metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m581-m582

Tris(cyclo­hexyl­ammonium) cis-di­chlorido­bis­­(oxalato-κ2O1,O2)stann­ate(IV) chloride monohydrate

aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: diallo_waly@yahoo.fr, hcattey@u-bourgogne.fr

(Received 13 September 2013; accepted 30 September 2013; online 5 October 2013)

The crystal structure of the title compound, (C6H14N)3[Sn(C2O4)2Cl2]Cl·H2O, contains three cyclo­hexyl­ammonium cations, one stannate(IV) dianion, one isolated chloride anion and one lattice water mol­ecule. The cyclo­hexyl­ammonium cations adopt chair conformations. In the complex anion, two bidentate oxalate ligands and two chloride anions in cis positions coordinate octa­hedrally to the central SnIV atom. The cohesion of the mol­ecular entities is ensured by the formation of N—H⋯O, O—H⋯O, O—H⋯Cl and N—H⋯Cl inter­actions involving cations, anions and the lattice water mol­ecule, giving rise to a layer-like arrangement parallel to (010).

Related literature

For general background on organotin(IV) chemistry and applications, see: Evans & Karpel (1985[Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.]); Davies et al. (2008[Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). In Tin Chemistry, Fundamentals, Frontiers, and Applications. Chichester, UK: John Wiley & Sons Ltd.]). For previous studies of tin(IV) derivatives with oxidoanions, see: Sarr & Diop (1990[Sarr, O. & Diop, L. (1990). Spectrochim. Acta Part A, 46, 1239-1244.]); Qamar-Kane & Diop (2010[Qamar-Kane, H. & Diop, L. (2010). St. Cerc. St. CICBIA, 11, 389-392.]); Diallo et al. (2009[Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok-Köhn, G. & Molloy, K. C. (2009). St. Cerc. St. CICBIA, 10, 207-212.]). For crystal structures of halogenidotin(IV) compounds, see: Willey et al. (1998[Willey, G. R., Woodman, T. J., Deeth, R. J. & Errington, W. (1998). Main Group Met. Chem. 21, 583-591.]); Skapski et al. (1974[Skapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C, 278, 1377-1379.]); Gueye et al. (2011[Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2011). Main Group Met. Chem. 34, 3-5.]); Sow et al. (2013[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106-m107.]); Sarr et al. (2013[Sarr, M., Diasse-Sarr, A., Diallo, W., Plasseraud, L. & Cattey, H. (2013). Acta Cryst. E69, m473-m474.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N)3[Sn(C2O4)2Cl2]Cl·H2O

  • Mr = 719.64

  • Monoclinic, C 2/c

  • a = 27.9894 (10) Å

  • b = 12.3088 (5) Å

  • c = 19.3457 (7) Å

  • β = 105.542 (1)°

  • V = 6421.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 115 K

  • 0.17 × 0.08 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 10624 measured reflections

  • 7264 independent reflections

  • 6028 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.095

  • S = 1.22

  • 7264 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 2.11 2.957 (4) 160
N1—H1B⋯Cl3i 0.89 2.29 3.163 (4) 166
N1—H1C⋯O8 0.89 2.05 2.873 (4) 154
N1—H1C⋯O7 0.89 2.50 3.130 (5) 129
N2—H2A⋯O4ii 0.89 1.99 2.829 (4) 157
N2—H2A⋯O3ii 0.89 2.56 3.197 (4) 129
N2—H2B⋯Cl3i 0.89 2.41 3.209 (3) 150
N2—H2C⋯O6iii 0.89 2.00 2.879 (4) 170
N3—H3A⋯Cl3 0.89 2.37 3.180 (3) 152
N3—H3A⋯O7 0.89 2.48 2.971 (4) 115
N3—H3B⋯O9 0.89 1.88 2.751 (5) 164
N3—H3C⋯O1iv 0.89 2.08 2.957 (4) 167
O9—H1O⋯Cl3i 0.90 2.21 3.108 (3) 173
O9—H2O⋯O3iv 0.87 2.28 2.950 (4) 135
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [x, -y, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The interest to synthesize new organotin derivatives is related to their applications in numerous fields like agrochemicals, catalysis, medicine, surface disinfectants and marine antifouling paints (Evans & Karpel, 1985; Davies et al., 2008). Our group is involved from a long time in the synthetic quest of new organotin compounds, focusing in particular on the coordination affinity with oxoanions (Sarr & Diop, 1990; Diallo et al., 2009; Qamar-Kane & Diop, 2010; Gueye et al., 2011; Sow et al., 2013; Sarr et al., 2013). Thus, in the course of our ongoing studies on oxalato tin(IV) derivatives, we report herein the structure determination of the reaction product (C6H14N)3[Sn(C2O4)2Cl2]Cl.H2O obtained from the reaction between [(C6H14N)]2[C2O4].1.5H2O and SnCl2.2H2O. To the best of our knowledge, this is the first crystallographic report of a compound containing a [dihalogenido-bis(oxalato)stannate(IV)] anion.

The molecular entities of the title structure are shown in Fig. 1. The Sn(IV) atom of the stannate anion is six-coordinated by four oxalate oxygen atoms and two terminal chlorido anions in cis-position in a distorted octahedral geometry [Cl1–Sn–Cl2 = 97.37 (4)°, O1–Sn–O2 = 78.19 (10)°, O5–Sn–O6 = 79.99 (10)°]. The bidentate oxalato ligands are nearly planar with O1—C1—C2—O2 and O5—C3—C4—O6 torsion angles of 1.1 (6) and 2.7 (5)°, respectively. They form a dihedral angle of 86.62 (17)° between each other. The Sn—Cl distances [Sn–Cl1 = 2.3370 (11) Å, Sn–Cl2 = 2.3466 (10) Å] as well as the Sn–O distances [Sn–O1 = 2.097 (3) Å, Sn–O2 = 2.098 (3) Å, Sn–O5 = 2.060 (3) Å, Sn–O6 = 2.097 (3) Å] are in the typical range of Sn—Cl and Sn—O bonds reported previously in the literature (Willey et al., 1998; Skapski et al., 1974; Sow et al., 2013). The charges of the [Sn(C2O4)2Cl2]2- dianion and the isolated Cl- anion are compensated by three [(C6H11NH3)]+ cations, all of which adopt in chair conformations. One uncoordinating water molecule is also present in the crystal lattice.

From a supramolecular view, three of the four oxygen atoms of each oxalato ligand are involved in hydrogen bonging interactions with the lattice water molecule and the surrounding cyclohexylammonium cations through O—H···O and N—H···O contacts, respectively (Table 1). The lattice water molecule is also involved in short contacts with the neighboring isolated Cl- anion and a [(C6H11NH3)]+ cation through O—H···Cl and N—H···O contacts, respectively. The isolated Cl- anion is additionally hydrogen-bonded to the three cations through N—H···Cl interactions. The supramolecular contributions lead to the formation of layers extending parallel to (010) as shown in Fig. 2.

Related literature top

For general background on organotin(IV) chemistry and applications, see: Evans & Karpel (1985); Davies et al. (2008). For previous studies of tin(IV) derivatives with oxidoanions, see: Sarr & Diop (1990); Qamar-Kane & Diop (2010); Diallo et al. (2009). For crystal structures of halogenidotin(IV) compounds, see: Willey et al. (1998); Skapski et al. (1974); Gueye et al. (2011); Sow et al. (2013); Sarr et al. (2013).

Experimental top

All chemicals were purchased from Sigma-Aldrich or Merck and used without further purification. Crystals of the title compound were obtained by reacting [(C6H14N)]2[C2O4].1.5H2O (0.14 g, 0.44 mmol) with SnCl2.2H2O (0.2 g, 0.88 mmol) in 75 ml of ethanol (96% purity) in an 1:2 molar ratio. The mixture was stirred during several hours at room temperature. Slow solvent evaporation yielded colorless crystals suitable for an X-ray crystallographic study.

Refinement top

All H atoms, on carbon and nitrogen atoms, were placed at calculated positions using a riding model with C—H = 0.97 Å (methylene) or 0.98 Å (methine) or N—H = 0.89 Å (amine) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N). H atoms on water molecule were located in Fourier difference maps and were refined using a riding model with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with partial atom labelling. Colour code: Sn light grey, O red, N blue, Cl green. Displacement ellipsoids are draw at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, showing the layer-like arrangement through intermolecular hydrogen bonding interactions N—H···O; O—H···Cl (dashed lines). Hydrogen atoms are omitted for clarity. Colour code: Sn pink, O red, N blue, Cl green, C grey.
Tris(cyclohexylammonium) cis-dichloridobis(oxalato-κ2O1,O2)stannate(IV) chloride monohydrate top
Crystal data top
(C6H14N)3[Sn(C2O4)2Cl2]Cl·H2OF(000) = 2960
Mr = 719.64Dx = 1.489 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 59056 reflections
a = 27.9894 (10) Åθ = 1.0–27.5°
b = 12.3088 (5) ŵ = 1.09 mm1
c = 19.3457 (7) ÅT = 115 K
β = 105.542 (1)°Prism, colourless
V = 6421.2 (4) Å30.17 × 0.08 × 0.03 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
6028 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ϕ scans (κ = 0) + additional ω scansh = 3636
10624 measured reflectionsk = 1510
7264 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + 39.7649P]
where P = (Fo2 + 2Fc2)/3
7264 reflections(Δ/σ)max = 0.003
346 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
(C6H14N)3[Sn(C2O4)2Cl2]Cl·H2OV = 6421.2 (4) Å3
Mr = 719.64Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.9894 (10) ŵ = 1.09 mm1
b = 12.3088 (5) ÅT = 115 K
c = 19.3457 (7) Å0.17 × 0.08 × 0.03 mm
β = 105.542 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6028 reflections with I > 2σ(I)
10624 measured reflectionsRint = 0.028
7264 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + 39.7649P]
where P = (Fo2 + 2Fc2)/3
7264 reflectionsΔρmax = 0.66 e Å3
346 parametersΔρmin = 0.70 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Intensities at low angles are poorly measured and three reflections with Error/e.s.d. greater than 4 have been omitted for convenience (respectively, 4.86, 4.84 and 4.24).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.84481 (2)0.01264 (2)0.08670 (2)0.02266 (7)
O10.82137 (11)0.1343 (2)0.00914 (14)0.0275 (6)
O20.81693 (10)0.1304 (2)0.14399 (14)0.0247 (6)
O30.79899 (11)0.3092 (2)0.00137 (15)0.0313 (6)
O40.79534 (11)0.3041 (2)0.14046 (14)0.0307 (6)
O50.84818 (10)0.0972 (2)0.16821 (14)0.0277 (6)
O60.77157 (10)0.0445 (2)0.05761 (14)0.0273 (6)
O80.72353 (11)0.1682 (3)0.08902 (16)0.0366 (7)
O70.80129 (12)0.2174 (2)0.20695 (15)0.0332 (7)
Cl10.92508 (4)0.08025 (10)0.13280 (7)0.0418 (3)
Cl20.86238 (5)0.10594 (10)0.00174 (6)0.0429 (3)
C30.80701 (16)0.1493 (3)0.1644 (2)0.0265 (8)
C40.76247 (15)0.1196 (3)0.0982 (2)0.0256 (8)
C10.80865 (15)0.2263 (3)0.0328 (2)0.0244 (8)
C20.80675 (15)0.2225 (3)0.1126 (2)0.0240 (8)
N10.69051 (13)0.2526 (3)0.20683 (17)0.0297 (8)
H1A0.69550.21900.24890.045*
H1B0.69890.32220.21400.045*
H1C0.70900.22140.18150.045*
C50.63681 (15)0.2442 (3)0.1665 (2)0.0273 (8)
H50.63180.28490.12150.033*
C60.62238 (16)0.1271 (3)0.1480 (2)0.0331 (9)
H6A0.62920.08410.19160.040*
H6B0.64190.09800.11780.040*
C70.56753 (18)0.1192 (4)0.1089 (3)0.0451 (12)
H7A0.56160.15480.06270.054*
H7B0.55840.04330.10050.054*
C80.53516 (18)0.1710 (5)0.1512 (3)0.0493 (13)
H8A0.50080.16850.12320.059*
H8B0.53800.13030.19510.059*
C90.55019 (18)0.2879 (4)0.1696 (3)0.0478 (13)
H9A0.53030.31790.19910.057*
H9B0.54400.33030.12580.057*
C100.60496 (16)0.2953 (4)0.2098 (2)0.0346 (10)
H10A0.61420.37090.21900.042*
H10B0.61060.25840.25550.042*
N20.78665 (12)0.4798 (3)0.08874 (16)0.0258 (7)
H2A0.79100.55140.09310.039*
H2B0.76940.45710.11850.039*
H2C0.77020.46380.04380.039*
C110.83594 (14)0.4248 (3)0.10692 (19)0.0241 (8)
H110.83070.34690.09710.029*
C120.86113 (15)0.4396 (3)0.1867 (2)0.0279 (9)
H12A0.86470.51660.19770.034*
H12B0.84060.40800.21460.034*
C130.91179 (16)0.3863 (4)0.2071 (2)0.0383 (11)
H13A0.92770.39970.25740.046*
H13B0.90800.30830.20020.046*
C140.94433 (17)0.4298 (5)0.1621 (2)0.0453 (12)
H14A0.97580.39150.17430.054*
H14B0.95100.50620.17260.054*
C150.91917 (16)0.4157 (4)0.0819 (2)0.0394 (11)
H15A0.93970.44810.05430.047*
H15B0.91590.33890.07050.047*
C160.86792 (15)0.4688 (4)0.0610 (2)0.0314 (9)
H16A0.87140.54690.06730.038*
H16B0.85200.45440.01080.038*
N30.83237 (12)0.1870 (3)0.36505 (17)0.0275 (7)
H3A0.81820.14150.32980.041*
H3B0.81720.25110.35730.041*
H3C0.82990.16010.40670.041*
C170.88578 (15)0.2008 (3)0.3675 (2)0.0291 (9)
H170.88750.24340.32550.035*
C180.91144 (17)0.2645 (4)0.4336 (2)0.0428 (12)
H18A0.90800.22690.47600.051*
H18B0.89610.33550.43210.051*
C190.96627 (18)0.2780 (5)0.4377 (3)0.0557 (15)
H19A0.96970.32200.39780.067*
H19B0.98270.31550.48180.067*
C200.9907 (2)0.1698 (6)0.4358 (4)0.081 (2)
H20A0.98960.12760.47770.097*
H20B1.02520.18050.43670.097*
C210.9641 (2)0.1080 (5)0.3677 (5)0.085 (2)
H21A0.96740.14790.32590.103*
H21B0.97960.03750.36760.103*
C220.90922 (19)0.0926 (4)0.3630 (4)0.0556 (15)
H22A0.89270.05740.31810.067*
H22B0.90570.04640.40200.067*
Cl30.76656 (4)0.00855 (8)0.28368 (5)0.0305 (2)
O90.80156 (11)0.3999 (2)0.35850 (16)0.0352 (7)
H1O0.78040.42910.31950.042*
H2O0.79110.40750.39650.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02068 (13)0.02730 (13)0.01990 (12)0.00111 (11)0.00525 (9)0.00308 (11)
O10.0342 (16)0.0295 (14)0.0206 (13)0.0004 (12)0.0103 (12)0.0007 (11)
O20.0285 (15)0.0254 (13)0.0212 (13)0.0018 (11)0.0086 (11)0.0002 (11)
O30.0387 (18)0.0303 (15)0.0258 (15)0.0031 (13)0.0102 (13)0.0038 (12)
O40.0421 (18)0.0279 (14)0.0241 (14)0.0028 (13)0.0124 (13)0.0019 (12)
O50.0299 (16)0.0276 (14)0.0259 (14)0.0022 (12)0.0082 (12)0.0016 (11)
O60.0253 (15)0.0298 (14)0.0228 (13)0.0025 (11)0.0007 (11)0.0039 (11)
O80.0314 (17)0.0458 (18)0.0323 (16)0.0102 (14)0.0080 (13)0.0029 (14)
O70.0456 (19)0.0305 (15)0.0239 (14)0.0047 (13)0.0102 (13)0.0057 (12)
Cl10.0225 (5)0.0539 (7)0.0497 (7)0.0053 (5)0.0107 (5)0.0141 (5)
Cl20.0541 (7)0.0439 (6)0.0339 (6)0.0059 (5)0.0175 (5)0.0134 (5)
C30.031 (2)0.0275 (19)0.0209 (19)0.0055 (16)0.0071 (17)0.0012 (16)
C40.026 (2)0.0270 (19)0.026 (2)0.0059 (16)0.0112 (17)0.0080 (16)
C10.023 (2)0.0279 (19)0.0219 (19)0.0056 (16)0.0062 (16)0.0025 (15)
C20.026 (2)0.0256 (19)0.0221 (19)0.0021 (15)0.0086 (16)0.0042 (15)
N10.034 (2)0.0362 (19)0.0209 (16)0.0000 (15)0.0105 (15)0.0005 (14)
C50.027 (2)0.034 (2)0.0196 (19)0.0017 (17)0.0045 (16)0.0037 (16)
C60.035 (2)0.033 (2)0.032 (2)0.0027 (18)0.0093 (19)0.0007 (18)
C70.040 (3)0.051 (3)0.041 (3)0.007 (2)0.004 (2)0.006 (2)
C80.026 (2)0.079 (4)0.039 (3)0.012 (2)0.002 (2)0.003 (3)
C90.033 (3)0.063 (3)0.046 (3)0.008 (2)0.006 (2)0.006 (2)
C100.032 (2)0.037 (2)0.033 (2)0.0022 (19)0.0059 (19)0.0068 (19)
N20.0258 (17)0.0314 (17)0.0195 (15)0.0007 (14)0.0048 (13)0.0006 (14)
C110.023 (2)0.0265 (19)0.0206 (18)0.0025 (15)0.0024 (15)0.0011 (15)
C120.029 (2)0.036 (2)0.0187 (18)0.0034 (17)0.0055 (16)0.0026 (16)
C130.029 (2)0.057 (3)0.026 (2)0.002 (2)0.0027 (18)0.009 (2)
C140.028 (2)0.070 (3)0.035 (2)0.002 (2)0.003 (2)0.001 (2)
C150.025 (2)0.059 (3)0.037 (2)0.008 (2)0.0132 (19)0.001 (2)
C160.031 (2)0.041 (2)0.0231 (19)0.0006 (19)0.0096 (17)0.0002 (17)
N30.0274 (18)0.0340 (18)0.0207 (16)0.0031 (14)0.0057 (14)0.0012 (14)
C170.024 (2)0.035 (2)0.029 (2)0.0061 (17)0.0088 (17)0.0016 (17)
C180.033 (3)0.060 (3)0.034 (2)0.012 (2)0.005 (2)0.000 (2)
C190.030 (3)0.072 (4)0.057 (3)0.020 (3)0.001 (2)0.006 (3)
C200.023 (3)0.084 (5)0.124 (6)0.001 (3)0.002 (3)0.039 (5)
C210.042 (4)0.057 (4)0.169 (8)0.011 (3)0.049 (5)0.002 (5)
C220.036 (3)0.049 (3)0.085 (4)0.003 (2)0.023 (3)0.004 (3)
Cl30.0300 (5)0.0338 (5)0.0303 (5)0.0063 (4)0.0126 (4)0.0057 (4)
O90.0339 (17)0.0423 (17)0.0297 (15)0.0034 (14)0.0091 (13)0.0073 (13)
Geometric parameters (Å, º) top
Sn—O52.060 (3)C11—C161.520 (5)
Sn—O62.097 (3)C11—C121.526 (5)
Sn—O12.097 (3)C11—H110.9800
Sn—O22.098 (3)C12—C131.516 (6)
Sn—Cl12.3370 (11)C12—H12A0.9700
Sn—Cl22.3466 (10)C12—H12B0.9700
O1—C11.306 (5)C13—C141.516 (6)
O2—C21.281 (5)C13—H13A0.9700
O3—C11.206 (5)C13—H13B0.9700
O4—C21.222 (4)C14—C151.531 (6)
O5—C31.303 (5)C14—H14A0.9700
O6—C41.282 (5)C14—H14B0.9700
O8—C41.214 (5)C15—C161.529 (6)
O7—C31.215 (5)C15—H15A0.9700
C3—C41.572 (6)C15—H15B0.9700
C1—C21.561 (5)C16—H16A0.9700
N1—C51.500 (5)C16—H16B0.9700
N1—H1A0.8900N3—C171.493 (5)
N1—H1B0.8900N3—H3A0.8900
N1—H1C0.8900N3—H3B0.8900
C5—C61.513 (6)N3—H3C0.8900
C5—C101.514 (6)C17—C221.498 (6)
