metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m626-m627

Di-μ-oxido-bis­­({2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphenolato}titanium(IV)) chloro­form disolvate

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, and bInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru.ru

(Received 18 October 2013; accepted 24 October 2013; online 31 October 2013)

In the title compound, [Ti2(C16H14N2O2)2O2]·2CHCl3, the TiIV atom in the centrosymmetric complex has a distorted octa­hedral N2O4 coordination environment and is linked via two μ2-oxido bridges into a dinuclear centrosymmetric com­plex, with a Ti⋯Ti separation of 2.7794 (8) Å. In the salen (N,N′-ethyl­enebis(salicyl­imine)) ligand, the two salicyl­imine units make a dihedral angle of 45.31 (5)°. The complex mol­ecules are stacked parallel to [100], forming channels in which the solvent chloro­form mol­ecules are located. C—H⋯O hydrogen-bonding inter­actions between the complex mol­ecules and the solvent mol­ecules consolidate the crystal packing.

Related literature

For general background to the chemistry of titanium complexes based on salen-type ligands, see: Gupta & Sutar (2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]); Tsuchimoto (2001[Tsuchimoto, M. (2001). Bull. Chem. Soc. Jpn, 74, 2101-2105.]). For our previous work on titanium(IV) complexes with polydentate N,O-chelating ligands, see: Zaitsev et al. (2006[Zaitsev, K. V., Karlov, S. S., Selina, A. A., Oprunenko, Yu. F., Churakov, A. V., Neumüller, B., Howard, J. A. K. & Zaitseva, G. S. (2006). Eur. J. Inorg. Chem. pp. 1987-1999.], 2008[Zaitsev, K. V., Bermeshev, M. V., Samsonov, A. A., Oprunenko, J. F., Churakov, A. V., Howard, J. A. L., Karlov, S. S. & Zaitseva, G. S. (2008). New J. Chem. 32, 1415-1431.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti2(C16H14N2O2)2O2]·2CHCl3

  • Mr = 899.12

  • Monoclinic, P 21 /n

  • a = 8.8115 (10) Å

  • b = 11.4587 (13) Å

  • c = 18.785 (2) Å

  • β = 98.226 (2)°

  • V = 1877.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 150 K

  • 0.25 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.806, Tmax = 0.948

  • 16236 measured reflections

  • 3677 independent reflections

  • 3119 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.04

  • 3677 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 1.00 2.08 3.029 (3) 157

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a part of our investigation on the chemistry of titanium complexes based on tridentate or tetradentate ligands (Zaitsev et al., 2006, 2008) we obtained and studied the structure of the title compound, [Ti(O)(C16H14N2O2)]2 (or [Ti(O)(salen)]2) that crystallizes with two chloroform solvent molecules. For general background to the chemistry of titanium complexes based on salen-type ligands, see: Gupta & Sutar (2008).

The title salen complex is centrosymmetric. The Ti(IV) atoms are linked by µ2-oxido bridges and possess a distorted octahedral N2O4 coordination environment with cis interligand angles ranging from 82.20 (6) to 106.51 (7) °. In the central Ti22-O)2 fragment, the metal–oxygen distances are significantly different (1.8029 (14) and 1.9029 (15) Å). The opposite N–Ti bond lengths also vary by approximately 0.1 Å (2.1502 (17) and 2.2555 (17) Å). The same structural feature was previously reported for another solvatomorph of this complex (Tsuchimoto, 2001). In the ligand, the two salicylimine fragmets form a dihedral angle of 45.31 (5) ° (Fig. 1).

In the crystal, solvent chloroform molecule are linked via C—H···O hydrogen bonding interactions with the main molecule (Table 1). The solvent molecules fill channels spreading parallel to [100] (Fig. 2). The adjacent titanium complexes are connected by T-shaped C—H···π interactions. However, no π···π- stacking interactions are observed in this structure.

Related literature top

For general background to the chemistry of titanium complexes based on salen-type ligands, see: Gupta & Sutar (2008); Tsuchimoto (2001). For our previous work on titanium(IV) complexes with polydentate N,O-chelating ligands, see: Zaitsev et al. (2006, 2008).

Experimental top

The title compound was obtained from reaction of equimolar amounts of Ti(O-iPr)4 and salen in chloroform as a solid which is insoluble in common organic solvents. The crystals suitable for X-Ray analysis crystallized from the reaction mixture.

Refinement top

All hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for chloroform molecule; C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene groups; C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for sp2 carbon atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms and the solvent molecules were omitted for clarity. [Symmetry code A) 1 - x, 2 - y, 1 - z.]
[Figure 2] Fig. 2. Channels extending parallel to [100], filled with chloroform solvent molecules. Cl3C—H···O hydrogen bonding interactions are shown as dashed lines.
Di-µ-oxido-bis({2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}titanium(IV)) chloroform disolvate top
Crystal data top
[Ti2(C16H14N2O2)2O2]·2CHCl3F(000) = 912
Mr = 899.12Dx = 1.591 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5413 reflections
a = 8.8115 (10) Åθ = 2.4–29.6°
b = 11.4587 (13) ŵ = 0.90 mm1
c = 18.785 (2) ÅT = 150 K
β = 98.226 (2)°Block, colourless
V = 1877.2 (4) Å30.25 × 0.08 × 0.06 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3677 independent reflections
Radiation source: fine-focus sealed tube3119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.806, Tmax = 0.948k = 1414
16236 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0415P)2 + 1.1985P]
where P = (Fo2 + 2Fc2)/3
3677 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ti2(C16H14N2O2)2O2]·2CHCl3V = 1877.2 (4) Å3
Mr = 899.12Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.8115 (10) ŵ = 0.90 mm1
b = 11.4587 (13) ÅT = 150 K
c = 18.785 (2) Å0.25 × 0.08 × 0.06 mm
β = 98.226 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3677 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3119 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.948Rint = 0.028
16236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
3677 reflectionsΔρmin = 0.28 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.55329 (4)0.89882 (3)0.471151 (19)0.02192 (11)
O30.38110 (15)0.94635 (12)0.50409 (7)0.0250 (3)
O10.44879 (16)0.76247 (12)0.42307 (7)0.0266 (3)
O20.66652 (16)0.81354 (14)0.54587 (8)0.0292 (3)
N10.50499 (19)0.96203 (15)0.36249 (9)0.0256 (4)
N20.77616 (19)0.89426 (14)0.42525 (9)0.0241 (4)
C110.3151 (2)0.76229 (18)0.38023 (11)0.0255 (4)
C120.2143 (3)0.6677 (2)0.38226 (12)0.0329 (5)
H120.24250.60460.41420.039*
C130.0748 (3)0.6657 (2)0.33826 (13)0.0374 (6)
H130.00620.60250.34130.045*
C140.0334 (3)0.7561 (2)0.28908 (12)0.0362 (5)
H140.06250.75400.25870.043*
C150.1313 (2)0.8470 (2)0.28506 (12)0.0328 (5)
H150.10360.90740.25100.039*
C160.2732 (2)0.85321 (19)0.33048 (11)0.0274 (5)
C170.3830 (2)0.94051 (19)0.31813 (12)0.0299 (5)
H170.36470.98470.27500.036*
C180.6317 (3)1.0275 (2)0.34028 (12)0.0317 (5)
H18A0.65051.09990.36900.038*
H18B0.60911.04870.28880.038*
C210.8128 (2)0.79353 (18)0.57183 (11)0.0267 (4)
C220.8487 (3)0.7483 (2)0.64094 (13)0.0370 (6)
H220.76930.73550.66930.044*
C230.9989 (3)0.7218 (2)0.66894 (13)0.0399 (6)
H231.02140.69160.71640.048*
C241.1163 (3)0.7389 (2)0.62846 (13)0.0360 (5)
H241.21850.71800.64720.043*
C251.0835 (2)0.78687 (19)0.56034 (12)0.0311 (5)
H251.16450.80060.53300.037*
C260.9329 (2)0.81553 (18)0.53108 (11)0.0248 (4)
C270.9073 (2)0.86562 (18)0.45940 (11)0.0251 (4)
H270.99460.87810.43600.030*
C280.7706 (2)0.9466 (2)0.35350 (11)0.0303 (5)
H28A0.76200.88460.31640.036*
H28B0.86570.99130.35070.036*
C10.6290 (3)0.54038 (19)0.40993 (12)0.0301 (5)
H10.56730.60490.42730.036*
Cl10.81195 (7)0.54170 (5)0.46134 (3)0.04022 (16)
Cl20.53362 (6)0.40740 (5)0.42008 (3)0.03615 (15)
Cl30.64366 (8)0.56598 (6)0.31832 (3)0.04712 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.01996 (19)0.0259 (2)0.02059 (19)0.00184 (14)0.00518 (14)0.00209 (14)
O30.0203 (7)0.0296 (8)0.0263 (8)0.0016 (6)0.0078 (6)0.0015 (6)
O10.0258 (7)0.0272 (8)0.0259 (8)0.0027 (6)0.0008 (6)0.0007 (6)
O20.0211 (7)0.0387 (9)0.0284 (8)0.0015 (6)0.0051 (6)0.0092 (6)
N10.0260 (9)0.0274 (9)0.0241 (9)0.0040 (7)0.0056 (7)0.0017 (7)
N20.0263 (9)0.0240 (9)0.0231 (9)0.0030 (7)0.0078 (7)0.0001 (7)
C110.0239 (10)0.0294 (11)0.0234 (10)0.0043 (8)0.0040 (8)0.0058 (8)
C120.0357 (12)0.0347 (12)0.0282 (12)0.0003 (10)0.0047 (10)0.0015 (9)
C130.0327 (12)0.0462 (14)0.0341 (13)0.0095 (11)0.0074 (10)0.0124 (11)
C140.0254 (11)0.0503 (15)0.0311 (12)0.0020 (10)0.0017 (9)0.0127 (11)
C150.0306 (12)0.0409 (13)0.0259 (11)0.0104 (10)0.0012 (9)0.0045 (10)
C160.0269 (11)0.0331 (11)0.0226 (10)0.0058 (9)0.0047 (8)0.0036 (9)
C170.0322 (12)0.0334 (12)0.0238 (11)0.0072 (9)0.0031 (9)0.0042 (9)
C180.0347 (12)0.0344 (12)0.0273 (11)0.0004 (10)0.0087 (9)0.0088 (9)
C210.0239 (10)0.0249 (11)0.0304 (11)0.0028 (8)0.0014 (9)0.0023 (8)
C220.0295 (12)0.0474 (14)0.0341 (13)0.0033 (10)0.0046 (10)0.0141 (10)
C230.0377 (13)0.0441 (14)0.0350 (13)0.0075 (11)0.0051 (10)0.0141 (11)
C240.0240 (11)0.0355 (13)0.0453 (14)0.0017 (9)0.0059 (10)0.0028 (10)
C250.0240 (11)0.0334 (12)0.0351 (12)0.0017 (9)0.0018 (9)0.0044 (10)
C260.0246 (10)0.0223 (10)0.0275 (11)0.0019 (8)0.0038 (8)0.0032 (8)
C270.0229 (10)0.0260 (10)0.0276 (11)0.0009 (8)0.0078 (8)0.0054 (8)
C280.0296 (11)0.0376 (12)0.0260 (11)0.0025 (9)0.0115 (9)0.0028 (9)
C10.0340 (12)0.0290 (11)0.0280 (11)0.0003 (9)0.0070 (9)0.0014 (9)
Cl10.0384 (3)0.0407 (3)0.0393 (3)0.0079 (3)0.0021 (3)0.0001 (2)
Cl20.0354 (3)0.0328 (3)0.0417 (3)0.0068 (2)0.0105 (2)0.0009 (2)
Cl30.0518 (4)0.0621 (4)0.0276 (3)0.0147 (3)0.0063 (3)0.0046 (3)
Geometric parameters (Å, º) top
Ti1—O31.8029 (14)C16—C171.433 (3)
Ti1—O21.8760 (15)C17—H170.9500
Ti1—O3i1.9029 (15)C18—C281.527 (3)
Ti1—O11.9664 (15)C18—H18A0.9900
Ti1—N12.1502 (17)C18—H18B0.9900
Ti1—N22.2555 (17)C21—C221.391 (3)
Ti1—Ti1i2.7794 (8)C21—C261.415 (3)
O3—Ti1i1.9029 (15)C22—C231.386 (3)
O1—C111.328 (2)C22—H220.9500
O2—C211.331 (2)C23—C241.382 (3)
N1—C171.287 (3)C23—H230.9500
N1—C181.455 (3)C24—C251.384 (3)
N2—C271.282 (3)C24—H240.9500
N2—C281.470 (3)C25—C261.401 (3)
C11—C121.405 (3)C25—H250.9500
C11—C161.413 (3)C26—C271.451 (3)
C12—C131.380 (3)C27—H270.9500
C12—H120.9500C28—H28A0.9900
C13—C141.401 (4)C28—H28B0.9900
C13—H130.9500C1—Cl11.756 (2)
C14—C151.361 (3)C1—Cl21.764 (2)
C14—H140.9500C1—Cl31.768 (2)
C15—C161.411 (3)C1—H11.0000
C15—H150.9500
O3—Ti1—O2106.51 (7)N1—C17—C16123.4 (2)
O3—Ti1—O3i82.86 (6)N1—C17—H17118.3
O2—Ti1—O3i101.09 (7)C16—C17—H17118.3
O3—Ti1—O192.06 (6)N1—C18—C28105.69 (17)
O2—Ti1—O195.38 (6)N1—C18—H18A110.6
O3i—Ti1—O1163.53 (6)C28—C18—H18A110.6
O3—Ti1—N199.33 (7)N1—C18—H18B110.6
O2—Ti1—N1153.83 (7)C28—C18—H18B110.6
O3i—Ti1—N185.98 (6)H18A—C18—H18B108.7
O1—Ti1—N179.37 (6)O2—C21—C22119.04 (19)
O3—Ti1—N2163.69 (6)O2—C21—C26122.08 (19)
O2—Ti1—N282.82 (6)C22—C21—C26118.87 (19)
O3i—Ti1—N282.20 (6)C23—C22—C21120.9 (2)
O1—Ti1—N2100.49 (6)C23—C22—H22119.6
N1—Ti1—N273.13 (6)C21—C22—H22119.6
Ti1—O3—Ti1i97.15 (6)C24—C23—C22120.6 (2)
C11—O1—Ti1126.58 (13)C24—C23—H23119.7
C21—O2—Ti1138.36 (13)C22—C23—H23119.7
C17—N1—C18121.17 (18)C23—C24—C25119.4 (2)
C17—N1—Ti1125.73 (15)C23—C24—H24120.3
C18—N1—Ti1112.97 (13)C25—C24—H24120.3
C27—N2—C28118.22 (18)C24—C25—C26121.1 (2)
C27—N2—Ti1125.92 (14)C24—C25—H25119.5
C28—N2—Ti1115.12 (13)C26—C25—H25119.5
O1—C11—C12119.60 (19)C25—C26—C21119.08 (19)
O1—C11—C16121.65 (19)C25—C26—C27117.97 (19)
C12—C11—C16118.72 (19)C21—C26—C27122.94 (18)
C13—C12—C11120.6 (2)N2—C27—C26125.07 (19)
C13—C12—H12119.7N2—C27—H27117.5
C11—C12—H12119.7C26—C27—H27117.5
C12—C13—C14120.5 (2)N2—C28—C18108.51 (17)
C12—C13—H13119.7N2—C28—H28A110.0
C14—C13—H13119.7C18—C28—H28A110.0
C15—C14—C13119.7 (2)N2—C28—H28B110.0
C15—C14—H14120.2C18—C28—H28B110.0
C13—C14—H14120.2H28A—C28—H28B108.4
C14—C15—C16121.3 (2)Cl1—C1—Cl2111.23 (12)
C14—C15—H15119.4Cl1—C1—Cl3110.17 (12)
C16—C15—H15119.4Cl2—C1—Cl3110.53 (12)
C15—C16—C11119.2 (2)Cl1—C1—H1108.3
C15—C16—C17119.8 (2)Cl2—C1—H1108.3
C11—C16—C17120.21 (19)Cl3—C1—H1108.3
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O11.002.083.029 (3)157
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O11.002.083.029 (3)157.3
 

Acknowledgements

This work was partially supported by a grant from the President of the Russian Federation to support the research of young Russian scientists and doctors (MD-3634.2012.3).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuchimoto, M. (2001). Bull. Chem. Soc. Jpn, 74, 2101–2105.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaitsev, K. V., Bermeshev, M. V., Samsonov, A. A., Oprunenko, J. F., Churakov, A. V., Howard, J. A. L., Karlov, S. S. & Zaitseva, G. S. (2008). New J. Chem. 32, 1415–1431.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaitsev, K. V., Karlov, S. S., Selina, A. A., Oprunenko, Yu. F., Churakov, A. V., Neumüller, B., Howard, J. A. K. & Zaitseva, G. S. (2006). Eur. J. Inorg. Chem. pp. 1987–1999.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m626-m627
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds