metal-organic compounds
Tris(cyclohexylammonium) cis-dichloridobis(oxalato-κ2O1,O2)stannate(IV) chloride monohydrate
aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: diallo_waly@yahoo.fr, hcattey@u-bourgogne.fr
The 6H14N)3[Sn(C2O4)2Cl2]Cl·H2O, contains three cyclohexylammonium cations, one stannate(IV) dianion, one isolated chloride anion and one lattice water molecule. The cyclohexylammonium cations adopt chair conformations. In the complex anion, two bidentate oxalate ligands and two chloride anions in cis positions coordinate octahedrally to the central SnIV atom. The cohesion of the molecular entities is ensured by the formation of N—H⋯O, O—H⋯O, O—H⋯Cl and N—H⋯Cl interactions involving cations, anions and the lattice water molecule, giving rise to a layer-like arrangement parallel to (010).
of the title compound, (CCCDC reference: 963857
Related literature
For general background on organotin(IV) chemistry and applications, see: Evans & Karpel (1985); Davies et al. (2008). For previous studies of tin(IV) derivatives with oxidoanions, see: Sarr & Diop (1990); Qamar-Kane & Diop (2010); Diallo et al. (2009). For crystal structures of halogenidotin(IV) compounds, see: Willey et al. (1998); Skapski et al. (1974); Gueye et al. (2011); Sow et al. (2013); Sarr et al. (2013).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 963857
10.1107/S1600536813026901/wm2771sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813026901/wm2771Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813026901/wm2771Isup3.cdx
All chemicals were purchased from Sigma-Aldrich or Merck and used without further purification. Crystals of the title compound were obtained by reacting [(C6H14N)]2[C2O4].1.5H2O (0.14 g, 0.44 mmol) with SnCl2.2H2O (0.2 g, 0.88 mmol) in 75 ml of ethanol (96% purity) in an 1:2 molar ratio. The mixture was stirred during several hours at room temperature. Slow solvent evaporation yielded colorless crystals suitable for an X-ray crystallographic study.
All H atoms, on carbon and nitrogen atoms, were placed at calculated positions using a riding model with C—H = 0.97 Å (methylene) or 0.98 Å (methine) or N—H = 0.89 Å (amine) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N). H atoms on water molecule were located in Fourier difference maps and were refined using a riding model with Uiso(H) = 1.2Ueq(O).
Data collection: COLLECT (Nonius, 1998); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of the title compound with partial atom labelling. Colour code: Sn light grey, O red, N blue, Cl green. Displacement ellipsoids are draw at the 30% probability level. | |
Fig. 2. The crystal packing of the title compound viewed along the b axis, showing the layer-like arrangement through intermolecular hydrogen bonding interactions N—H···O; O—H···Cl (dashed lines). Hydrogen atoms are omitted for clarity. Colour code: Sn pink, O red, N blue, Cl green, C grey. |
(C6H14N)3[Sn(C2O4)2Cl2]Cl·H2O | F(000) = 2960 |
Mr = 719.64 | Dx = 1.489 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 59056 reflections |
a = 27.9894 (10) Å | θ = 1.0–27.5° |
b = 12.3088 (5) Å | µ = 1.09 mm−1 |
c = 19.3457 (7) Å | T = 115 K |
β = 105.542 (1)° | Prism, colourless |
V = 6421.2 (4) Å3 | 0.17 × 0.08 × 0.03 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 6028 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.028 |
Graphite monochromator | θmax = 27.5°, θmin = 3.0° |
ϕ scans (κ = 0) + additional ω scans | h = −36→36 |
10624 measured reflections | k = −15→10 |
7264 independent reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.22 | w = 1/[σ2(Fo2) + 39.7649P] where P = (Fo2 + 2Fc2)/3 |
7264 reflections | (Δ/σ)max = 0.003 |
346 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.70 e Å−3 |
(C6H14N)3[Sn(C2O4)2Cl2]Cl·H2O | V = 6421.2 (4) Å3 |
Mr = 719.64 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 27.9894 (10) Å | µ = 1.09 mm−1 |
b = 12.3088 (5) Å | T = 115 K |
c = 19.3457 (7) Å | 0.17 × 0.08 × 0.03 mm |
β = 105.542 (1)° |
Nonius KappaCCD diffractometer | 6028 reflections with I > 2σ(I) |
10624 measured reflections | Rint = 0.028 |
7264 independent reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.22 | w = 1/[σ2(Fo2) + 39.7649P] where P = (Fo2 + 2Fc2)/3 |
7264 reflections | Δρmax = 0.66 e Å−3 |
346 parameters | Δρmin = −0.70 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Intensities at low angles are poorly measured and three reflections with Error/e.s.d. greater than 4 have been omitted for convenience (respectively, 4.86, 4.84 and 4.24). |
x | y | z | Uiso*/Ueq | ||
Sn | 0.84481 (2) | −0.01264 (2) | 0.08670 (2) | 0.02266 (7) | |
O1 | 0.82137 (11) | −0.1343 (2) | 0.00914 (14) | 0.0275 (6) | |
O2 | 0.81693 (10) | −0.1304 (2) | 0.14399 (14) | 0.0247 (6) | |
O3 | 0.79899 (11) | −0.3092 (2) | −0.00137 (15) | 0.0313 (6) | |
O4 | 0.79534 (11) | −0.3041 (2) | 0.14046 (14) | 0.0307 (6) | |
O5 | 0.84818 (10) | 0.0972 (2) | 0.16821 (14) | 0.0277 (6) | |
O6 | 0.77157 (10) | 0.0445 (2) | 0.05761 (14) | 0.0273 (6) | |
O8 | 0.72353 (11) | 0.1682 (3) | 0.08902 (16) | 0.0366 (7) | |
O7 | 0.80129 (12) | 0.2174 (2) | 0.20695 (15) | 0.0332 (7) | |
Cl1 | 0.92508 (4) | −0.08025 (10) | 0.13280 (7) | 0.0418 (3) | |
Cl2 | 0.86238 (5) | 0.10594 (10) | 0.00174 (6) | 0.0429 (3) | |
C3 | 0.80701 (16) | 0.1493 (3) | 0.1644 (2) | 0.0265 (8) | |
C4 | 0.76247 (15) | 0.1196 (3) | 0.0982 (2) | 0.0256 (8) | |
C1 | 0.80865 (15) | −0.2263 (3) | 0.0328 (2) | 0.0244 (8) | |
C2 | 0.80675 (15) | −0.2225 (3) | 0.1126 (2) | 0.0240 (8) | |
N1 | 0.69051 (13) | 0.2526 (3) | 0.20683 (17) | 0.0297 (8) | |
H1A | 0.6955 | 0.2190 | 0.2489 | 0.045* | |
H1B | 0.6989 | 0.3222 | 0.2140 | 0.045* | |
H1C | 0.7090 | 0.2214 | 0.1815 | 0.045* | |
C5 | 0.63681 (15) | 0.2442 (3) | 0.1665 (2) | 0.0273 (8) | |
H5 | 0.6318 | 0.2849 | 0.1215 | 0.033* | |
C6 | 0.62238 (16) | 0.1271 (3) | 0.1480 (2) | 0.0331 (9) | |
H6A | 0.6292 | 0.0841 | 0.1916 | 0.040* | |
H6B | 0.6419 | 0.0980 | 0.1178 | 0.040* | |
C7 | 0.56753 (18) | 0.1192 (4) | 0.1089 (3) | 0.0451 (12) | |
H7A | 0.5616 | 0.1548 | 0.0627 | 0.054* | |
H7B | 0.5584 | 0.0433 | 0.1005 | 0.054* | |
C8 | 0.53516 (18) | 0.1710 (5) | 0.1512 (3) | 0.0493 (13) | |
H8A | 0.5008 | 0.1685 | 0.1232 | 0.059* | |
H8B | 0.5380 | 0.1303 | 0.1951 | 0.059* | |
C9 | 0.55019 (18) | 0.2879 (4) | 0.1696 (3) | 0.0478 (13) | |
H9A | 0.5303 | 0.3179 | 0.1991 | 0.057* | |
H9B | 0.5440 | 0.3303 | 0.1258 | 0.057* | |
C10 | 0.60496 (16) | 0.2953 (4) | 0.2098 (2) | 0.0346 (10) | |
H10A | 0.6142 | 0.3709 | 0.2190 | 0.042* | |
H10B | 0.6106 | 0.2584 | 0.2555 | 0.042* | |
N2 | 0.78665 (12) | 0.4798 (3) | 0.08874 (16) | 0.0258 (7) | |
H2A | 0.7910 | 0.5514 | 0.0931 | 0.039* | |
H2B | 0.7694 | 0.4571 | 0.1185 | 0.039* | |
H2C | 0.7702 | 0.4638 | 0.0438 | 0.039* | |
C11 | 0.83594 (14) | 0.4248 (3) | 0.10692 (19) | 0.0241 (8) | |
H11 | 0.8307 | 0.3469 | 0.0971 | 0.029* | |
C12 | 0.86113 (15) | 0.4396 (3) | 0.1867 (2) | 0.0279 (9) | |
H12A | 0.8647 | 0.5166 | 0.1977 | 0.034* | |
H12B | 0.8406 | 0.4080 | 0.2146 | 0.034* | |
C13 | 0.91179 (16) | 0.3863 (4) | 0.2071 (2) | 0.0383 (11) | |
H13A | 0.9277 | 0.3997 | 0.2574 | 0.046* | |
H13B | 0.9080 | 0.3083 | 0.2002 | 0.046* | |
C14 | 0.94433 (17) | 0.4298 (5) | 0.1621 (2) | 0.0453 (12) | |
H14A | 0.9758 | 0.3915 | 0.1743 | 0.054* | |
H14B | 0.9510 | 0.5062 | 0.1726 | 0.054* | |
C15 | 0.91917 (16) | 0.4157 (4) | 0.0819 (2) | 0.0394 (11) | |
H15A | 0.9397 | 0.4481 | 0.0543 | 0.047* | |
H15B | 0.9159 | 0.3389 | 0.0705 | 0.047* | |
C16 | 0.86792 (15) | 0.4688 (4) | 0.0610 (2) | 0.0314 (9) | |
H16A | 0.8714 | 0.5469 | 0.0673 | 0.038* | |
H16B | 0.8520 | 0.4544 | 0.0108 | 0.038* | |
N3 | 0.83237 (12) | 0.1870 (3) | 0.36505 (17) | 0.0275 (7) | |
H3A | 0.8182 | 0.1415 | 0.3298 | 0.041* | |
H3B | 0.8172 | 0.2511 | 0.3573 | 0.041* | |
H3C | 0.8299 | 0.1601 | 0.4067 | 0.041* | |
C17 | 0.88578 (15) | 0.2008 (3) | 0.3675 (2) | 0.0291 (9) | |
H17 | 0.8875 | 0.2434 | 0.3255 | 0.035* | |
C18 | 0.91144 (17) | 0.2645 (4) | 0.4336 (2) | 0.0428 (12) | |
H18A | 0.9080 | 0.2269 | 0.4760 | 0.051* | |
H18B | 0.8961 | 0.3355 | 0.4321 | 0.051* | |
C19 | 0.96627 (18) | 0.2780 (5) | 0.4377 (3) | 0.0557 (15) | |
H19A | 0.9697 | 0.3220 | 0.3978 | 0.067* | |
H19B | 0.9827 | 0.3155 | 0.4818 | 0.067* | |
C20 | 0.9907 (2) | 0.1698 (6) | 0.4358 (4) | 0.081 (2) | |
H20A | 0.9896 | 0.1276 | 0.4777 | 0.097* | |
H20B | 1.0252 | 0.1805 | 0.4367 | 0.097* | |
C21 | 0.9641 (2) | 0.1080 (5) | 0.3677 (5) | 0.085 (2) | |
H21A | 0.9674 | 0.1479 | 0.3259 | 0.103* | |
H21B | 0.9796 | 0.0375 | 0.3676 | 0.103* | |
