metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-di­phenyl­phosphan­yl)bis­­[(tri­methyl­phosphane)cobalt(I)](CoCo)

aEduard-Zintl-Institut, Darmstadt University of Technology, 64287 Darmstadt, Germany
*Correspondence e-mail: metallacycle@gmail.com

(Received 30 July 2013; accepted 5 October 2013; online 16 October 2013)

The title compound, [Co2{P(C6H5)2}2(C3H9P)4], was obtained by the addition of di­phenyl­phosphane to a solution of Co(CH3)(C3H9P)4. The dinuclear complex mol­ecule exhibits inversion symmetry with the inversion centre located between the two CoI atoms. The short Co—Co distance of 2.3670 (8) Å lies within the range of metal–metal double bonds. As a result of inversion symmetry, the four-membered Co2P2 core is rigorously planar, and the two bridging P(C6H5)2-ligands and the terminal C3H9P ligands are arranged in a pseudo-tetra­hedral fashion about the CoI atom.

Related literature

For related homobimetallic cobalt complexes, see: Harley et al. (1983[Harley, A. D., Whittle, R. R. & Geoffroy, G. L. (1983). Organometallics, 2, 60-63.]); Jones et al. (1983[Jones, R. A., Stuart, A. L., Atwood, J. L. & Hunter, W. E. (1983). Organometallics, 2, 1437-1441.]); Winter­halter et al. (2001[Winterhalter, U., Zsolnai, L., Kircher, P., Heinze, K. & Huttner, G. (2001). Eur. J. Inorg. Chem. pp. 89-103.]): For related salt metathesis reactions, see: Klein et al. (1988[Klein, H.-F., Gass, M., Zucha, U. & Eisenmann, B. (1988). Z. Naturforsch. Teil B, 43, 927-932.], 2003[Klein, H.-F., Beck, R., Flörke, U. & Haupt, H.-J. (2003). Eur. J. Inorg. Chem. pp. 1380-1387.]); Klein & Karsch (1975[Klein, H.-F. & Karsch, H. H. (1975). Chem. Ber. 108, 944-955.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C12H10P)2(C3H9P)4]

  • Mr = 792.49

  • Monoclinic, P 21 /c

  • a = 10.318 (2) Å

  • b = 19.262 (4) Å

  • c = 10.721 (2) Å

  • β = 113.32 (3)°

  • V = 1956.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 173 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.912, Tmax = 0.940

  • 37952 measured reflections

  • 5413 independent reflections

  • 3251 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.083

  • S = 0.81

  • 5413 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.86 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

The synthesis of bimetallic complexes with bridging anionic PR2 ligands (R = aryl or alkyl) are long time established (Harley et al., 1983), and numerous variants of synthetic approaches were developed (Jones et al., 1983). During the course of our investigations into the chemistry of cyclometallation of triphenylphosphane derivatives (Winterhalter et al., 2001), we isolated, structurally and spectroscopically characterized a series of ortho-metallated cobalt complexes (Klein et al., 2003). Using previous method allowed to synthesize a related bimetallic cobalt complex via salt metathesis of CoCl(PMe3)3 with LiPPMe2 in high yield (Klein et al., 1988).

The molecular structure of the bimetallic title complex, (I), [Co(C3H9P)22-P(C6H5)2)]2, is shown in Fig. 1. The complex exhibits a crystallographically imposed inversion centre in the middle of the molecule. Each CoI atom has a distorted tetrahedral coordination geometry with a short Co—Co distance of 2.3670 (8) Å, slightly longer than found for other CoCo distances of homobimetallic cobalt complexes. Each set of terminal ligands is trans with respect to the CoCo bond. Both bridging µ2-PPh2 and PMe3-ligands are bent away from the central Co2P2 core with the distortion from idealized tetrahedral geometry being greater for the larger PPh2 group with 115.13 (3)°.

The crystal packing of compound (I) can be described as being composed of rods of single molecules stacked along [100] and [001], with the Co2P2 cores arranged in alternating directions (Fig. 2).

Related literature top

For related homobimetallic cobalt complexes, see: Harley et al. (1983); Jones et al. (1983); Winterhalter et al. (2001): For related salt metathesis reactions, see: Klein et al. (1988, 2003); Klein & Karsch (1975).

Experimental top

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. Literature methods were applied for the preparation of Co(CH3)(PMe3)4 (Klein & Karsch, 1975). Other chemicals were used as purchased. The title compound bis(µ2-diphenylphosphino)tetrakis(trimethylphosphane) dicobalt(I) was synthesized by combining stoichiometric amounts of diphenylphosphane (118 mg, 0.63 mmol) in 20 ml of n-pentane at 203 K with a sample of Co(CH3)(PMe3)4 (240 mg, 0.63 mmol) in 20 ml of n-pentane, effecting a change of color from red to dark brown. After warm-up, the mixture was kept stirring at 293 K for 16 h, and then the volatiles were removed in vacuo to give a dark brown, waxy solid. This was dissolved in a mixture of 10 ml of n-pentane / diethyl ether (3:1) and crystallized at 253 K to give brown rhombic crystals, which were suitable for X-ray diffraction. Isolated yield 145 mg (58%); m. p. 391–393 K (dec.). 1H NMR (300 MHz, THF-d8, 293 K, p.p.m.): δ = 0.88 (s(br), 36H, PCH3); 7.03 - 7.11 (m, 12H, Ar—H); 7.51 – 7.56 (m, 8H, Ar—H); - 31P{1H} NMR (121 MHz, THF-d8, 297 K, p.p.m.): δ = 4.66 (s(br), 4P, PCH3), 12.3 (s(br), 2P, PPh2). Anal. Calcd. for C36H56Co2P6 (792.5): C, 54.56; H, 7.12; P, 23.45: Found: C, 54.88; H, 6.72; P 23.98%.

Refinement top

H atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with atom labels and thermal displacement parameters of the atoms drawn at the 50% probability level for non-H atoms; H atoms were omitted for clarity. Symmetry code (i) -x, 1 - y, -z indicates symmetry-related atoms generated by a crystallographic inversion centre.
[Figure 2] Fig. 2. Crystal packing of compound (I) viewed along [001].
Bis(µ-diphenylphosphanyl)bis[(trimethylphosphane)cobalt(I)](CoCo) top
Crystal data top
[Co2(C12H10P)2(C3H9P)4]F(000) = 832
Mr = 792.49Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.318 (2) ÅCell parameters from 864 reflections
b = 19.262 (4) Åθ = 3.0–26.0°
c = 10.721 (2) ŵ = 1.12 mm1
β = 113.32 (3)°T = 173 K
V = 1956.8 (7) Å3Block, brown
Z = 20.12 × 0.10 × 0.08 mm
Data collection top
Bruker APEX CCD
diffractometer
5413 independent reflections
Radiation source: fine-focus sealed tube3251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
phi and ω scansθmax = 29.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.912, Tmax = 0.940k = 2626
37952 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0484P)2]
where P = (Fo2 + 2Fc2)/3
5413 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Co2(C12H10P)2(C3H9P)4]V = 1956.8 (7) Å3
Mr = 792.49Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.318 (2) ŵ = 1.12 mm1
b = 19.262 (4) ÅT = 173 K
c = 10.721 (2) Å0.12 × 0.10 × 0.08 mm
β = 113.32 (3)°
Data collection top
Bruker APEX CCD
diffractometer
5413 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3251 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.940Rint = 0.062
37952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 0.81Δρmax = 0.45 e Å3
5413 reflectionsΔρmin = 0.86 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.05854 (3)0.453786 (15)0.07344 (3)0.02705 (8)
P10.01598 (6)0.55315 (3)0.14726 (6)0.02866 (12)
P20.00076 (7)0.36275 (3)0.15980 (6)0.03557 (15)
P30.28562 (6)0.43802 (3)0.16358 (6)0.03235 (14)
C10.1571 (2)0.61095 (11)0.2607 (2)0.0314 (5)
C20.2519 (2)0.64148 (12)0.2142 (3)0.0379 (5)
H20.24020.63420.12270.045*
C30.3630 (3)0.68225 (13)0.2982 (3)0.0461 (6)
H30.42490.70340.26340.055*
C40.3839 (3)0.69221 (14)0.4325 (3)0.0479 (7)
H40.46110.71930.49090.057*
C50.2914 (3)0.66245 (14)0.4807 (3)0.0448 (6)
H50.30490.66920.57280.054*
C60.1783 (3)0.62262 (12)0.3958 (2)0.0360 (5)
H60.11460.60310.43030.043*
C70.1106 (2)0.56800 (12)0.2273 (2)0.0304 (5)
C80.1900 (2)0.62912 (12)0.1978 (2)0.0347 (5)
H80.17280.66370.14300.042*
C90.2939 (3)0.64003 (13)0.2478 (3)0.0385 (5)
H90.34780.68160.22590.046*
C100.3189 (3)0.59079 (13)0.3289 (3)0.0397 (6)
H100.39160.59770.36090.048*
C110.2371 (3)0.53124 (14)0.3632 (3)0.0412 (6)
H110.25170.49770.42130.049*
C120.1339 (3)0.52056 (13)0.3129 (2)0.0356 (5)
H120.07790.47970.33780.043*
C130.1791 (3)0.35558 (15)0.1568 (3)0.0485 (7)
H13A0.19930.39650.20050.073*
H13B0.18560.31370.20590.073*
H13C0.24780.35280.06250.073*
C140.0125 (3)0.27953 (13)0.0821 (3)0.0465 (6)
H14A0.05080.28010.01430.070*
H14B0.01510.24190.12800.070*
H14C0.10970.27210.09090.070*
C150.1016 (3)0.34134 (16)0.3393 (3)0.0525 (7)
H15A0.20030.33270.35460.079*
H15B0.06170.29970.36290.079*
H15C0.09650.38020.39620.079*
C160.3665 (3)0.35193 (14)0.1710 (3)0.0450 (6)
H16A0.34050.32130.23040.068*
H16B0.46940.35670.20710.068*
H16C0.33270.33200.07960.068*
C170.3846 (3)0.48700 (14)0.0843 (3)0.0419 (6)
H17A0.35400.47300.01100.063*
H17B0.48570.47750.13230.063*
H17C0.36730.53680.08900.063*
C180.3801 (3)0.46387 (13)0.3413 (2)0.0401 (6)
H18A0.36550.51350.35090.060*
H18B0.48110.45470.36930.060*
H18C0.34420.43730.39880.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02893 (15)0.02544 (14)0.02803 (15)0.00128 (12)0.01259 (11)0.00020 (12)
P10.0307 (3)0.0278 (3)0.0289 (3)0.0012 (2)0.0132 (2)0.0022 (2)
P20.0428 (4)0.0298 (3)0.0350 (3)0.0054 (2)0.0164 (3)0.0019 (2)
P30.0299 (3)0.0338 (3)0.0320 (3)0.0013 (2)0.0108 (2)0.0002 (2)
C10.0301 (11)0.0251 (10)0.0356 (12)0.0023 (8)0.0095 (10)0.0021 (9)
C20.0325 (12)0.0364 (12)0.0439 (14)0.0014 (9)0.0142 (11)0.0024 (11)
C30.0336 (13)0.0367 (13)0.0651 (18)0.0008 (10)0.0162 (13)0.0016 (12)
C40.0344 (13)0.0395 (14)0.0557 (17)0.0006 (11)0.0028 (12)0.0098 (12)
C50.0376 (13)0.0461 (14)0.0396 (14)0.0038 (11)0.0035 (11)0.0097 (11)
C60.0323 (12)0.0355 (12)0.0353 (12)0.0018 (9)0.0083 (10)0.0030 (10)
C70.0317 (11)0.0327 (11)0.0259 (11)0.0023 (9)0.0105 (9)0.0054 (9)
C80.0382 (13)0.0321 (11)0.0350 (12)0.0017 (9)0.0156 (10)0.0035 (9)
C90.0362 (13)0.0383 (13)0.0404 (13)0.0039 (10)0.0145 (11)0.0044 (10)
C100.0339 (12)0.0505 (15)0.0374 (13)0.0002 (11)0.0171 (11)0.0045 (11)
C110.0439 (14)0.0472 (15)0.0380 (13)0.0008 (11)0.0220 (11)0.0054 (11)
C120.0361 (12)0.0365 (12)0.0358 (12)0.0020 (10)0.0159 (10)0.0018 (10)
C130.0543 (17)0.0484 (15)0.0512 (16)0.0161 (12)0.0297 (14)0.0055 (12)
C140.0529 (16)0.0309 (12)0.0516 (16)0.0010 (11)0.0164 (13)0.0017 (11)
C150.0659 (18)0.0481 (16)0.0425 (15)0.0118 (14)0.0204 (14)0.0074 (12)
C160.0410 (14)0.0445 (14)0.0438 (15)0.0086 (11)0.0106 (12)0.0019 (11)
C170.0334 (13)0.0527 (15)0.0395 (13)0.0042 (11)0.0144 (11)0.0033 (12)
C180.0363 (12)0.0437 (14)0.0374 (13)0.0023 (11)0.0115 (10)0.0009 (11)
Geometric parameters (Å, º) top
Co1—Co1i2.3670 (8)C8—H80.9500
Co1—P1i2.1835 (9)C8—C91.391 (3)
Co1—P12.1812 (7)C9—H90.9500
Co1—P22.1735 (7)C9—C101.378 (4)
Co1—P32.1734 (9)C10—H100.9500
P1—Co1i2.1835 (9)C10—C111.385 (4)
P1—C11.854 (2)C11—H110.9500
P1—C71.847 (2)C11—C121.387 (3)
P2—C131.849 (3)C12—H120.9500
P2—C141.833 (3)C13—H13A0.9800
P2—C151.836 (3)C13—H13B0.9800
P3—C161.844 (3)C13—H13C0.9800
P3—C171.829 (3)C14—H14A0.9800
P3—C181.833 (3)C14—H14B0.9800
C1—C21.392 (3)C14—H14C0.9800
C1—C61.394 (3)C15—H15A0.9800
C2—H20.9500C15—H15B0.9800
C2—C31.388 (3)C15—H15C0.9800
C3—H30.9500C16—H16A0.9800
C3—C41.383 (4)C16—H16B0.9800
C4—H40.9500C16—H16C0.9800
C4—C51.377 (4)C17—H17A0.9800
C5—H50.9500C17—H17B0.9800
C5—C61.392 (3)C17—H17C0.9800
C6—H60.9500C18—H18A0.9800
C7—C81.397 (3)C18—H18B0.9800
C7—C121.382 (3)C18—H18C0.9800
P1—Co1—Co1i57.21 (2)C9—C8—C7120.8 (2)
P1i—Co1—Co1i57.11 (2)C9—C8—H8119.6
P1—Co1—P1i114.32 (2)C8—C9—H9119.9
P2—Co1—Co1i137.42 (3)C10—C9—C8120.3 (2)
P2—Co1—P1i111.96 (3)C10—C9—H9119.9
P2—Co1—P1115.13 (3)C9—C10—H10120.3
P3—Co1—Co1i125.27 (3)C9—C10—C11119.4 (2)
P3—Co1—P1i109.18 (4)C11—C10—H10120.3
P3—Co1—P1107.32 (3)C10—C11—H11120.0
P3—Co1—P297.30 (3)C10—C11—C12120.0 (2)
Co1—P1—Co1i65.68 (2)C12—C11—H11120.0
C1—P1—Co1123.13 (7)C7—C12—C11121.5 (2)
C1—P1—Co1i126.59 (8)C7—C12—H12119.2
C7—P1—Co1i120.15 (7)C11—C12—H12119.2
C7—P1—Co1125.83 (7)P2—C13—H13A109.5
C7—P1—C196.80 (10)P2—C13—H13B109.5
C13—P2—Co1119.71 (10)P2—C13—H13C109.5
C14—P2—Co1115.68 (10)H13A—C13—H13B109.5
C14—P2—C1399.98 (13)H13A—C13—H13C109.5
C14—P2—C1599.68 (14)H13B—C13—H13C109.5
C15—P2—Co1119.38 (10)P2—C14—H14A109.5
C15—P2—C1398.61 (14)P2—C14—H14B109.5
C16—P3—Co1122.34 (9)P2—C14—H14C109.5
C17—P3—Co1115.06 (9)H14A—C14—H14B109.5
C17—P3—C1699.05 (13)H14A—C14—H14C109.5
C17—P3—C18100.24 (12)H14B—C14—H14C109.5
C18—P3—Co1117.43 (9)P2—C15—H15A109.5
C18—P3—C1698.85 (12)P2—C15—H15B109.5
C2—C1—P1119.95 (18)P2—C15—H15C109.5
C2—C1—C6117.4 (2)H15A—C15—H15B109.5
C6—C1—P1122.54 (19)H15A—C15—H15C109.5
C1—C2—H2119.2H15B—C15—H15C109.5
C3—C2—C1121.6 (3)P3—C16—H16A109.5
C3—C2—H2119.2P3—C16—H16B109.5
C2—C3—H3119.9P3—C16—H16C109.5
C4—C3—C2120.2 (3)H16A—C16—H16B109.5
C4—C3—H3119.9H16A—C16—H16C109.5
C3—C4—H4120.4H16B—C16—H16C109.5
C5—C4—C3119.2 (2)P3—C17—H17A109.5
C5—C4—H4120.4P3—C17—H17B109.5
C4—C5—H5119.7P3—C17—H17C109.5
C4—C5—C6120.7 (3)H17A—C17—H17B109.5
C6—C5—H5119.7H17A—C17—H17C109.5
C1—C6—H6119.5H17B—C17—H17C109.5
C5—C6—C1120.9 (2)P3—C18—H18A109.5
C5—C6—H6119.5P3—C18—H18B109.5
C8—C7—P1119.00 (18)P3—C18—H18C109.5
C12—C7—P1123.14 (18)H18A—C18—H18B109.5
C12—C7—C8117.8 (2)H18A—C18—H18C109.5
C7—C8—H8119.6H18B—C18—H18C109.5
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co2(C12H10P)2(C3H9P)4]
Mr792.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.318 (2), 19.262 (4), 10.721 (2)
β (°) 113.32 (3)
V3)1956.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.912, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
37952, 5413, 3251
Rint0.062
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.083, 0.81
No. of reflections5413
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.86

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

Financial support of this work by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarley, A. D., Whittle, R. R. & Geoffroy, G. L. (1983). Organometallics, 2, 60–63.  CSD CrossRef CAS Web of Science Google Scholar
First citationJones, R. A., Stuart, A. L., Atwood, J. L. & Hunter, W. E. (1983). Organometallics, 2, 1437–1441.  CSD CrossRef CAS Web of Science Google Scholar
First citationKlein, H.-F., Beck, R., Flörke, U. & Haupt, H.-J. (2003). Eur. J. Inorg. Chem. pp. 1380–1387.  CSD CrossRef Google Scholar
First citationKlein, H.-F., Gass, M., Zucha, U. & Eisenmann, B. (1988). Z. Naturforsch. Teil B, 43, 927–932.  CAS Google Scholar
First citationKlein, H.-F. & Karsch, H. H. (1975). Chem. Ber. 108, 944–955.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinterhalter, U., Zsolnai, L., Kircher, P., Heinze, K. & Huttner, G. (2001). Eur. J. Inorg. Chem. pp. 89–103.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds