 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.976Rint = 0.033
6611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.074H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
2195 reflectionsΔρmin = 0.11 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C70.37669 (8)0.74471 (13)0.7594 (3)0.0363 (4)
C40.32444 (9)0.79794 (14)0.5984 (3)0.0353 (4)
C30.30244 (10)0.73727 (15)0.4112 (3)0.0457 (4)
H30.32040.66170.38950.055*
C20.25482 (10)0.78675 (16)0.2581 (3)0.0492 (5)
H20.24160.74520.13230.059*
C10.22618 (9)0.89793 (15)0.2887 (3)0.0385 (4)
C60.24605 (9)0.95891 (15)0.4762 (3)0.0417 (4)
H60.22611.03310.49970.050*
C50.29535 (10)0.91033 (14)0.6286 (3)0.0419 (4)
H50.30930.95280.75270.050*
N20.00946 (8)0.88952 (13)0.2498 (3)0.0477 (4)
C90.03383 (9)0.72630 (14)0.3824 (3)0.0345 (4)
C80.05616 (10)0.81341 (14)0.5280 (3)0.0366 (4)
C130.09730 (10)0.78968 (17)0.7199 (3)0.0485 (5)
H130.11170.84800.81780.058*
C120.11490 (10)0.67520 (17)0.7544 (4)0.0539 (5)
H120.14190.65510.88090.065*
C110.09398 (12)0.58653 (16)0.6071 (3)0.0521 (5)
H110.10830.51010.63750.062*
C100.05347 (10)0.60939 (14)0.4216 (3)0.0459 (4)
H100.03930.55040.32480.055*
N30.00650 (8)0.77773 (12)0.2146 (2)0.0418 (3)
N10.02792 (8)0.91193 (12)0.4377 (3)0.0456 (4)
H10.03320.98030.49350.055*
O10.38942 (6)0.63969 (10)0.7712 (2)0.0472 (3)
O20.40973 (7)0.81933 (10)0.8925 (2)0.0504 (3)
H2A0.43800.78430.97790.076*
O30.17907 (8)0.94246 (11)0.13231 (19)0.0531 (4)
H3A0.16271.00600.17290.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0366 (8)0.0325 (9)0.0398 (9)0.0021 (6)0.0031 (7)0.0020 (9)
C40.0346 (8)0.0338 (8)0.0376 (9)0.0022 (6)0.0022 (7)0.0032 (7)
C30.0509 (10)0.0377 (9)0.0485 (11)0.0083 (7)0.0051 (9)0.0119 (10)
C20.0575 (10)0.0467 (10)0.0434 (11)0.0084 (8)0.0093 (10)0.0186 (9)
C10.0391 (8)0.0405 (9)0.0359 (9)0.0005 (7)0.0001 (7)0.0029 (8)
C60.0480 (9)0.0303 (8)0.0468 (10)0.0029 (7)0.0041 (8)0.0082 (7)
C50.0463 (9)0.0375 (9)0.0418 (10)0.0014 (7)0.0062 (8)0.0101 (8)
N20.0591 (9)0.0351 (8)0.0488 (9)0.0029 (6)0.0070 (8)0.0017 (7)
C90.0379 (8)0.0318 (8)0.0336 (9)0.0030 (6)0.0001 (7)0.0033 (7)
C80.0397 (9)0.0324 (9)0.0376 (9)0.0030 (7)0.0033 (7)0.0053 (7)
C130.0527 (10)0.0538 (12)0.0391 (10)0.0031 (8)0.0053 (8)0.0128 (10)
C120.0563 (11)0.0610 (12)0.0445 (11)0.0052 (9)0.0124 (10)0.0009 (11)
C110.0582 (11)0.0405 (11)0.0574 (12)0.0063 (8)0.0091 (10)0.0023 (10)
C100.0524 (10)0.0326 (9)0.0528 (12)0.0006 (7)0.0056 (10)0.0074 (9)
N30.0519 (8)0.0330 (8)0.0406 (8)0.0022 (6)0.0058 (7)0.0004 (7)
N10.0587 (9)0.0295 (7)0.0486 (9)0.0043 (6)0.0009 (8)0.0086 (7)
O10.0533 (7)0.0323 (7)0.0560 (8)0.0004 (5)0.0065 (6)0.0008 (7)
O20.0630 (7)0.0339 (7)0.0542 (8)0.0015 (5)0.0221 (7)0.0036 (6)
O30.0654 (8)0.0509 (8)0.0430 (7)0.0145 (6)0.0147 (6)0.0089 (6)
Geometric parameters (Å, º) top
C7—O11.2265 (18)C9—N31.371 (2)
C7—O21.3102 (19)C9—C81.390 (2)
C7—C41.468 (2)C9—C101.404 (2)
C4—C31.388 (2)C8—N11.348 (2)
C4—C51.396 (2)C8—C131.395 (3)
C3—C21.369 (2)C13—C121.364 (3)
C3—H30.9300C13—H130.9300
C2—C11.381 (2)C12—C111.403 (3)
C2—H20.9300C12—H120.9300
C1—O31.3545 (19)C11—C101.355 (3)
C1—C61.381 (2)C11—H110.9300
C6—C51.380 (2)C10—H100.9300
C6—H60.9300N1—H10.8600
C5—H50.9300O2—H2A0.8200
N2—N31.3008 (19)O3—H3A0.8200
N2—N11.339 (2)
O1—C7—O2121.74 (15)N3—C9—C10131.39 (15)
O1—C7—C4123.97 (15)C8—C9—C10120.69 (16)
O2—C7—C4114.28 (13)N1—C8—C9103.95 (15)
C3—C4—C5118.12 (15)N1—C8—C13133.65 (17)
C3—C4—C7120.59 (15)C9—C8—C13122.39 (16)
C5—C4—C7121.30 (15)C12—C13—C8115.53 (17)
C2—C3—C4121.11 (16)C12—C13—H13122.2
C2—C3—H3119.4C8—C13—H13122.2
C4—C3—H3119.4C13—C12—C11122.75 (19)
C3—C2—C1120.55 (16)C13—C12—H12118.6
C3—C2—H2119.7C11—C12—H12118.6
C1—C2—H2119.7C10—C11—C12121.73 (17)
O3—C1—C2118.07 (15)C10—C11—H11119.1
O3—C1—C6122.67 (15)C12—C11—H11119.1
C2—C1—C6119.26 (16)C11—C10—C9116.89 (16)
C5—C6—C1120.36 (15)C11—C10—H10121.6
C5—C6—H6119.8C9—C10—H10121.6
C1—C6—H6119.8N2—N3—C9108.75 (14)
C6—C5—C4120.56 (15)N2—N1—C8111.29 (14)
C6—C5—H5119.7N2—N1—H1124.4
C4—C5—H5119.7C8—N1—H1124.4
N3—N2—N1108.09 (14)C7—O2—H2A109.5
N3—C9—C8107.91 (14)C1—O3—H3A109.5
O1—C7—C4—C318.0 (2)N3—C9—C8—C13178.84 (16)
O2—C7—C4—C3161.82 (15)C10—C9—C8—C131.3 (3)
O1—C7—C4—C5161.86 (16)N1—C8—C13—C12179.32 (19)
O2—C7—C4—C518.3 (2)C9—C8—C13—C120.6 (3)
C5—C4—C3—C21.3 (3)C8—C13—C12—C110.6 (3)
C7—C4—C3—C2178.86 (17)C13—C12—C11—C101.2 (3)
C4—C3—C2—C11.3 (3)C12—C11—C10—C90.5 (3)
C3—C2—C1—O3179.75 (16)N3—C9—C10—C11179.47 (17)
C3—C2—C1—C60.1 (3)C8—C9—C10—C110.6 (2)
O3—C1—C6—C5178.87 (16)N1—N2—N3—C90.20 (18)
C2—C1—C6—C51.5 (3)C8—C9—N3—N20.25 (18)
C1—C6—C5—C41.5 (3)C10—C9—N3—N2179.65 (18)
C3—C4—C5—C60.1 (2)N3—N2—N1—C80.09 (19)
C7—C4—C5—C6179.74 (16)C9—C8—N1—N20.06 (18)
N3—C9—C8—N10.18 (17)C13—C8—N1—N2178.79 (18)
C10—C9—C8—N1179.72 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.202.982 (2)152
O2—H2A···N3ii0.821.872.6817 (19)169
O3—H3A···O1iii0.821.882.6912 (17)171
C13—H13···O3iv0.932.493.373 (2)159
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z1/2; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.202.982 (2)152
O2—H2A···N3ii0.821.872.6817 (19)169
O3—H3A···O1iii0.821.882.6912 (17)171
C13—H13···O3iv0.932.493.373 (2)159
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z1/2; (iv) x, y, z+1.
 

Acknowledgements

The authors thanks SAIF, IIT, Madras, for data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDubey, A., Srivastava, S. K. & Srivastava, S. D. (2011). Bioorg. Med. Chem. Lett. 21, 569–573.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGaikwad, N. D., Patil, S. V. & Bodade, V. D. (2012). Bioorg. Med. Chem. Lett. 22, 3449–3454.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. (2007). Acta Cryst. E63, o2089–o2090.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.  CSD CrossRef IUCr Journals Google Scholar
First citationYang, Y. X., Li, K., Wang, Y. J. & Li, Q. (2010). Beijing Shifan Dax. Xue. Zir. Kex. (J. B. Norm. Univ.), 46, 160–165.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds