inorganic compounds
Redetermination of Dy3Ni from single-crystal X-ray data
aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla & Mefodiya Street 6, 79005 Lviv, Ukraine, and b344 Spedding Hall, Ames Laboratory, Ames, IA 50011-3020, USA
*Correspondence e-mail: v.levyckyy@gmail.com
The classification of the title compound, tridysprosium nickel, into the Fe3C (or Al3Ni) structure type has been deduced from powder X-ray diffraction data with lattice parameters reported in a previous study [Lemaire & Paccard (1967). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311–315]. The current re-investigation of Dy3Ni based on single-crystal X-ray data revealed atomic positional parameters and anisotropic displacement parameters with high precision. The consists of two Dy and one Ni atoms. One Dy atom has .m. (Wyckoff position 4c) and is surrounded by twelve Dy and three Ni atoms. The other Dy atom (site symmetry 1, 8d) has eleven Dy and three Ni atoms as neighbours, forming a distorted Frank–Kasper polyhedron. The of the Ni atom (.m., 4c) is a tricapped trigonal prism formed by nine Dy atoms.
CCDC reference: 967354
Related literature
For a previous crystallographic investigation of the title compound, see: Lemaire & Paccard (1967). For the Fe3C structure, see: Hendricks (1930), and for the Al3Ni structure, see: Bradley & Taylor (1937). For the Dy–Ni phase diagram, see: Zheng & Wang (1982). For magnetic properties of Dy3Ni, see: Talik et al. (1996), and for magnetic properties of Dy3Co, see: Baranov et al. (1995). For isotypic compounds, see: Tsvyashchenko (1986); Romaka et al. (2011); Buschow & van der Goot (1969); Givord & Lemaire (1971). For structure refinements of other compounds in the Dy–Ni system, see: Levytskyy et al. (2012a,b).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2009); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 967354
10.1107/S1600536813028717/wm2777sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028717/wm2777Isup2.hkl
The sample was prepared from powdered commercially available pure elements: sublimed bulk pieces of dysprosium metal with a claimed purity of 99.99 at.% (Alfa Aesar, Johnson Matthey) and electrolytic nickel (99.99% pure) pieces (Aldrich). A mixture of the powders was compacted into a pellet. It was arc-melted under an argon atmosphere on a water-cooled copper hearth. The alloy button (~1 g) was turned over and remelted three times to improve Subsequently, the sample was annealed in an evacuated silica tube under an argon atmosphere for four weeks at 870 K. Shiny metallic gray plate-like crystals were isolated mechanically with a help of microscope by crushing the sample.
The atomic positions found from the