C22 | 0.90922 (19) | 0.0926 (4) | 0.3630 (4) | 0.0556 (15) | |
H22A | 0.8927 | 0.0574 | 0.3181 | 0.067* | |
H22B | 0.9057 | 0.0464 | 0.4020 | 0.067* | |
Cl3 | 0.76656 (4) | −0.00855 (8) | 0.28368 (5) | 0.0305 (2) | |
O9 | 0.80156 (11) | 0.3999 (2) | 0.35850 (16) | 0.0352 (7) | |
H1O | 0.7804 | 0.4291 | 0.3195 | 0.042* | |
H2O | 0.7911 | 0.4075 | 0.3965 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.02068 (13) | 0.02730 (13) | 0.01990 (12) | −0.00111 (11) | 0.00525 (9) | 0.00308 (11) |
O1 | 0.0342 (16) | 0.0295 (14) | 0.0206 (13) | −0.0004 (12) | 0.0103 (12) | 0.0007 (11) |
O2 | 0.0285 (15) | 0.0254 (13) | 0.0212 (13) | −0.0018 (11) | 0.0086 (11) | 0.0002 (11) |
O3 | 0.0387 (18) | 0.0303 (15) | 0.0258 (15) | 0.0031 (13) | 0.0102 (13) | −0.0038 (12) |
O4 | 0.0421 (18) | 0.0279 (14) | 0.0241 (14) | −0.0028 (13) | 0.0124 (13) | 0.0019 (12) |
O5 | 0.0299 (16) | 0.0276 (14) | 0.0259 (14) | 0.0022 (12) | 0.0082 (12) | 0.0016 (11) |
O6 | 0.0253 (15) | 0.0298 (14) | 0.0228 (13) | 0.0025 (11) | −0.0007 (11) | −0.0039 (11) |
O8 | 0.0314 (17) | 0.0458 (18) | 0.0323 (16) | 0.0102 (14) | 0.0080 (13) | −0.0029 (14) |
O7 | 0.0456 (19) | 0.0305 (15) | 0.0239 (14) | −0.0047 (13) | 0.0102 (13) | −0.0057 (12) |
Cl1 | 0.0225 (5) | 0.0539 (7) | 0.0497 (7) | 0.0053 (5) | 0.0107 (5) | 0.0141 (5) |
Cl2 | 0.0541 (7) | 0.0439 (6) | 0.0339 (6) | −0.0059 (5) | 0.0175 (5) | 0.0134 (5) |
C3 | 0.031 (2) | 0.0275 (19) | 0.0209 (19) | −0.0055 (16) | 0.0071 (17) | 0.0012 (16) |
C4 | 0.026 (2) | 0.0270 (19) | 0.026 (2) | 0.0059 (16) | 0.0112 (17) | 0.0080 (16) |
C1 | 0.023 (2) | 0.0279 (19) | 0.0219 (19) | 0.0056 (16) | 0.0062 (16) | 0.0025 (15) |
C2 | 0.026 (2) | 0.0256 (19) | 0.0221 (19) | 0.0021 (15) | 0.0086 (16) | 0.0042 (15) |
N1 | 0.034 (2) | 0.0362 (19) | 0.0209 (16) | 0.0000 (15) | 0.0105 (15) | −0.0005 (14) |
C5 | 0.027 (2) | 0.034 (2) | 0.0196 (19) | 0.0017 (17) | 0.0045 (16) | 0.0037 (16) |
C6 | 0.035 (2) | 0.033 (2) | 0.032 (2) | −0.0027 (18) | 0.0093 (19) | −0.0007 (18) |
C7 | 0.040 (3) | 0.051 (3) | 0.041 (3) | −0.007 (2) | 0.004 (2) | −0.006 (2) |
C8 | 0.026 (2) | 0.079 (4) | 0.039 (3) | −0.012 (2) | 0.002 (2) | −0.003 (3) |
C9 | 0.033 (3) | 0.063 (3) | 0.046 (3) | 0.008 (2) | 0.006 (2) | −0.006 (2) |
C10 | 0.032 (2) | 0.037 (2) | 0.033 (2) | 0.0022 (19) | 0.0059 (19) | −0.0068 (19) |
N2 | 0.0258 (17) | 0.0314 (17) | 0.0195 (15) | −0.0007 (14) | 0.0048 (13) | −0.0006 (14) |
C11 | 0.023 (2) | 0.0265 (19) | 0.0206 (18) | 0.0025 (15) | 0.0024 (15) | 0.0011 (15) |
C12 | 0.029 (2) | 0.036 (2) | 0.0187 (18) | −0.0034 (17) | 0.0055 (16) | 0.0026 (16) |
C13 | 0.029 (2) | 0.057 (3) | 0.026 (2) | 0.002 (2) | 0.0027 (18) | 0.009 (2) |
C14 | 0.028 (2) | 0.070 (3) | 0.035 (2) | 0.002 (2) | 0.003 (2) | −0.001 (2) |
C15 | 0.025 (2) | 0.059 (3) | 0.037 (2) | 0.008 (2) | 0.0132 (19) | −0.001 (2) |
C16 | 0.031 (2) | 0.041 (2) | 0.0231 (19) | −0.0006 (19) | 0.0096 (17) | 0.0002 (17) |
N3 | 0.0274 (18) | 0.0340 (18) | 0.0207 (16) | −0.0031 (14) | 0.0057 (14) | −0.0012 (14) |
C17 | 0.024 (2) | 0.035 (2) | 0.029 (2) | −0.0061 (17) | 0.0088 (17) | 0.0016 (17) |
C18 | 0.033 (3) | 0.060 (3) | 0.034 (2) | −0.012 (2) | 0.005 (2) | 0.000 (2) |
C19 | 0.030 (3) | 0.072 (4) | 0.057 (3) | −0.020 (3) | −0.001 (2) | 0.006 (3) |
C20 | 0.023 (3) | 0.084 (5) | 0.124 (6) | −0.001 (3) | 0.002 (3) | 0.039 (5) |
C21 | 0.042 (4) | 0.057 (4) | 0.169 (8) | 0.011 (3) | 0.049 (5) | 0.002 (5) |
C22 | 0.036 (3) | 0.049 (3) | 0.085 (4) | 0.003 (2) | 0.023 (3) | −0.004 (3) |
Cl3 | 0.0300 (5) | 0.0338 (5) | 0.0303 (5) | −0.0063 (4) | 0.0126 (4) | −0.0057 (4) |
O9 | 0.0339 (17) | 0.0423 (17) | 0.0297 (15) | 0.0034 (14) | 0.0091 (13) | 0.0073 (13) |
Sn—O5 | 2.060 (3) | C11—C16 | 1.520 (5) |
Sn—O6 | 2.097 (3) | C11—C12 | 1.526 (5) |
Sn—O1 | 2.097 (3) | C11—H11 | 0.9800 |
Sn—O2 | 2.098 (3) | C12—C13 | 1.516 (6) |
Sn—Cl1 | 2.3370 (11) | C12—H12A | 0.9700 |
Sn—Cl2 | 2.3466 (10) | C12—H12B | 0.9700 |
O1—C1 | 1.306 (5) | C13—C14 | 1.516 (6) |
O2—C2 | 1.281 (5) | C13—H13A | 0.9700 |
O3—C1 | 1.206 (5) | C13—H13B | 0.9700 |
O4—C2 | 1.222 (4) | C14—C15 | 1.531 (6) |
O5—C3 | 1.303 (5) | C14—H14A | 0.9700 |
O6—C4 | 1.282 (5) | C14—H14B | 0.9700 |
O8—C4 | 1.214 (5) | C15—C16 | 1.529 (6) |
O7—C3 | 1.215 (5) | C15—H15A | 0.9700 |
C3—C4 | 1.572 (6) | C15—H15B | 0.9700 |
C1—C2 | 1.561 (5) | C16—H16A | 0.9700 |
N1—C5 | 1.500 (5) | C16—H16B | 0.9700 |
N1—H1A | 0.8900 | N3—C17 | 1.493 (5) |
N1—H1B | 0.8900 | N3—H3A | 0.8900 |
N1—H1C | 0.8900 | N3—H3B | 0.8900 |
C5—C6 | 1.513 (6) | N3—H3C | 0.8900 |
C5—C10 | 1.514 (6) | C17—C22 | 1.498 (6) |
C5—H5 | 0.9800 | C17—C18 | 1.508 (6) |
C6—C7 | 1.522 (6) | C17—H17 | 0.9800 |
C6—H6A | 0.9700 | C18—C19 | 1.524 (7) |
C6—H6B | 0.9700 | C18—H18A | 0.9700 |
C7—C8 | 1.514 (7) | C18—H18B | 0.9700 |
C7—H7A | 0.9700 | C19—C20 | 1.503 (9) |
C7—H7B | 0.9700 | C19—H19A | 0.9700 |
C8—C9 | 1.514 (7) | C19—H19B | 0.9700 |
C8—H8A | 0.9700 | C20—C21 | 1.530 (10) |
C8—H8B | 0.9700 | C20—H20A | 0.9700 |
C9—C10 | 1.525 (6) | C20—H20B | 0.9700 |
C9—H9A | 0.9700 | C21—C22 | 1.526 (7) |
C9—H9B | 0.9700 | C21—H21A | 0.9700 |
C10—H10A | 0.9700 | C21—H21B | 0.9700 |
C10—H10B | 0.9700 | C22—H22A | 0.9700 |
N2—C11 | 1.492 (5) | C22—H22B | 0.9700 |
N2—H2A | 0.8900 | O9—H1O | 0.8992 |
N2—H2B | 0.8900 | O9—H2O | 0.8667 |
N2—H2C | 0.8900 | ||
O5—Sn—O6 | 79.99 (10) | N2—C11—C16 | 110.6 (3) |
O5—Sn—O1 | 163.31 (11) | N2—C11—C12 | 109.4 (3) |
O6—Sn—O1 | 87.22 (10) | C16—C11—C12 | 111.3 (3) |
O5—Sn—O2 | 89.79 (10) | N2—C11—H11 | 108.5 |
O6—Sn—O2 | 84.16 (11) | C16—C11—H11 | 108.5 |
O1—Sn—O2 | 78.19 (10) | C12—C11—H11 | 108.5 |
O5—Sn—Cl1 | 95.71 (8) | C13—C12—C11 | 111.0 (3) |
O6—Sn—Cl1 | 173.10 (8) | C13—C12—H12A | 109.4 |
O1—Sn—Cl1 | 95.93 (8) | C11—C12—H12A | 109.4 |
O2—Sn—Cl1 | 90.46 (8) | C13—C12—H12B | 109.4 |
O5—Sn—Cl2 | 98.78 (8) | C11—C12—H12B | 109.4 |
O6—Sn—Cl2 | 88.65 (8) | H12A—C12—H12B | 108.0 |
O1—Sn—Cl2 | 91.55 (8) | C14—C13—C12 | 111.2 (4) |
O2—Sn—Cl2 | 167.72 (8) | C14—C13—H13A | 109.4 |
Cl1—Sn—Cl2 | 97.37 (4) | C12—C13—H13A | 109.4 |
C1—O1—Sn | 115.6 (2) | C14—C13—H13B | 109.4 |
C2—O2—Sn | 115.3 (2) | C12—C13—H13B | 109.4 |
C3—O5—Sn | 114.9 (2) | H13A—C13—H13B | 108.0 |
C4—O6—Sn | 114.7 (2) | C13—C14—C15 | 110.9 (4) |
O7—C3—O5 | 125.1 (4) | C13—C14—H14A | 109.5 |
O7—C3—C4 | 119.5 (4) | C15—C14—H14A | 109.5 |
O5—C3—C4 | 115.4 (3) | C13—C14—H14B | 109.5 |
O8—C4—O6 | 125.7 (4) | C15—C14—H14B | 109.5 |
O8—C4—C3 | 119.3 (4) | H14A—C14—H14B | 108.0 |
O6—C4—C3 | 115.0 (3) | C16—C15—C14 | 111.4 (4) |
O3—C1—O1 | 125.8 (4) | C16—C15—H15A | 109.4 |
O3—C1—C2 | 120.4 (3) | C14—C15—H15A | 109.4 |
O1—C1—C2 | 113.9 (3) | C16—C15—H15B | 109.4 |
O4—C2—O2 | 124.7 (3) | C14—C15—H15B | 109.4 |
O4—C2—C1 | 119.6 (3) | H15A—C15—H15B | 108.0 |
O2—C2—C1 | 115.7 (3) | C11—C16—C15 | 110.5 (3) |
C5—N1—H1A | 109.5 | C11—C16—H16A | 109.6 |
C5—N1—H1B | 109.5 | C15—C16—H16A | 109.6 |
H1A—N1—H1B | 109.5 | C11—C16—H16B | 109.6 |
C5—N1—H1C | 109.5 | C15—C16—H16B | 109.6 |
H1A—N1—H1C | 109.5 | H16A—C16—H16B | 108.1 |
H1B—N1—H1C | 109.5 | C17—N3—H3A | 109.5 |
N1—C5—C6 | 110.8 (3) | C17—N3—H3B | 109.5 |
N1—C5—C10 | 109.8 (3) | H3A—N3—H3B | 109.5 |
C6—C5—C10 | 111.5 (4) | C17—N3—H3C | 109.5 |
N1—C5—H5 | 108.2 | H3A—N3—H3C | 109.5 |
C6—C5—H5 | 108.2 | H3B—N3—H3C | 109.5 |
C10—C5—H5 | 108.2 | N3—C17—C22 | 110.3 (3) |
C5—C6—C7 | 110.4 (4) | N3—C17—C18 | 109.4 (3) |
C5—C6—H6A | 109.6 | C22—C17—C18 | 113.3 (4) |
C7—C6—H6A | 109.6 | N3—C17—H17 | 107.9 |
C5—C6—H6B | 109.6 | C22—C17—H17 | 107.9 |
C7—C6—H6B | 109.6 | C18—C17—H17 | 107.9 |
H6A—C6—H6B | 108.1 | C17—C18—C19 | 110.2 (4) |
C8—C7—C6 | 112.0 (4) | C17—C18—H18A | 109.6 |
C8—C7—H7A | 109.2 | C19—C18—H18A | 109.6 |
C6—C7—H7A | 109.2 | C17—C18—H18B | 109.6 |
C8—C7—H7B | 109.2 | C19—C18—H18B | 109.6 |
C6—C7—H7B | 109.2 | H18A—C18—H18B | 108.1 |
H7A—C7—H7B | 107.9 | C20—C19—C18 | 111.1 (5) |
C9—C8—C7 | 111.0 (4) | C20—C19—H19A | 109.4 |
C9—C8—H8A | 109.4 | C18—C19—H19A | 109.4 |
C7—C8—H8A | 109.4 | C20—C19—H19B | 109.4 |
C9—C8—H8B | 109.4 | C18—C19—H19B | 109.4 |
C7—C8—H8B | 109.4 | H19A—C19—H19B | 108.0 |
H8A—C8—H8B | 108.0 | C19—C20—C21 | 110.1 (5) |
C8—C9—C10 | 110.8 (4) | C19—C20—H20A | 109.6 |
C8—C9—H9A | 109.5 | C21—C20—H20A | 109.6 |
C10—C9—H9A | 109.5 | C19—C20—H20B | 109.6 |
C8—C9—H9B | 109.5 | C21—C20—H20B | 109.6 |
C10—C9—H9B | 109.5 | H20A—C20—H20B | 108.2 |
H9A—C9—H9B | 108.1 | C22—C21—C20 | 111.2 (6) |
C5—C10—C9 | 110.7 (4) | C22—C21—H21A | 109.4 |
C5—C10—H10A | 109.5 | C20—C21—H21A | 109.4 |
C9—C10—H10A | 109.5 | C22—C21—H21B | 109.4 |
C5—C10—H10B | 109.5 | C20—C21—H21B | 109.4 |
C9—C10—H10B | 109.5 | H21A—C21—H21B | 108.0 |
H10A—C10—H10B | 108.1 | C17—C22—C21 | 109.6 (4) |
C11—N2—H2A | 109.5 | C17—C22—H22A | 109.8 |
C11—N2—H2B | 109.5 | C21—C22—H22A | 109.8 |
H2A—N2—H2B | 109.5 | C17—C22—H22B | 109.8 |
C11—N2—H2C | 109.5 | C21—C22—H22B | 109.8 |
H2A—N2—H2C | 109.5 | H22A—C22—H22B | 108.2 |
H2B—N2—H2C | 109.5 | H1O—O9—H2O | 111.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.89 | 2.11 | 2.957 (4) | 160 |
N1—H1B···Cl3i | 0.89 | 2.29 | 3.163 (4) | 166 |
N1—H1C···O8 | 0.89 | 2.05 | 2.873 (4) | 154 |
N1—H1C···O7 | 0.89 | 2.50 | 3.130 (5) | 129 |
N2—H2A···O4ii | 0.89 | 1.99 | 2.829 (4) | 157 |
N2—H2A···O3ii | 0.89 | 2.56 | 3.197 (4) | 129 |
N2—H2B···Cl3i | 0.89 | 2.41 | 3.209 (3) | 150 |
N2—H2C···O6iii | 0.89 | 2.00 | 2.879 (4) | 170 |
N3—H3A···Cl3 | 0.89 | 2.37 | 3.180 (3) | 152 |
N3—H3A···O7 | 0.89 | 2.48 | 2.971 (4) | 115 |
N3—H3B···O9 | 0.89 | 1.88 | 2.751 (5) | 164 |
N3—H3C···O1iv | 0.89 | 2.08 | 2.957 (4) | 167 |
O9—H1O···Cl3i | 0.90 | 2.21 | 3.108 (3) | 173 |
O9—H2O···O3iv | 0.87 | 2.28 | 2.950 (4) | 135 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+3/2, −y+1/2, −z; (iv) x, −y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.89 | 2.11 | 2.957 (4) | 159.9 |
N1—H1B···Cl3i | 0.89 | 2.29 | 3.163 (4) | 166.1 |
N1—H1C···O8 | 0.89 | 2.05 | 2.873 (4) | 154.3 |
N1—H1C···O7 | 0.89 | 2.50 | 3.130 (5) | 128.6 |
N2—H2A···O4ii | 0.89 | 1.99 | 2.829 (4) | 156.7 |
N2—H2A···O3ii | 0.89 | 2.56 | 3.197 (4) | 129.2 |
N2—H2B···Cl3i | 0.89 | 2.41 | 3.209 (3) | 150.1 |
N2—H2C···O6iii | 0.89 | 2.00 | 2.879 (4) | 169.5 |
N3—H3A···Cl3 | 0.89 | 2.37 | 3.180 (3) | 151.8 |
N3—H3A···O7 | 0.89 | 2.48 | 2.971 (4) | 115.4 |
N3—H3B···O9 | 0.89 | 1.88 | 2.751 (5) | 164.0 |
N3—H3C···O1iv | 0.89 | 2.08 | 2.957 (4) | 166.8 |
O9—H1O···Cl3i | 0.90 | 2.21 | 3.108 (3) | 173.4 |
O9—H2O···O3iv | 0.87 | 2.28 | 2.950 (4) | 134.7 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+3/2, −y+1/2, −z; (iv) x, −y, z+1/2. |
Acknowledgements
The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). In Tin Chemistry, Fundamentals, Frontiers, and Applications. Chichester, UK: John Wiley & Sons Ltd. Google Scholar
Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok-Köhn, G. & Molloy, K. C. (2009). St. Cerc. St. CICBIA, 10, 207–212. CAS Google Scholar
Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2011). Main Group Met. Chem. 34, 3–5. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Qamar-Kane, H. & Diop, L. (2010). St. Cerc. St. CICBIA, 11, 389–392. Google Scholar
Sarr, M., Diasse-Sarr, A., Diallo, W., Plasseraud, L. & Cattey, H. (2013). Acta Cryst. E69, m473–m474. CSD CrossRef CAS IUCr Journals Google Scholar
Sarr, O. & Diop, L. (1990). Spectrochim. Acta Part A, 46, 1239–1244. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C, 278, 1377–1379. CAS Google Scholar
Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107. CSD CrossRef CAS IUCr Journals Google Scholar
Willey, G. R., Woodman, T. J., Deeth, R. J. & Errington, W. (1998). Main Group Met. Chem. 21, 583–591. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interest to synthesize new organotin derivatives is related to their applications in numerous fields like agrochemicals, catalysis, medicine, surface disinfectants and marine antifouling paints (Evans & Karpel, 1985; Davies et al., 2008). Our group is involved from a long time in the synthetic quest of new organotin compounds, focusing in particular on the coordination affinity with oxoanions (Sarr & Diop, 1990; Diallo et al., 2009; Qamar-Kane & Diop, 2010; Gueye et al., 2011; Sow et al., 2013; Sarr et al., 2013). Thus, in the course of our ongoing studies on oxalato tin(IV) derivatives, we report herein the structure determination of the reaction product (C6H14N)3[Sn(C2O4)2Cl2]Cl.H2O obtained from the reaction between [(C6H14N)]2[C2O4].1.5H2O and SnCl2.2H2O. To the best of our knowledge, this is the first crystallographic report of a compound containing a [dihalogenido-bis(oxalato)stannate(IV)] anion.
The molecular entities of the title structure are shown in Fig. 1. The Sn(IV) atom of the stannate anion is six-coordinated by four oxalate oxygen atoms and two terminal chlorido anions in cis-position in a distorted octahedral geometry [Cl1–Sn–Cl2 = 97.37 (4)°, O1–Sn–O2 = 78.19 (10)°, O5–Sn–O6 = 79.99 (10)°]. The bidentate oxalato ligands are nearly planar with O1—C1—C2—O2 and O5—C3—C4—O6 torsion angles of 1.1 (6) and 2.7 (5)°, respectively. They form a dihedral angle of 86.62 (17)° between each other. The Sn—Cl distances [Sn–Cl1 = 2.3370 (11) Å, Sn–Cl2 = 2.3466 (10) Å] as well as the Sn–O distances [Sn–O1 = 2.097 (3) Å, Sn–O2 = 2.098 (3) Å, Sn–O5 = 2.060 (3) Å, Sn–O6 = 2.097 (3) Å] are in the typical range of Sn—Cl and Sn—O bonds reported previously in the literature (Willey et al., 1998; Skapski et al., 1974; Sow et al., 2013). The charges of the [Sn(C2O4)2Cl2]2- dianion and the isolated Cl- anion are compensated by three [(C6H11NH3)]+ cations, all of which adopt in chair conformations. One uncoordinating water molecule is also present in the crystal lattice.
From a supramolecular view, three of the four oxygen atoms of each oxalato ligand are involved in hydrogen bonging interactions with the lattice water molecule and the surrounding cyclohexylammonium cations through O—H···O and N—H···O contacts, respectively (Table 1). The lattice water molecule is also involved in short contacts with the neighboring isolated Cl- anion and a [(C6H11NH3)]+ cation through O—H···Cl and N—H···O contacts, respectively. The isolated Cl- anion is additionally hydrogen-bonded to the three cations through N—H···Cl interactions. The supramolecular contributions lead to the formation of layers extending parallel to (010) as shown in Fig. 2.