metal-organic compounds
Bis(μ-diphenylphosphanyl)bis[(trimethylphosphane)cobalt(I)](Co—Co)
aEduard-Zintl-Institut, Darmstadt University of Technology, 64287 Darmstadt, Germany
*Correspondence e-mail: metallacycle@gmail.com
The title compound, [Co2{P(C6H5)2}2(C3H9P)4], was obtained by the addition of diphenylphosphane to a solution of Co(CH3)(C3H9P)4. The dinuclear complex molecule exhibits inversion symmetry with the inversion centre located between the two CoI atoms. The short Co—Co distance of 2.3670 (8) Å lies within the range of metal–metal double bonds. As a result of inversion symmetry, the four-membered Co2P2 core is rigorously planar, and the two bridging P(C6H5)2-ligands and the terminal C3H9P ligands are arranged in a pseudo-tetrahedral fashion about the CoI atom.
CCDC reference: 965035
Related literature
For related homobimetallic cobalt complexes, see: Harley et al. (1983); Jones et al. (1983); Winterhalter et al. (2001): For related salt metathesis reactions, see: Klein et al. (1988, 2003); Klein & Karsch (1975).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
Supporting information
CCDC reference: 965035
10.1107/S1600536813027384/wm2765sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813027384/wm2765Isup2.hkl
Standard vacuum techniques were used in manipulations of volatile and air sensitive material. Literature methods were applied for the preparation of Co(CH3)(PMe3)4 (Klein & Karsch, 1975). Other chemicals were used as purchased. The title compound bis(µ2-diphenylphosphino)tetrakis(trimethylphosphane) dicobalt(I) was synthesized by combining stoichiometric amounts of diphenylphosphane (118 mg, 0.63 mmol) in 20 ml of n-pentane at 203 K with a sample of Co(CH3)(PMe3)4 (240 mg, 0.63 mmol) in 20 ml of n-pentane, effecting a change of color from red to dark brown. After warm-up, the mixture was kept stirring at 293 K for 16 h, and then the volatiles were removed in vacuo to give a dark brown, waxy solid. This was dissolved in a mixture of 10 ml of n-pentane / diethyl ether (3:1) and crystallized at 253 K to give brown rhombic crystals, which were suitable for X-ray diffraction. Isolated yield 145 mg (58%); m. p. 391–393 K (dec.). 1H NMR (300 MHz, THF-d8, 293 K, p.p.m.): δ = 0.88 (s(br), 36H, PCH3); 7.03 - 7.11 (m, 12H, Ar—H); 7.51 – 7.56 (m, 8H, Ar—H); - 31P{1H} NMR (121 MHz, THF-d8, 297 K, p.p.m.): δ = 4.66 (s(br), 4P, PCH3), 12.3 (s(br), 2P, PPh2). Anal. Calcd. for C36H56Co2P6 (792.5): C, 54.56; H, 7.12; P, 23.45: Found: C, 54.88; H, 6.72; P 23.98%.
H atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Co2(C12H10P)2(C3H9P)4] | F(000) = 832 |
Mr = 792.49 | Dx = 1.345 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.318 (2) Å | Cell parameters from 864 reflections |
b = 19.262 (4) Å | θ = 3.0–26.0° |
c = 10.721 (2) Å | µ = 1.12 mm−1 |
β = 113.32 (3)° | T = 173 K |
V = 1956.8 (7) Å3 | Block, brown |
Z = 2 | 0.12 × 0.10 × 0.08 mm |
Bruker APEX CCD diffractometer | 5413 independent reflections |
Radiation source: fine-focus sealed tube | 3251 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
phi and ω scans | θmax = 29.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −14→14 |
Tmin = 0.912, Tmax = 0.940 | k = −26→26 |
37952 measured reflections | l = −14→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 0.81 | w = 1/[σ2(Fo2) + (0.0484P)2] where P = (Fo2 + 2Fc2)/3 |
5413 reflections | (Δ/σ)max = 0.001 |
205 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.86 e Å−3 |
[Co2(C12H10P)2(C3H9P)4] | V = 1956.8 (7) Å3 |
Mr = 792.49 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.318 (2) Å | µ = 1.12 mm−1 |
b = 19.262 (4) Å | T = 173 K |
c = 10.721 (2) Å | 0.12 × 0.10 × 0.08 mm |
β = 113.32 (3)° |
Bruker APEX CCD diffractometer | 5413 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 3251 reflections with I > 2σ(I) |
Tmin = 0.912, Tmax = 0.940 | Rint = 0.062 |
37952 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 0.81 | Δρmax = 0.45 e Å−3 |
5413 reflections | Δρmin = −0.86 e Å−3 |
205 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.05854 (3) | 0.453786 (15) | 0.07344 (3) | 0.02705 (8) | |
P1 | 0.01598 (6) | 0.55315 (3) | 0.14726 (6) | 0.02866 (12) | |
P2 | 0.00076 (7) | 0.36275 (3) | 0.15980 (6) | 0.03557 (15) | |
P3 | 0.28562 (6) | 0.43802 (3) | 0.16358 (6) | 0.03235 (14) | |
C1 | 0.1571 (2) | 0.61095 (11) | 0.2607 (2) | 0.0314 (5) | |
C2 | 0.2519 (2) | 0.64148 (12) | 0.2142 (3) | 0.0379 (5) | |
H2 | 0.2402 | 0.6342 | 0.1227 | 0.045* | |
C3 | 0.3630 (3) | 0.68225 (13) | 0.2982 (3) | 0.0461 (6) | |
H3 | 0.4249 | 0.7034 | 0.2634 | 0.055* | |
C4 | 0.3839 (3) | 0.69221 (14) | 0.4325 (3) | 0.0479 (7) | |
H4 | 0.4611 | 0.7193 | 0.4909 | 0.057* | |
C5 | 0.2914 (3) | 0.66245 (14) | 0.4807 (3) | 0.0448 (6) | |
H5 | 0.3049 | 0.6692 | 0.5728 | 0.054* | |
C6 | 0.1783 (3) | 0.62262 (12) | 0.3958 (2) | 0.0360 (5) | |
H6 | 0.1146 | 0.6031 | 0.4303 | 0.043* | |
C7 | −0.1106 (2) | 0.56800 (12) | 0.2273 (2) | 0.0304 (5) | |
C8 | −0.1900 (2) | 0.62912 (12) | 0.1978 (2) | 0.0347 (5) | |
H8 | −0.1728 | 0.6637 | 0.1430 | 0.042* | |
C9 | −0.2939 (3) | 0.64003 (13) | 0.2478 (3) | 0.0385 (5) | |
H9 | −0.3478 | 0.6816 | 0.2259 | 0.046* | |
C10 | −0.3189 (3) | 0.59079 (13) | 0.3289 (3) | 0.0397 (6) | |
H10 | −0.3916 | 0.5977 | 0.3609 | 0.048* | |
C11 | −0.2371 (3) | 0.53124 (14) | 0.3632 (3) | 0.0412 (6) | |
H11 | −0.2517 | 0.4977 | 0.4213 | 0.049* | |
C12 | −0.1339 (3) | 0.52056 (13) | 0.3129 (2) | 0.0356 (5) | |
H12 | −0.0779 | 0.4797 | 0.3378 | 0.043* | |
C13 | −0.1791 (3) | 0.35558 (15) | 0.1568 (3) | 0.0485 (7) | |
H13A | −0.1993 | 0.3965 | 0.2005 | 0.073* | |
H13B | −0.1856 | 0.3137 | 0.2059 | 0.073* | |
H13C | −0.2478 | 0.3528 | 0.0625 | 0.073* | |
C14 | 0.0125 (3) | 0.27953 (13) | 0.0821 (3) | 0.0465 (6) | |
H14A | −0.0508 | 0.2801 | −0.0143 | 0.070* | |
H14B | −0.0151 | 0.2419 | 0.1280 | 0.070* | |
H14C | 0.1097 | 0.2721 | 0.0909 | 0.070* | |
C15 | 0.1016 (3) | 0.34134 (16) | 0.3393 (3) | 0.0525 (7) | |
H15A | 0.2003 | 0.3327 | 0.3546 | 0.079* | |
H15B | 0.0617 | 0.2997 | 0.3629 | 0.079* | |
H15C | 0.0965 | 0.3802 | 0.3962 | 0.079* | |
C16 | 0.3665 (3) | 0.35193 (14) | 0.1710 (3) | 0.0450 (6) | |
H16A | 0.3405 | 0.3213 | 0.2304 | 0.068* | |
H16B | 0.4694 | 0.3567 | 0.2071 | 0.068* | |
H16C | 0.3327 | 0.3320 | 0.0796 | 0.068* | |
C17 | 0.3846 (3) | 0.48700 (14) | 0.0843 (3) | 0.0419 (6) | |
H17A | 0.3540 | 0.4730 | −0.0110 | 0.063* | |
H17B | 0.4857 | 0.4775 | 0.1323 | 0.063* | |
H17C | 0.3673 | 0.5368 | 0.0890 | 0.063* | |
C18 | 0.3801 (3) | 0.46387 (13) | 0.3413 (2) | 0.0401 (6) | |
H18A | 0.3655 | 0.5135 | 0.3509 | 0.060* | |
H18B | 0.4811 | 0.4547 | 0.3693 | 0.060* | |
H18C | 0.3442 | 0.4373 | 0.3988 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02893 (15) | 0.02544 (14) | 0.02803 (15) | −0.00128 (12) | 0.01259 (11) | −0.00020 (12) |
P1 | 0.0307 (3) | 0.0278 (3) | 0.0289 (3) | −0.0012 (2) | 0.0132 (2) | −0.0022 (2) |
P2 | 0.0428 (4) | 0.0298 (3) | 0.0350 (3) | −0.0054 (2) | 0.0164 (3) | 0.0019 (2) |
P3 | 0.0299 (3) | 0.0338 (3) | 0.0320 (3) | 0.0013 (2) | 0.0108 (2) | −0.0002 (2) |
C1 | 0.0301 (11) | 0.0251 (10) | 0.0356 (12) | 0.0023 (8) | 0.0095 (10) | −0.0021 (9) |
C2 | 0.0325 (12) | 0.0364 (12) | 0.0439 (14) | −0.0014 (9) | 0.0142 (11) | −0.0024 (11) |
C3 | 0.0336 (13) | 0.0367 (13) | 0.0651 (18) | −0.0008 (10) | 0.0162 (13) | 0.0016 (12) |
C4 | 0.0344 (13) | 0.0395 (14) | 0.0557 (17) | 0.0006 (11) | 0.0028 (12) | −0.0098 (12) |
C5 | 0.0376 (13) | 0.0461 (14) | 0.0396 (14) | 0.0038 (11) | 0.0035 (11) | −0.0097 (11) |
C6 | 0.0323 (12) | 0.0355 (12) | 0.0353 (12) | 0.0018 (9) | 0.0083 (10) | −0.0030 (10) |
C7 | 0.0317 (11) | 0.0327 (11) | 0.0259 (11) | −0.0023 (9) | 0.0105 (9) | −0.0054 (9) |
C8 | 0.0382 (13) | 0.0321 (11) | 0.0350 (12) | −0.0017 (9) | 0.0156 (10) | −0.0035 (9) |
C9 | 0.0362 (13) | 0.0383 (13) | 0.0404 (13) | 0.0039 (10) | 0.0145 (11) | −0.0044 (10) |
C10 | 0.0339 (12) | 0.0505 (15) | 0.0374 (13) | −0.0002 (11) | 0.0171 (11) | −0.0045 (11) |
C11 | 0.0439 (14) | 0.0472 (15) | 0.0380 (13) | 0.0008 (11) | 0.0220 (11) | 0.0054 (11) |
C12 | 0.0361 (12) | 0.0365 (12) | 0.0358 (12) | 0.0020 (10) | 0.0159 (10) | 0.0018 (10) |
C13 | 0.0543 (17) | 0.0484 (15) | 0.0512 (16) | −0.0161 (12) | 0.0297 (14) | −0.0055 (12) |
C14 | 0.0529 (16) | 0.0309 (12) | 0.0516 (16) | −0.0010 (11) | 0.0164 (13) | 0.0017 (11) |
C15 | 0.0659 (18) | 0.0481 (16) | 0.0425 (15) | −0.0118 (14) | 0.0204 (14) | 0.0074 (12) |
C16 | 0.0410 (14) | 0.0445 (14) | 0.0438 (15) | 0.0086 (11) | 0.0106 (12) | −0.0019 (11) |
C17 | 0.0334 (13) | 0.0527 (15) | 0.0395 (13) | −0.0042 (11) | 0.0144 (11) | −0.0033 (12) |
C18 | 0.0363 (12) | 0.0437 (14) | 0.0374 (13) | 0.0023 (11) | 0.0115 (10) | −0.0009 (11) |
Co1—Co1i | 2.3670 (8) | C8—H8 | 0.9500 |
Co1—P1i | 2.1835 (9) | C8—C9 | 1.391 (3) |
Co1—P1 | 2.1812 (7) | C9—H9 | 0.9500 |
Co1—P2 | 2.1735 (7) | C9—C10 | 1.378 (4) |
Co1—P3 | 2.1734 (9) | C10—H10 | 0.9500 |
P1—Co1i | 2.1835 (9) | C10—C11 | 1.385 (4) |
P1—C1 | 1.854 (2) | C11—H11 | 0.9500 |
P1—C7 | 1.847 (2) | C11—C12 | 1.387 (3) |
P2—C13 | 1.849 (3) | C12—H12 | 0.9500 |
P2—C14 | 1.833 (3) | C13—H13A | 0.9800 |
P2—C15 | 1.836 (3) | C13—H13B | 0.9800 |
P3—C16 | 1.844 (3) | C13—H13C | 0.9800 |
P3—C17 | 1.829 (3) | C14—H14A | 0.9800 |
P3—C18 | 1.833 (3) | C14—H14B | 0.9800 |
C1—C2 | 1.392 (3) | C14—H14C | 0.9800 |
C1—C6 | 1.394 (3) | C15—H15A | 0.9800 |
C2—H2 | 0.9500 | C15—H15B | 0.9800 |
C2—C3 | 1.388 (3) | C15—H15C | 0.9800 |
C3—H3 | 0.9500 | C16—H16A | 0.9800 |
C3—C4 | 1.383 (4) | C16—H16B | 0.9800 |
C4—H4 | 0.9500 | C16—H16C | 0.9800 |
C4—C5 | 1.377 (4) | C17—H17A | 0.9800 |
C5—H5 | 0.9500 | C17—H17B | 0.9800 |
C5—C6 | 1.392 (3) | C17—H17C | 0.9800 |
C6—H6 | 0.9500 | C18—H18A | 0.9800 |
C7—C8 | 1.397 (3) | C18—H18B | 0.9800 |
C7—C12 | 1.382 (3) | C18—H18C | 0.9800 |
P1—Co1—Co1i | 57.21 (2) | C9—C8—C7 | 120.8 (2) |
P1i—Co1—Co1i | 57.11 (2) | C9—C8—H8 | 119.6 |
P1—Co1—P1i | 114.32 (2) | C8—C9—H9 | 119.9 |
P2—Co1—Co1i | 137.42 (3) | C10—C9—C8 | 120.3 (2) |
P2—Co1—P1i | 111.96 (3) | C10—C9—H9 | 119.9 |
P2—Co1—P1 | 115.13 (3) | C9—C10—H10 | 120.3 |
P3—Co1—Co1i | 125.27 (3) | C9—C10—C11 | 119.4 (2) |
P3—Co1—P1i | 109.18 (4) | C11—C10—H10 | 120.3 |
P3—Co1—P1 | 107.32 (3) | C10—C11—H11 | 120.0 |
P3—Co1—P2 | 97.30 (3) | C10—C11—C12 | 120.0 (2) |
Co1—P1—Co1i | 65.68 (2) | C12—C11—H11 | 120.0 |
C1—P1—Co1 | 123.13 (7) | C7—C12—C11 | 121.5 (2) |
C1—P1—Co1i | 126.59 (8) | C7—C12—H12 | 119.2 |
C7—P1—Co1i | 120.15 (7) | C11—C12—H12 | 119.2 |
C7—P1—Co1 | 125.83 (7) | P2—C13—H13A | 109.5 |
C7—P1—C1 | 96.80 (10) | P2—C13—H13B | 109.5 |
C13—P2—Co1 | 119.71 (10) | P2—C13—H13C | 109.5 |
C14—P2—Co1 | 115.68 (10) | H13A—C13—H13B | 109.5 |
C14—P2—C13 | 99.98 (13) | H13A—C13—H13C | 109.5 |
C14—P2—C15 | 99.68 (14) | H13B—C13—H13C | 109.5 |
C15—P2—Co1 | 119.38 (10) | P2—C14—H14A | 109.5 |
C15—P2—C13 | 98.61 (14) | P2—C14—H14B | 109.5 |
C16—P3—Co1 | 122.34 (9) | P2—C14—H14C | 109.5 |
C17—P3—Co1 | 115.06 (9) | H14A—C14—H14B | 109.5 |
C17—P3—C16 | 99.05 (13) | H14A—C14—H14C | 109.5 |
C17—P3—C18 | 100.24 (12) | H14B—C14—H14C | 109.5 |
C18—P3—Co1 | 117.43 (9) | P2—C15—H15A | 109.5 |
C18—P3—C16 | 98.85 (12) | P2—C15—H15B | 109.5 |
C2—C1—P1 | 119.95 (18) | P2—C15—H15C | 109.5 |
C2—C1—C6 | 117.4 (2) | H15A—C15—H15B | 109.5 |
C6—C1—P1 | 122.54 (19) | H15A—C15—H15C | 109.5 |
C1—C2—H2 | 119.2 | H15B—C15—H15C | 109.5 |
C3—C2—C1 | 121.6 (3) | P3—C16—H16A | 109.5 |
C3—C2—H2 | 119.2 | P3—C16—H16B | 109.5 |
C2—C3—H3 | 119.9 | P3—C16—H16C | 109.5 |
C4—C3—C2 | 120.2 (3) | H16A—C16—H16B | 109.5 |
C4—C3—H3 | 119.9 | H16A—C16—H16C | 109.5 |
C3—C4—H4 | 120.4 | H16B—C16—H16C | 109.5 |
C5—C4—C3 | 119.2 (2) | P3—C17—H17A | 109.5 |
C5—C4—H4 | 120.4 | P3—C17—H17B | 109.5 |
C4—C5—H5 | 119.7 | P3—C17—H17C | 109.5 |
C4—C5—C6 | 120.7 (3) | H17A—C17—H17B | 109.5 |
C6—C5—H5 | 119.7 | H17A—C17—H17C | 109.5 |
C1—C6—H6 | 119.5 | H17B—C17—H17C | 109.5 |
C5—C6—C1 | 120.9 (2) | P3—C18—H18A | 109.5 |
C5—C6—H6 | 119.5 | P3—C18—H18B | 109.5 |
C8—C7—P1 | 119.00 (18) | P3—C18—H18C | 109.5 |
C12—C7—P1 | 123.14 (18) | H18A—C18—H18B | 109.5 |
C12—C7—C8 | 117.8 (2) | H18A—C18—H18C | 109.5 |
C7—C8—H8 | 119.6 | H18B—C18—H18C | 109.5 |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co2(C12H10P)2(C3H9P)4] |
Mr | 792.49 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 10.318 (2), 19.262 (4), 10.721 (2) |
β (°) | 113.32 (3) |
V (Å3) | 1956.8 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.12 |
Crystal size (mm) | 0.12 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.912, 0.940 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 37952, 5413, 3251 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.083, 0.81 |
No. of reflections | 5413 |
No. of parameters | 205 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.86 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
Financial support of this work by the Fonds der Chemischen Industrie is gratefully acknowledged.
References
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harley, A. D., Whittle, R. R. & Geoffroy, G. L. (1983). Organometallics, 2, 60–63. CSD CrossRef CAS Web of Science Google Scholar
Jones, R. A., Stuart, A. L., Atwood, J. L. & Hunter, W. E. (1983). Organometallics, 2, 1437–1441. CSD CrossRef CAS Web of Science Google Scholar
Klein, H.-F., Beck, R., Flörke, U. & Haupt, H.-J. (2003). Eur. J. Inorg. Chem. pp. 1380–1387. CSD CrossRef Google Scholar
Klein, H.-F., Gass, M., Zucha, U. & Eisenmann, B. (1988). Z. Naturforsch. Teil B, 43, 927–932. CAS Google Scholar
Klein, H.-F. & Karsch, H. H. (1975). Chem. Ber. 108, 944–955. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winterhalter, U., Zsolnai, L., Kircher, P., Heinze, K. & Huttner, G. (2001). Eur. J. Inorg. Chem. pp. 89–103. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of bimetallic complexes with bridging anionic PR2 ligands (R = aryl or alkyl) are long time established (Harley et al., 1983), and numerous variants of synthetic approaches were developed (Jones et al., 1983). During the course of our investigations into the chemistry of cyclometallation of triphenylphosphane derivatives (Winterhalter et al., 2001), we isolated, structurally and spectroscopically characterized a series of ortho-metallated cobalt complexes (Klein et al., 2003). Using previous method allowed to synthesize a related bimetallic cobalt complex via salt metathesis of CoCl(PMe3)3 with LiPPMe2 in high yield (Klein et al., 1988).
The molecular structure of the bimetallic title complex, (I), [Co(C3H9P)2(µ2-P(C6H5)2)]2, is shown in Fig. 1. The complex exhibits a crystallographically imposed inversion centre in the middle of the molecule. Each CoI atom has a distorted tetrahedral coordination geometry with a short Co—Co distance of 2.3670 (8) Å, slightly longer than found for other Co═Co distances of homobimetallic cobalt complexes. Each set of terminal ligands is trans with respect to the Co═Co bond. Both bridging µ2-PPh2 and PMe3-ligands are bent away from the central Co2P2 core with the distortion from idealized tetrahedral geometry being greater for the larger PPh2 group with 115.13 (3)°.
The crystal packing of compound (I) can be described as being composed of rods of single molecules stacked along [100] and [001], with the Co2P2 cores arranged in alternating directions (Fig. 2).