structure solution were in good agreement with those from the Fe3C structure type (Hendricks, 1930) and were used as starting point for the structure The highest Fourier difference peak of 2.82 e Å-3 is at (0.0340 0.75 0.1598) and 1.36 Å away from the Dy2 atom. The deepest hole of -2.65 e Å-3 is at (0.0358 0.25 0.0220) and 1.01 Å away from the Ni atom.Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Dy3Ni | Dx = 8.781 Mg m−3 |
Mr = 546.21 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 2575 reflections |
a = 6.863 (3) Å | θ = 3.7–29.5° |
b = 9.553 (3) Å | µ = 57.86 mm−1 |
c = 6.302 (2) Å | T = 293 K |
V = 413.2 (3) Å3 | Block, metallic gray |
Z = 4 | 0.14 × 0.11 × 0.10 mm |
F(000) = 904 |
Stoe IPDS II diffractometer | 447 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.042 |
ω scans | θmax = 29.6°, θmin = 3.9° |
Absorption correction: numerical (X-RED; Stoe & Cie, 2009) | h = 0→9 |
Tmin = 0.007, Tmax = 0.026 | k = 0→12 |
973 measured reflections | l = −8→8 |
582 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0141P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.052 | (Δ/σ)max < 0.001 |
S = 1.12 | Δρmax = 2.82 e Å−3 |
582 reflections | Δρmin = −2.65 e Å−3 |
23 parameters | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00030 (10) |
Dy3Ni | V = 413.2 (3) Å3 |
Mr = 546.21 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 6.863 (3) Å | µ = 57.86 mm−1 |
b = 9.553 (3) Å | T = 293 K |
c = 6.302 (2) Å | 0.14 × 0.11 × 0.10 mm |
Stoe IPDS II diffractometer | 582 independent reflections |
Absorption correction: numerical (X-RED; Stoe & Cie, 2009) | 447 reflections with I > 2σ(I) |
Tmin = 0.007, Tmax = 0.026 | Rint = 0.042 |
973 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 23 parameters |
wR(F2) = 0.052 | 0 restraints |
S = 1.12 | Δρmax = 2.82 e Å−3 |
582 reflections | Δρmin = −2.65 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Dy1 | 0.17975 (10) | 0.06439 (6) | 0.17745 (9) | 0.01479 (17) | |
Dy2 | 0.03218 (14) | 0.2500 | 0.63694 (13) | 0.0147 (2) | |
Ni | 0.3917 (4) | 0.2500 | 0.4477 (4) | 0.0197 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy1 | 0.0150 (3) | 0.0151 (3) | 0.0143 (2) | 0.0001 (3) | 0.0003 (3) | −0.0004 (2) |
Dy2 | 0.0158 (5) | 0.0144 (4) | 0.0138 (4) | 0.000 | 0.0014 (3) | 0.000 |
Ni | 0.0131 (12) | 0.0268 (14) | 0.0192 (11) | 0.000 | 0.0003 (10) | 0.000 |
Dy1—Nii | 2.770 (2) | Dy2—Dy1xii | 3.5361 (12) |
Dy1—Ni | 2.856 (2) | Dy2—Dy1vi | 3.5433 (12) |
Dy1—Niii | 3.3700 (15) | Dy2—Dy1viii | 3.5944 (14) |
Dy1—Dy1iii | 3.5174 (11) | Dy2—Dy1i | 3.5944 (14) |
Dy1—Dy1iv | 3.5174 (11) | Dy2—Dy1xiii | 3.6047 (12) |
Dy1—Dy2v | 3.5361 (12) | Dy2—Dy1iii | 3.6047 (12) |
Dy1—Dy2 | 3.5433 (12) | Dy2—Dy2xiv | 3.7156 (15) |
Dy1—Dy1vi | 3.5462 (16) | Dy2—Dy2xi | 3.7156 (15) |
Dy1—Dy1vii | 3.5502 (15) | Ni—Dy1x | 2.770 (2) |
Dy1—Dy1viii | 3.5512 (15) | Ni—Dy1ix | 2.770 (2) |
Dy1—Dy1ix | 3.5512 (15) | Ni—Dy2xiv | 2.790 (3) |
Dy1—Dy2x | 3.5944 (14) | Ni—Dy1vi | 2.856 (2) |
Dy2—Ni | 2.740 (3) | Ni—Dy1xiii | 3.3700 (15) |
Dy2—Nixi | 2.790 (3) | Ni—Dy1iii | 3.3700 (15) |
Dy2—Dy1v | 3.5361 (12) | ||
Nii—Dy1—Ni | 97.80 (5) | Dy1—Dy2—Dy1vi | 60.06 (3) |
Nii—Dy1—Niii | 110.14 (3) | Ni—Dy2—Dy1viii | 111.46 (6) |
Ni—Dy1—Niii | 152.06 (4) | Nixi—Dy2—Dy1viii | 106.54 (6) |
Nii—Dy1—Dy1iii | 132.42 (6) | Dy1v—Dy2—Dy1viii | 59.11 (2) |
Ni—Dy1—Dy1iii | 62.83 (4) | Dy1xii—Dy2—Dy1viii | 108.94 (3) |
Niii—Dy1—Dy1iii | 96.49 (5) | Dy1—Dy2—Dy1viii | 59.67 (3) |
Nii—Dy1—Dy1iv | 99.46 (5) | Dy1vi—Dy2—Dy1viii | 89.35 (3) |
Ni—Dy1—Dy1iv | 127.71 (7) | Ni—Dy2—Dy1i | 111.46 (6) |
Niii—Dy1—Dy1iv | 48.95 (4) | Nixi—Dy2—Dy1i | 106.54 (6) |
Dy1iii—Dy1—Dy1iv | 127.23 (4) | Dy1v—Dy2—Dy1i | 108.94 (3) |
Nii—Dy1—Dy2v | 110.13 (6) | Dy1xii—Dy2—Dy1i | 59.11 (2) |
Ni—Dy1—Dy2v | 122.64 (5) | Dy1—Dy2—Dy1i | 89.35 (3) |
Niii—Dy1—Dy2v | 47.57 (5) | Dy1vi—Dy2—Dy1i | 59.67 (3) |
Dy1iii—Dy1—Dy2v | 61.27 (3) | Dy1viii—Dy2—Dy1i | 59.12 (3) |
Dy1iv—Dy1—Dy2v | 96.43 (3) | Ni—Dy2—Dy1xiii | 62.42 (3) |
Nii—Dy1—Dy2 | 73.05 (5) | Nixi—Dy2—Dy1xiii | 97.07 (4) |
Ni—Dy1—Dy2 | 49.28 (6) | Dy1v—Dy2—Dy1xiii | 155.48 (3) |
Niii—Dy1—Dy2 | 139.07 (5) | Dy1xii—Dy2—Dy1xiii | 59.64 (3) |
Dy1iii—Dy1—Dy2 | 61.40 (2) | Dy1—Dy2—Dy1xiii | 108.55 (3) |
Dy1iv—Dy1—Dy2 | 170.23 (3) | Dy1vi—Dy2—Dy1xiii | 58.947 (18) |
Dy2v—Dy1—Dy2 | 92.13 (2) | Dy1viii—Dy2—Dy1xiii | 144.99 (2) |
Nii—Dy1—Dy1vi | 50.21 (4) | Dy1i—Dy2—Dy1xiii | 89.83 (3) |
Ni—Dy1—Dy1vi | 51.63 (4) | Ni—Dy2—Dy1iii | 62.42 (3) |
Niii—Dy1—Dy1vi | 153.03 (4) | Nixi—Dy2—Dy1iii | 97.07 (4) |
Dy1iii—Dy1—Dy1vi | 110.47 (2) | Dy1v—Dy2—Dy1iii | 59.64 (3) |
Dy1iv—Dy1—Dy1vi | 110.47 (2) | Dy1xii—Dy2—Dy1iii | 155.48 (3) |
Dy2v—Dy1—Dy1vi | 148.141 (19) | Dy1—Dy2—Dy1iii | 58.947 (18) |
Dy2—Dy1—Dy1vi | 59.972 (15) | Dy1vi—Dy2—Dy1iii | 108.55 (3) |
Nii—Dy1—Dy1vii | 63.03 (5) | Dy1viii—Dy2—Dy1iii | 89.83 (3) |
Ni—Dy1—Dy1vii | 160.83 (5) | Dy1i—Dy2—Dy1iii | 144.99 (2) |
Niii—Dy1—Dy1vii | 47.11 (5) | Dy1xiii—Dy2—Dy1iii | 112.85 (4) |
Dy1iii—Dy1—Dy1vii | 129.32 (4) | Ni—Dy2—Dy2xiv | 48.35 (6) |
Dy1iv—Dy1—Dy1vii | 60.32 (3) | Nixi—Dy2—Dy2xiv | 87.67 (7) |
Dy2v—Dy1—Dy1vii | 68.17 (3) | Dy1v—Dy2—Dy2xiv | 104.66 (3) |
Dy2—Dy1—Dy1vii | 119.32 (4) | Dy1xii—Dy2—Dy2xiv | 104.66 (3) |
Dy1vi—Dy1—Dy1vii | 110.28 (2) | Dy1—Dy2—Dy2xiv | 92.83 (3) |
Nii—Dy1—Dy1viii | 51.95 (5) | Dy1vi—Dy2—Dy2xiv | 92.83 (3) |
Ni—Dy1—Dy1viii | 109.78 (6) | Dy1viii—Dy2—Dy2xiv | 146.39 (2) |
Niii—Dy1—Dy1viii | 88.29 (5) | Dy1i—Dy2—Dy2xiv | 146.39 (2) |
Dy1iii—Dy1—Dy1viii | 91.96 (3) | Dy1xiii—Dy2—Dy2xiv | 57.75 (2) |
Dy1iv—Dy1—Dy1viii | 119.71 (3) | Dy1iii—Dy2—Dy2xiv | 57.75 (2) |
Dy2v—Dy1—Dy1viii | 61.14 (2) | Ni—Dy2—Dy2xi | 176.75 (7) |
Dy2—Dy1—Dy1viii | 60.88 (2) | Nixi—Dy2—Dy2xi | 47.22 (6) |
Dy1vi—Dy1—Dy1viii | 90.0 | Dy1v—Dy2—Dy2xi | 59.55 (2) |
Dy1vii—Dy1—Dy1viii | 59.38 (3) | Dy1xii—Dy2—Dy2xi | 59.55 (2) |
Nii—Dy1—Dy1ix | 139.72 (4) | Dy1—Dy2—Dy2xi | 125.27 (3) |
Ni—Dy1—Dy1ix | 49.80 (5) | Dy1vi—Dy2—Dy2xi | 125.27 (3) |
Niii—Dy1—Dy1ix | 104.55 (5) | Dy1viii—Dy2—Dy2xi | 65.79 (3) |
Dy1iii—Dy1—Dy1ix | 60.29 (3) | Dy1i—Dy2—Dy2xi | 65.79 (3) |
Dy1iv—Dy1—Dy1ix | 88.04 (3) | Dy1xiii—Dy2—Dy2xi | 118.64 (2) |
Dy2v—Dy1—Dy1ix | 108.20 (2) | Dy1iii—Dy2—Dy2xi | 118.64 (2) |
Dy2—Dy1—Dy1ix | 93.77 (3) | Dy2xiv—Dy2—Dy2xi | 134.90 (5) |
Dy1vi—Dy1—Dy1ix | 90.0 | Dy2—Ni—Dy1x | 140.04 (4) |
Dy1vii—Dy1—Dy1ix | 146.49 (3) | Dy2—Ni—Dy1ix | 140.04 (4) |
Dy1viii—Dy1—Dy1ix | 150.16 (4) | Dy1x—Ni—Dy1ix | 79.59 (8) |
Nii—Dy1—Dy2x | 90.43 (6) | Dy2—Ni—Dy2xiv | 84.43 (7) |
Ni—Dy1—Dy2x | 71.33 (6) | Dy1x—Ni—Dy2xiv | 91.17 (8) |
Niii—Dy1—Dy2x | 107.50 (5) | Dy1ix—Ni—Dy2xiv | 91.17 (8) |
Dy1iii—Dy1—Dy2x | 118.81 (4) | Dy2—Ni—Dy1 | 78.53 (7) |
Dy1iv—Dy1—Dy2x | 59.62 (2) | Dy1x—Ni—Dy1 | 126.22 (9) |
Dy2v—Dy1—Dy2x | 151.42 (2) | Dy1ix—Ni—Dy1 | 78.25 (5) |
Dy2—Dy1—Dy2x | 113.33 (3) | Dy2xiv—Ni—Dy1 | 137.35 (5) |
Dy1vi—Dy1—Dy2x | 60.442 (16) | Dy2—Ni—Dy1vi | 78.53 (7) |
Dy1vii—Dy1—Dy2x | 106.94 (4) | Dy1x—Ni—Dy1vi | 78.25 (5) |
Dy1viii—Dy1—Dy2x | 142.39 (2) | Dy1ix—Ni—Dy1vi | 126.22 (9) |
Dy1ix—Dy1—Dy2x | 59.45 (3) | Dy2xiv—Ni—Dy1vi | 137.35 (5) |
Ni—Dy2—Ni3xi | 136.02 (9) | Dy1—Ni—Dy1vi | 76.74 (7) |
Ni—Dy2—Dy1v | 120.95 (2) | Dy2—Ni—Dy1xiii | 71.46 (5) |
Nixi—Dy2—Dy1v | 63.09 (3) | Dy1x—Ni—Dy1xiii | 69.86 (3) |
Ni—Dy2—Dy1xii | 120.95 (2) | Dy1ix—Ni—Dy1xiii | 142.80 (9) |
Nixi—Dy2—Dy1xii | 63.09 (3) | Dy2xiv—Ni—Dy1xiii | 69.34 (4) |
Dy1v—Dy2—Dy1xii | 116.28 (4) | Dy1—Ni—Dy1xiii | 137.33 (9) |
Ni—Dy2—Dy1 | 52.19 (4) | Dy1vi—Ni—Dy1xiii | 68.22 (3) |
Nixi—Dy2—Dy1 | 149.959 (16) | Dy2—Ni—Dy1iii | 71.46 (5) |
Dy1v—Dy2—Dy1 | 87.87 (3) | Dy1x—Ni—Dy1iii | 142.80 (9) |
Dy1xii—Dy2—Dy1 | 144.38 (2) | Dy1ix—Ni—Dy1iii | 69.86 (3) |
Ni—Dy2—Dy1vi | 52.19 (4) | Dy2xiv—Ni—Dy1iii | 69.34 (4) |
Nixi—Dy2—Dy1vi | 149.959 (16) | Dy1—Ni—Dy1iii | 68.22 (3) |
Dy1v—Dy2—Dy1vi | 144.38 (2) | Dy1vi—Ni—Dy1iii | 137.33 (9) |
Dy1xii—Dy2—Dy1vi | 87.87 (2) | Dy1xiii—Ni—Dy1iii | 126.05 (8) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, z−1/2; (iii) −x+1/2, −y, z+1/2; (iv) −x+1/2, −y, z−1/2; (v) −x, −y, −z+1; (vi) x, −y+1/2, z; (vii) −x, −y, −z; (viii) x−1/2, y, −z+1/2; (ix) x+1/2, y, −z+1/2; (x) x+1/2, −y+1/2, −z+1/2; (xi) x−1/2, −y+1/2, −z+3/2; (xii) −x, y+1/2, −z+1; (xiii) −x+1/2, y+1/2, z+1/2; (xiv) x+1/2, −y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | Dy3Ni |
Mr | 546.21 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 293 |
a, b, c (Å) | 6.863 (3), 9.553 (3), 6.302 (2) |
V (Å3) | 413.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 57.86 |
Crystal size (mm) | 0.14 × 0.11 × 0.10 |
Data collection | |
Diffractometer | Stoe IPDS II diffractometer |
Absorption correction | Numerical (X-RED; Stoe & Cie, 2009) |
Tmin, Tmax | 0.007, 0.026 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 973, 582, 447 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.696 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.052, 1.12 |
No. of reflections | 582 |
No. of parameters | 23 |
Δρmax, Δρmin (e Å−3) | 2.82, −2.65 |
Computer programs: X-AREA (Stoe & Cie, 2009), SIR2011 (Burla et al., 2012), SHELXL2013 (Sheldrick, 2008) and WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
References
Baranov, N. V., Pirogov, A. N. & Teplykh, A. E. (1995). J. Alloys Compd, 226, 70–74. CrossRef CAS Web of Science Google Scholar
Bradley, A. J. & Taylor, A. (1937). Philos. Mag. 23, 1049–1067. CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Buschow, K. H. J. & van der Goot, A. S. (1969). J. Less-Common Met. 18, 309–311. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Givord, F. & Lemaire, R. (1971). Solid State Commun. 9, 341–346. CrossRef CAS Web of Science Google Scholar
Hendricks, S. B. (1930). Z. Kristallogr. 74, 534–545. CAS Google Scholar
Lemaire, R. & Paccard, D. (1967). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311–315. Google Scholar
Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012a). Acta Cryst. E68, i20. CrossRef IUCr Journals Google Scholar
Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012b). Acta Cryst. E68, i83. CrossRef IUCr Journals Google Scholar
Romaka, L., Romaka, V. & Stadnyk, Yu. (2011). Chem. Met. Alloys, 4, 89–93. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Talik, E., Mydlarz, T. & Gilewski, A. (1996). J. Alloys Compd, 233, 136–139. CrossRef CAS Web of Science Google Scholar
Tsvyashchenko, A. V. (1986). J. Less-Common Met. 118, 103–107. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, J.-X. & Wang, C.-Z. (1982). Acta Phys. Sin. 31, 668–673. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Lattice parameters for RE3Ni compounds with RE = Y, La, Pr, Nd, Sm, Gd–Tm, have been determined and their crystal structures reported to be isotypic with the Fe3C (or Al3Ni) type structure which includes also Dy3Ni (Lemaire & Paccard, 1967). According to the phase diagram of the Dy–Ni system (Zheng & Wang, 1982), Dy3Ni is stable below 1035 K and is formed by the peritectic reaction: Dy + L → Dy3Ni.
Similar isotypic RE3Co compounds were also reported (Buschow & van der Goot, 1969) for RE = Y, La, Pr, Nd, Sm, Gd–Er. Lu3Co has been prepared by Givord & Lemaire (1971), Lu3Ni by Romaka et al. (2011). Tsvyashchenko (1986) synthesized Yb3Co and Yb3Ni at high pressure. According to Tsvyashchenko (1986), Yb3Co adopts the Fe3C type structure and Yb3Ni the Al3Ni structure type. On the other hand, Lemaire & Paccard (1967) claimed the RE3Ni compounds to have the same structure as the RE3Co compounds. To clarify the confusion with the assigned structure types, we have studied literature data for the Fe3C (Hendricks, 1930) and the Al3Ni (Bradley & Taylor, 1937) prototype structures, concluding that Al3Ni and Fe3C are isotypic. In accordance with the majority in literature, we will use the Fe3C structure type for classification as it has been reported earlier.
Recently, two binary compounds of the Dy–Ni system have been redetermined using single-crystal X-ray data (Levytskyy et al., 2012a,b). Here we present the results of the single-crystal X-ray analysis of Dy3Ni. Details of the crystal structure have not been investigated before, and only isotypism with the Fe3C was reported together with lattice parameters (Lemaire & Paccard, 1967).
The structure of Dy3Ni is characterized by formation of trigonal prisms of Dy atoms with Ni atom enclosed in the centre. A view of the crystal structure of Dy3Ni is shown in Fig. 1. The value of the displacement parameter U22 for the Ni atom displays a high anisotropy in the b direction which may have an influence on some physical properties of the compound. Magnetic properties of Dy3Ni were reported by Talik et al. (1996) and generally confirm this assumption which is also valid for the isotypic Dy3Co (Baranov et al., 1995).
In Fig. 2 the ac projection of the unit cell and the coordination polyhedra for all atom types in Dy3Ni are shown. The coordination number for Dy1 (site symmetry .m., Wyckoff site 4 c) is 15 with bonding to 12 Dy and 3 Ni atoms. The coordination number for Dy2 (site symmetry 1, Wyckoff site 8 d) is 14, resulting in a distorted Frank–Kasper polyhedron defined by 11 Dy and 3 Ni atoms. The coordination number for Ni (site symmetry .m., Wyckoff site 4 c) is 9, resulting in a slightly distorted tricapped trigonal prism made up of 9 Dy atoms.
The analysis of interatomic distances shows a slight decrease of some Dy–Ni distances. This feature is in good agreement with the observed Ho–Co distances for previously reported Ho3Co (Buschow & van der Goot, 1969). The explanation of this fact may be deduced from an electronic band structure calculation.