metal-organic compounds
Dichloridobis[1-(2,4,6-trimethylphenyl)-1H-imidazole-κN3]copper(II)
aHealth Vocation and Technical College of Guangzhou Medical University, Guangzhou, People's Republic of China
*Correspondence e-mail: zhangyantao333@163.com
In the title complex, [CuCl2(C12H14N2)2], the Cu2+ cation is situated on an inversion centre and is coordinated by two N atoms from symmetry-related 1-mesityl-1H-imidazole ligands and by two chloride anions in a slightly distorted square-planar geometry. In the organic ligand, the dihedral angle between the benzene ring of the mesityl moiety and the imidazole ring is 76.99 (18)°. Weak intramolecular C—H⋯Cl hydrogen-bonding interactions consolidate the molecular conformation.
CCDC reference: 967484
Related literature
For related structures, see: Awwadi (2013); Jia et al. (2005). For the bioactivity of Cu complexes, see: Beaudoin et al. (2009); Deegana et al. (2007); Pettit & Ueda (1992). For the of Cu complexes, see: Kuang et al. (2002); Raptopoulou et al. (1998); Teyssot et al. (2007).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 967484
10.1107/S1600536813028821/wm2773sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028821/wm2773Isup2.hkl
In a Schlenk flask, a solution of 1-mesityl-1H-imidazole (10 ml, 1M in CH2Cl2) was added to a suspension of CuCl2 (5 mmol) in 10 ml CH2Cl2 at room temperature. The reaction was stirred in the absence of light for 6 h at this temperature. The reaction mixture was then filtered in the dark and the volume of the solution reduced to 5.0 ml. Pentane was added to afford the product as an green solid in 40% yield. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in CH2Cl2 at room temperature.
C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (CH3) Å and with Uiso(H)= 1.2 (1.5 for methyl) Ueq(C).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[CuCl2(C12H14N2)2] | F(000) = 526 |
Mr = 506.94 | Dx = 1.402 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 7467 reflections |
a = 7.1488 (6) Å | θ = 2.2–27.0° |
b = 19.7517 (18) Å | µ = 3.47 mm−1 |
c = 8.5126 (7) Å | T = 298 K |
β = 92.674 (8)° | Plate, green |
V = 1200.68 (18) Å3 | 0.44 × 0.32 × 0.05 mm |
Z = 2 |
Bruker APEX CCD diffractometer | 2114 independent reflections |
Radiation source: fine-focus sealed tube | 1738 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
phi and ω scans | θmax = 66.9°, θmin = 4.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −7→8 |
Tmin = 0.311, Tmax = 0.846 | k = −21→23 |
5702 measured reflections | l = −10→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0792P)2 + 1.6476P] where P = (Fo2 + 2Fc2)/3 |
2114 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 1.16 e Å−3 |
0 restraints | Δρmin = −1.18 e Å−3 |
[CuCl2(C12H14N2)2] | V = 1200.68 (18) Å3 |
Mr = 506.94 | Z = 2 |
Monoclinic, P21/c | Cu Kα radiation |
a = 7.1488 (6) Å | µ = 3.47 mm−1 |
b = 19.7517 (18) Å | T = 298 K |
c = 8.5126 (7) Å | 0.44 × 0.32 × 0.05 mm |
β = 92.674 (8)° |
Bruker APEX CCD diffractometer | 2114 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1738 reflections with I > 2σ(I) |
Tmin = 0.311, Tmax = 0.846 | Rint = 0.036 |
5702 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.16 e Å−3 |
2114 reflections | Δρmin = −1.18 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.0301 (3) | |
Cl1 | 0.2765 (2) | 0.45641 (8) | 0.65130 (12) | 0.0843 (6) | |
N1 | 0.3864 (4) | 0.45022 (13) | 0.3140 (3) | 0.0271 (6) | |
N2 | 0.2163 (4) | 0.37951 (14) | 0.1669 (3) | 0.0298 (6) | |
C5 | −0.0735 (5) | 0.33960 (18) | 0.0315 (4) | 0.0321 (7) | |
C7 | −0.1896 (5) | 0.28533 (19) | −0.0109 (4) | 0.0370 (8) | |
H7 | −0.2996 | 0.2937 | −0.0704 | 0.044* | |
C4 | 0.0884 (4) | 0.32493 (17) | 0.1230 (4) | 0.0292 (7) | |
C1 | 0.2452 (5) | 0.40602 (17) | 0.3112 (4) | 0.0305 (7) | |
H1 | 0.1762 | 0.3950 | 0.3976 | 0.037* | |
C2 | 0.4488 (5) | 0.45081 (18) | 0.1632 (4) | 0.0348 (8) | |
H2 | 0.5475 | 0.4769 | 0.1295 | 0.042* | |
C8 | −0.1471 (5) | 0.21907 (18) | 0.0325 (4) | 0.0358 (8) | |
C11 | 0.1388 (5) | 0.25940 (17) | 0.1680 (4) | 0.0296 (7) | |
C10 | 0.0168 (5) | 0.20712 (18) | 0.1221 (4) | 0.0345 (8) | |
H10 | 0.0461 | 0.1630 | 0.1525 | 0.041* | |
C12 | 0.3186 (5) | 0.2443 (2) | 0.2602 (4) | 0.0399 (9) | |
H12A | 0.3064 | 0.2570 | 0.3681 | 0.060* | |
H12B | 0.4189 | 0.2695 | 0.2171 | 0.060* | |
H12C | 0.3452 | 0.1968 | 0.2543 | 0.060* | |
C6 | −0.1178 (5) | 0.41059 (19) | −0.0233 (5) | 0.0430 (9) | |
H6A | −0.1165 | 0.4405 | 0.0657 | 0.065* | |
H6B | −0.2395 | 0.4114 | −0.0760 | 0.065* | |
H6C | −0.0256 | 0.4251 | −0.0946 | 0.065* | |
C9 | −0.2722 (6) | 0.1608 (2) | −0.0181 (6) | 0.0521 (10) | |
H9A | −0.2241 | 0.1196 | 0.0282 | 0.078* | |
H9B | −0.2757 | 0.1569 | −0.1306 | 0.078* | |
H9C | −0.3965 | 0.1687 | 0.0160 | 0.078* | |
C3 | 0.3455 (5) | 0.40795 (19) | 0.0722 (4) | 0.0372 (8) | |
H3 | 0.3590 | 0.3993 | −0.0341 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0369 (4) | 0.0328 (4) | 0.0208 (4) | −0.0118 (3) | 0.0032 (3) | −0.0030 (3) |
Cl1 | 0.1018 (10) | 0.1223 (12) | 0.0307 (5) | −0.0855 (9) | 0.0242 (5) | −0.0249 (6) |
N1 | 0.0296 (14) | 0.0288 (14) | 0.0230 (13) | −0.0028 (11) | 0.0024 (10) | −0.0001 (11) |
N2 | 0.0329 (14) | 0.0316 (15) | 0.0252 (13) | −0.0094 (12) | 0.0043 (11) | −0.0045 (11) |
C5 | 0.0282 (16) | 0.0331 (18) | 0.0352 (17) | −0.0009 (14) | 0.0049 (13) | −0.0074 (15) |
C7 | 0.0271 (17) | 0.042 (2) | 0.042 (2) | −0.0025 (15) | −0.0027 (14) | −0.0063 (16) |
C4 | 0.0296 (16) | 0.0339 (17) | 0.0242 (15) | −0.0089 (14) | 0.0044 (12) | −0.0074 (14) |
C1 | 0.0339 (17) | 0.0350 (17) | 0.0229 (15) | −0.0094 (14) | 0.0042 (13) | −0.0035 (13) |
C2 | 0.0401 (19) | 0.0388 (19) | 0.0259 (17) | −0.0128 (15) | 0.0050 (14) | −0.0009 (14) |
C8 | 0.0323 (18) | 0.0363 (19) | 0.0391 (19) | −0.0084 (15) | 0.0041 (14) | −0.0085 (15) |
C11 | 0.0331 (17) | 0.0327 (18) | 0.0234 (16) | −0.0054 (14) | 0.0045 (13) | −0.0011 (13) |
C10 | 0.0372 (19) | 0.0314 (18) | 0.0354 (18) | −0.0055 (15) | 0.0057 (14) | −0.0022 (15) |
C12 | 0.042 (2) | 0.042 (2) | 0.0352 (19) | −0.0074 (16) | −0.0045 (15) | 0.0033 (16) |
C6 | 0.038 (2) | 0.036 (2) | 0.055 (2) | 0.0018 (16) | −0.0016 (17) | −0.0028 (17) |
C9 | 0.042 (2) | 0.043 (2) | 0.071 (3) | −0.0121 (18) | −0.0017 (19) | −0.012 (2) |
C3 | 0.045 (2) | 0.046 (2) | 0.0213 (16) | −0.0150 (17) | 0.0087 (14) | −0.0058 (15) |
Cu1—N1i | 2.004 (3) | C6—H6A | 0.9600 |
Cu1—N1 | 2.004 (3) | C6—H6B | 0.9600 |
Cu1—Cl1i | 2.2684 (10) | C6—H6C | 0.9600 |
Cu1—Cl1 | 2.2684 (10) | C7—C8 | 1.390 (5) |
N1—C1 | 1.334 (4) | C7—H7 | 0.9300 |
N1—C2 | 1.378 (4) | C8—C10 | 1.388 (5) |
N2—C1 | 1.343 (4) | C8—C9 | 1.509 (5) |
N2—C3 | 1.374 (4) | C9—H9A | 0.9600 |
N2—C4 | 1.451 (4) | C9—H9B | 0.9600 |
C1—H1 | 0.9300 | C9—H9C | 0.9600 |
C2—C3 | 1.345 (5) | C10—C11 | 1.396 (5) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—H3 | 0.9300 | C11—C12 | 1.504 (5) |
C4—C11 | 1.392 (5) | C12—H12A | 0.9600 |
C4—C5 | 1.395 (5) | C12—H12B | 0.9600 |
C5—C7 | 1.393 (5) | C12—H12C | 0.9600 |
C5—C6 | 1.507 (5) | ||
N1i—Cu1—N1 | 180.00 (13) | H6A—C6—H6B | 109.5 |
N1i—Cu1—Cl1i | 89.56 (8) | C5—C6—H6C | 109.5 |
N1—Cu1—Cl1i | 90.44 (8) | H6A—C6—H6C | 109.5 |
N1i—Cu1—Cl1 | 90.44 (8) | H6B—C6—H6C | 109.5 |
N1—Cu1—Cl1 | 89.56 (8) | C8—C7—C5 | 122.4 (3) |
Cl1i—Cu1—Cl1 | 180.00 (7) | C8—C7—H7 | 118.8 |
C1—N1—C2 | 105.5 (3) | C5—C7—H7 | 118.8 |
C1—N1—Cu1 | 127.8 (2) | C10—C8—C7 | 118.3 (3) |
C2—N1—Cu1 | 126.5 (2) | C10—C8—C9 | 120.1 (3) |
C1—N2—C3 | 107.4 (3) | C7—C8—C9 | 121.6 (3) |
C1—N2—C4 | 126.4 (3) | C8—C9—H9A | 109.5 |
C3—N2—C4 | 125.8 (3) | C8—C9—H9B | 109.5 |
N1—C1—N2 | 110.8 (3) | H9A—C9—H9B | 109.5 |
N1—C1—H1 | 124.6 | C8—C9—H9C | 109.5 |
N2—C1—H1 | 124.6 | H9A—C9—H9C | 109.5 |
C3—C2—N1 | 109.8 (3) | H9B—C9—H9C | 109.5 |
C3—C2—H2 | 125.1 | C8—C10—C11 | 121.9 (3) |
N1—C2—H2 | 125.1 | C8—C10—H10 | 119.0 |
C2—C3—N2 | 106.6 (3) | C11—C10—H10 | 119.0 |
C2—C3—H3 | 126.7 | C4—C11—C10 | 117.4 (3) |
N2—C3—H3 | 126.7 | C4—C11—C12 | 122.1 (3) |
C11—C4—C5 | 123.0 (3) | C10—C11—C12 | 120.5 (3) |
C11—C4—N2 | 117.9 (3) | C11—C12—H12A | 109.5 |
C5—C4—N2 | 119.1 (3) | C11—C12—H12B | 109.5 |
C7—C5—C4 | 117.0 (3) | H12A—C12—H12B | 109.5 |
C7—C5—C6 | 121.4 (3) | C11—C12—H12C | 109.5 |
C4—C5—C6 | 121.5 (3) | H12A—C12—H12C | 109.5 |
C5—C6—H6A | 109.5 | H12B—C12—H12C | 109.5 |
C5—C6—H6B | 109.5 | ||
Cl1i—Cu1—N1—C1 | 174.6 (3) | C11—C4—C5—C7 | 1.9 (5) |
Cl1—Cu1—N1—C1 | −5.4 (3) | N2—C4—C5—C7 | 178.4 (3) |
Cl1i—Cu1—N1—C2 | 0.1 (3) | C11—C4—C5—C6 | −176.2 (3) |
Cl1—Cu1—N1—C2 | −179.9 (3) | N2—C4—C5—C6 | 0.3 (5) |
C2—N1—C1—N2 | −0.3 (4) | C4—C5—C7—C8 | −1.1 (5) |
Cu1—N1—C1—N2 | −175.7 (2) | C6—C5—C7—C8 | 177.1 (4) |
C3—N2—C1—N1 | 0.1 (4) | C5—C7—C8—C10 | 0.4 (5) |
C4—N2—C1—N1 | 173.2 (3) | C5—C7—C8—C9 | −178.4 (4) |
C1—N1—C2—C3 | 0.4 (4) | C7—C8—C10—C11 | −0.5 (5) |
Cu1—N1—C2—C3 | 175.9 (2) | C9—C8—C10—C11 | 178.3 (3) |
N1—C2—C3—N2 | −0.3 (4) | C5—C4—C11—C10 | −2.0 (5) |
C1—N2—C3—C2 | 0.1 (4) | N2—C4—C11—C10 | −178.6 (3) |
C4—N2—C3—C2 | −173.0 (3) | C5—C4—C11—C12 | 177.0 (3) |
C1—N2—C4—C11 | −74.2 (4) | N2—C4—C11—C12 | 0.4 (5) |
C3—N2—C4—C11 | 97.6 (4) | C8—C10—C11—C4 | 1.2 (5) |
C1—N2—C4—C5 | 109.1 (4) | C8—C10—C11—C12 | −177.8 (3) |
C3—N2—C4—C5 | −79.1 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
References
Awwadi, F. F. (2013). Acta Cryst. E69, m116. CSD CrossRef IUCr Journals Google Scholar
Beaudoin, C., Morel, L., Boyer, D., Mahiou, R. & Gautier, A. (2009). Dalton Trans. pp. 6894–6902. Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deegana, C., McCanna, M., Devereuxa, M., Coylec, B. & Egan, D. A. (2007). Cancer Lett. 2, 224–233. Google Scholar
Jia, W., McCormick, T., Tao, Y., Lu, J. & Wang, S. (2005). Inorg. Chem. 44, 5706–5712. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kuang, S. M., Cuttell, D. G., McMillin, D. R., Fanwick, P. E. & Walton, R. A. (2002). Inorg. Chem. 41, 3313–3322. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pettit, L. D. & Ueda, J. (1992). J. Inorg. Biochem. 3, 203–210. CrossRef Web of Science Google Scholar
Raptopoulou, C. P., Paschalidou, S., Pantazaki, A. A., Terzis, A., Perlepes, S. P., Lialiaris, T., Bakalbassis, E. G., Mrozinski, J. & Kyriakidis, D. A. (1998). J. Inorg. Biochem. 71, 15–27. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teyssot, M. L., Jarrousse, A. S., Manin, M., Chevry, A., Roche, S., Norre, F., Tsuboyama, A., Kuge, K., Furugori, M., Okada, S., Hoshino, M. & Ueno, K. (2007). Inorg. Chem. 46, 1992–2001. Web of Science PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, phosphorescent Cu(II) complexes received attention due to their nontoxic properties (Deegana et al., 2007), which make these complexes applicable in biological probing (Beaudoin et al., 2009; Deegana et al., 2007; Pettit & Ueda, 1992), solar energy conversion, and organic light emitting devices (Kuang et al., 2002; Jia et al., 2005; Teyssot et al., 2007). Our interest is focused on the design and synthesis of phosphorescent Cu(II) complexes with various ancillary ligands, and their applications in anti-cancer therapy (Awwadi, 2013; Raptopoulou et al., 1998). We herein describe the synthesis and structural characterization of the title compound, [CuCl2(C12H14N2)2], (I).
The molecular structure of compound (I) is shown in Fig. 1. The metal cation is situated on an inversion centre and is coordinated by two N atoms of the 1-mesityl-1H-imidazole ligands and by two chloride anions in a slightly distorted square-planar geometry. The mesityl ring moiety and the imidazole ring are almost orthogonal to each other, with a dihedral angle between the two rings of 76.99 (18) °. Weak intramolecular C—H···Cl hydrogen bonding interactions consolidate the molecular conformation (Fig. 2).