C5—H50.9800C17—C181.508 (6)
C6—C71.522 (6)C17—H170.9800
C6—H6A0.9700C18—C191.524 (7)
C6—H6B0.9700C18—H18A0.9700
C7—C81.514 (7)C18—H18B0.9700
C7—H7A0.9700C19—C201.503 (9)
C7—H7B0.9700C19—H19A0.9700
C8—C91.514 (7)C19—H19B0.9700
C8—H8A0.9700C20—C211.530 (10)
C8—H8B0.9700C20—H20A0.9700
C9—C101.525 (6)C20—H20B0.9700
C9—H9A0.9700C21—C221.526 (7)
C9—H9B0.9700C21—H21A0.9700
C10—H10A0.9700C21—H21B0.9700
C10—H10B0.9700C22—H22A0.9700
N2—C111.492 (5)C22—H22B0.9700
N2—H2A0.8900O9—H1O0.8992
N2—H2B0.8900O9—H2O0.8667
N2—H2C0.8900
O5—Sn—O679.99 (10)N2—C11—C16110.6 (3)
O5—Sn—O1163.31 (11)N2—C11—C12109.4 (3)
O6—Sn—O187.22 (10)C16—C11—C12111.3 (3)
O5—Sn—O289.79 (10)N2—C11—H11108.5
O6—Sn—O284.16 (11)C16—C11—H11108.5
O1—Sn—O278.19 (10)C12—C11—H11108.5
O5—Sn—Cl195.71 (8)C13—C12—C11111.0 (3)
O6—Sn—Cl1173.10 (8)C13—C12—H12A109.4
O1—Sn—Cl195.93 (8)C11—C12—H12A109.4
O2—Sn—Cl190.46 (8)C13—C12—H12B109.4
O5—Sn—Cl298.78 (8)C11—C12—H12B109.4
O6—Sn—Cl288.65 (8)H12A—C12—H12B108.0
O1—Sn—Cl291.55 (8)C14—C13—C12111.2 (4)
O2—Sn—Cl2167.72 (8)C14—C13—H13A109.4
Cl1—Sn—Cl297.37 (4)C12—C13—H13A109.4
C1—O1—Sn115.6 (2)C14—C13—H13B109.4
C2—O2—Sn115.3 (2)C12—C13—H13B109.4
C3—O5—Sn114.9 (2)H13A—C13—H13B108.0
C4—O6—Sn114.7 (2)C13—C14—C15110.9 (4)
O7—C3—O5125.1 (4)C13—C14—H14A109.5
O7—C3—C4119.5 (4)C15—C14—H14A109.5
O5—C3—C4115.4 (3)C13—C14—H14B109.5
O8—C4—O6125.7 (4)C15—C14—H14B109.5
O8—C4—C3119.3 (4)H14A—C14—H14B108.0
O6—C4—C3115.0 (3)C16—C15—C14111.4 (4)
O3—C1—O1125.8 (4)C16—C15—H15A109.4
O3—C1—C2120.4 (3)C14—C15—H15A109.4
O1—C1—C2113.9 (3)C16—C15—H15B109.4
O4—C2—O2124.7 (3)C14—C15—H15B109.4
O4—C2—C1119.6 (3)H15A—C15—H15B108.0
O2—C2—C1115.7 (3)C11—C16—C15110.5 (3)
C5—N1—H1A109.5C11—C16—H16A109.6
C5—N1—H1B109.5C15—C16—H16A109.6
H1A—N1—H1B109.5C11—C16—H16B109.6
C5—N1—H1C109.5C15—C16—H16B109.6
H1A—N1—H1C109.5H16A—C16—H16B108.1
H1B—N1—H1C109.5C17—N3—H3A109.5
N1—C5—C6110.8 (3)C17—N3—H3B109.5
N1—C5—C10109.8 (3)H3A—N3—H3B109.5
C6—C5—C10111.5 (4)C17—N3—H3C109.5
N1—C5—H5108.2H3A—N3—H3C109.5
C6—C5—H5108.2H3B—N3—H3C109.5
C10—C5—H5108.2N3—C17—C22110.3 (3)
C5—C6—C7110.4 (4)N3—C17—C18109.4 (3)
C5—C6—H6A109.6C22—C17—C18113.3 (4)
C7—C6—H6A109.6N3—C17—H17107.9
C5—C6—H6B109.6C22—C17—H17107.9
C7—C6—H6B109.6C18—C17—H17107.9
H6A—C6—H6B108.1C17—C18—C19110.2 (4)
C8—C7—C6112.0 (4)C17—C18—H18A109.6
C8—C7—H7A109.2C19—C18—H18A109.6
C6—C7—H7A109.2C17—C18—H18B109.6
C8—C7—H7B109.2C19—C18—H18B109.6
C6—C7—H7B109.2H18A—C18—H18B108.1
H7A—C7—H7B107.9C20—C19—C18111.1 (5)
C9—C8—C7111.0 (4)C20—C19—H19A109.4
C9—C8—H8A109.4C18—C19—H19A109.4
C7—C8—H8A109.4C20—C19—H19B109.4
C9—C8—H8B109.4C18—C19—H19B109.4
C7—C8—H8B109.4H19A—C19—H19B108.0
H8A—C8—H8B108.0C19—C20—C21110.1 (5)
C8—C9—C10110.8 (4)C19—C20—H20A109.6
C8—C9—H9A109.5C21—C20—H20A109.6
C10—C9—H9A109.5C19—C20—H20B109.6
C8—C9—H9B109.5C21—C20—H20B109.6
C10—C9—H9B109.5H20A—C20—H20B108.2
H9A—C9—H9B108.1C22—C21—C20111.2 (6)
C5—C10—C9110.7 (4)C22—C21—H21A109.4
C5—C10—H10A109.5C20—C21—H21A109.4
C9—C10—H10A109.5C22—C21—H21B109.4
C5—C10—H10B109.5C20—C21—H21B109.4
C9—C10—H10B109.5H21A—C21—H21B108.0
H10A—C10—H10B108.1C17—C22—C21109.6 (4)
C11—N2—H2A109.5C17—C22—H22A109.8
C11—N2—H2B109.5C21—C22—H22A109.8
H2A—N2—H2B109.5C17—C22—H22B109.8
C11—N2—H2C109.5C21—C22—H22B109.8
H2A—N2—H2C109.5H22A—C22—H22B108.2
H2B—N2—H2C109.5H1O—O9—H2O111.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.892.112.957 (4)160
N1—H1B···Cl3i0.892.293.163 (4)166
N1—H1C···O80.892.052.873 (4)154
N1—H1C···O70.892.503.130 (5)129
N2—H2A···O4ii0.891.992.829 (4)157
N2—H2A···O3ii0.892.563.197 (4)129
N2—H2B···Cl3i0.892.413.209 (3)150
N2—H2C···O6iii0.892.002.879 (4)170
N3—H3A···Cl30.892.373.180 (3)152
N3—H3A···O70.892.482.971 (4)115
N3—H3B···O90.891.882.751 (5)164
N3—H3C···O1iv0.892.082.957 (4)167
O9—H1O···Cl3i0.902.213.108 (3)173
O9—H2O···O3iv0.872.282.950 (4)135
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z; (iv) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.892.112.957 (4)159.9
N1—H1B···Cl3i0.892.293.163 (4)166.1
N1—H1C···O80.892.052.873 (4)154.3
N1—H1C···O70.892.503.130 (5)128.6
N2—H2A···O4ii0.891.992.829 (4)156.7
N2—H2A···O3ii0.892.563.197 (4)129.2
N2—H2B···Cl3i0.892.413.209 (3)150.1
N2—H2C···O6iii0.892.002.879 (4)169.5
N3—H3A···Cl30.892.373.180 (3)151.8
N3—H3A···O70.892.482.971 (4)115.4
N3—H3B···O90.891.882.751 (5)164.0
N3—H3C···O1iv0.892.082.957 (4)166.8
O9—H1O···Cl3i0.902.213.108 (3)173.4
O9—H2O···O3iv0.872.282.950 (4)134.7
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z; (iv) x, y, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDavies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). In Tin Chemistry, Fundamentals, Frontiers, and Applications. Chichester, UK: John Wiley & Sons Ltd.  Google Scholar
First citationDiallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok-Köhn, G. & Molloy, K. C. (2009). St. Cerc. St. CICBIA, 10, 207–212.  CAS Google Scholar
First citationEvans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2011). Main Group Met. Chem. 34, 3–5.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQamar-Kane, H. & Diop, L. (2010). St. Cerc. St. CICBIA, 11, 389–392.  Google Scholar
First citationSarr, M., Diasse-Sarr, A., Diallo, W., Plasseraud, L. & Cattey, H. (2013). Acta Cryst. E69, m473–m474.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarr, O. & Diop, L. (1990). Spectrochim. Acta Part A, 46, 1239–1244.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C, 278, 1377–1379.  CAS Google Scholar
First citationSow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWilley, G. R., Woodman, T. J., Deeth, R. J. & Errington, W. (1998). Main Group Met. Chem. 21, 583–591.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m581-m582
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds