metal-organic compounds
Poly[bis(ethanol)(μ4-2,3,5,6-tetrafluorobenzene-1,4-dicarboxylato)cadmium]
aDepartment of Chemistry, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 156-743, South Korea
*Correspondence e-mail: jaheon@ssu.ac.kr
In the title compound, [Cd(C8F4O4)(C2H5OH)2]n, the CdII cation sits on an inversion centre and is coordinated by six O atoms from four tetrafluorobenzene-1,4-dicarboxylate anions and two ethanol molecules in a distorted octahedral geometry. The anionic ligand is also located on an inversion centre, and connects four CdII cations, generating a two-dimensional polymeric layer parallel to the ab plane. Within the layer, the ethanol molecule links F and O atoms of the nearest anionic ligands via O—H⋯O and O—H⋯F hydrogen bonds. The ethyl group of the ethanol molecule is disordered over two positions with an occupancy ratio of 0.567 (10):0.433 (10).
CCDC reference: 962922
Related literature
For metal-organic frameworks composed of metal ions and 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate (or tetrafluoroterephthalate), see: Chen et al. (2006, 2009); Hulvey, Ayala et al. (2009); Hulvey, Ayala & Cheetham et al. (2009); Hulvey, Falco et al. (2009); Hulvey et al. (2011); Kitaura et al. (2004); MacNeill et al. (2011); Mikhalyova et al. (2011); Seidel et al. (2011); Seidel et al. (2012); Yoon et al. (2007); Yu et al. (2011); Zheng et al. (2008); Zhu et al. (2009).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 962922
10.1107/S1600536813026287/xu5740sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813026287/xu5740Isup2.hkl
The title compound was obtained as colorless plate crystals by a solvothermal reaction between cadmium(II) nitrate tetrahydrate (25 mg) and tetrafluorobenzene-1,4-dicarboxylic acid (12 mg) in ethanol (8 ml)in a Teflon-lined vessel (23 ml) at 353 K and for 2 days.
The ethyl group in ethanol is disordered over two sites with site occupancy factors, 0.56709 (C5 and C6) and 0.43291 (C5A and C6A), respectively. Hydrogen atoms of the ethanol molecule were placed at calculated positions with C—H = 0.99 Å (methylene), C—H = 0.98 Å (methyl) or O—H = 0.85 Å (alcohol) and allowed to ride, with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2Ueq(C,O) for the others.
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Cd(C8F4O4)(C2H6O)2] | Z = 1 |
Mr = 440.61 | F(000) = 216 |
Triclinic, P1 | Dx = 1.978 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8367 (3) Å | Cell parameters from 2269 reflections |
b = 9.0903 (6) Å | θ = 2.4–28.2° |
c = 9.4078 (6) Å | µ = 1.55 mm−1 |
α = 108.091 (1)° | T = 173 K |
β = 100.637 (1)° | Plate, colorless |
γ = 102.275 (1)° | 0.35 × 0.20 × 0.06 mm |
V = 369.95 (4) Å3 |
Bruker SMART APEX CCD diffractometer | 1576 independent reflections |
Radiation source: fine-focus sealed tube | 1569 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
phi and ω scans | θmax = 27.1°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −5→6 |
Tmin = 0.613, Tmax = 0.913 | k = −11→11 |
2308 measured reflections | l = −12→8 |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0317P)2 + 0.1686P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.054 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.40 e Å−3 |
1576 reflections | Δρmin = −0.54 e Å−3 |
131 parameters |
[Cd(C8F4O4)(C2H6O)2] | γ = 102.275 (1)° |
Mr = 440.61 | V = 369.95 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 4.8367 (3) Å | Mo Kα radiation |
b = 9.0903 (6) Å | µ = 1.55 mm−1 |
c = 9.4078 (6) Å | T = 173 K |
α = 108.091 (1)° | 0.35 × 0.20 × 0.06 mm |
β = 100.637 (1)° |
Bruker SMART APEX CCD diffractometer | 1576 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1569 reflections with I > 2σ(I) |
Tmin = 0.613, Tmax = 0.913 | Rint = 0.014 |
2308 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 6 restraints |
wR(F2) = 0.054 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.40 e Å−3 |
1576 reflections | Δρmin = −0.54 e Å−3 |
131 parameters |
Geometry. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 1.0000 | 0.5000 | 1.0000 | 0.02063 (9) | |
F1 | 0.1389 (4) | 0.24768 (17) | 1.27515 (16) | 0.0358 (3) | |
F2 | 0.2660 (3) | 0.01945 (17) | 0.77434 (17) | 0.0349 (3) | |
O1 | 0.6687 (3) | 0.28942 (19) | 1.0084 (2) | 0.0271 (3) | |
O2 | 0.3899 (3) | 0.43185 (17) | 1.12102 (18) | 0.0227 (3) | |
C1 | 0.4446 (4) | 0.3017 (2) | 1.0543 (2) | 0.0205 (4) | |
C2 | 0.2191 (4) | 0.1450 (2) | 1.0267 (2) | 0.0194 (4) | |
C3 | 0.0738 (5) | 0.1268 (3) | 1.1375 (2) | 0.0226 (4) | |
C4 | 0.1397 (5) | 0.0137 (3) | 0.8888 (3) | 0.0219 (4) | |
O3 | 1.0823 (4) | 0.3384 (2) | 0.7802 (2) | 0.0327 (4) | |
H3OA | 1.249 (5) | 0.393 (5) | 0.781 (5) | 0.039* | 0.567 (10) |
H3OB | 1.137 (15) | 0.267 (5) | 0.809 (5) | 0.039* | 0.433 (10) |
C5 | 0.8671 (16) | 0.2366 (7) | 0.6350 (7) | 0.055 (2) | 0.567 (10) |
H5A | 0.6914 | 0.1769 | 0.6553 | 0.065* | 0.567 (10) |
H5B | 0.9502 | 0.1568 | 0.5726 | 0.065* | 0.567 (10) |
C6 | 0.783 (2) | 0.3392 (10) | 0.5484 (8) | 0.094 (4) | 0.567 (10) |
H6A | 0.6335 | 0.2711 | 0.4509 | 0.141* | 0.567 (10) |
H6B | 0.9566 | 0.3951 | 0.5257 | 0.141* | 0.567 (10) |
H6C | 0.7039 | 0.4190 | 0.6115 | 0.141* | 0.567 (10) |
C5A | 0.9372 (18) | 0.3012 (15) | 0.6188 (7) | 0.064 (3) | 0.433 (10) |
H5AA | 0.9215 | 0.4015 | 0.6017 | 0.076* | 0.433 (10) |
H5AB | 1.0524 | 0.2508 | 0.5514 | 0.076* | 0.433 (10) |
C6A | 0.6405 (16) | 0.1883 (14) | 0.5801 (9) | 0.077 (4) | 0.433 (10) |
H6AA | 0.5410 | 0.1599 | 0.4705 | 0.116* | 0.433 (10) |
H6AB | 0.5261 | 0.2403 | 0.6452 | 0.116* | 0.433 (10) |
H6AC | 0.6579 | 0.0902 | 0.5990 | 0.116* | 0.433 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01309 (12) | 0.01499 (12) | 0.03701 (14) | 0.00397 (8) | 0.01226 (8) | 0.01066 (9) |
F1 | 0.0477 (9) | 0.0235 (7) | 0.0292 (7) | −0.0016 (6) | 0.0166 (6) | 0.0042 (6) |
F2 | 0.0434 (8) | 0.0268 (7) | 0.0387 (7) | 0.0039 (6) | 0.0284 (6) | 0.0117 (6) |
O1 | 0.0160 (7) | 0.0204 (8) | 0.0512 (10) | 0.0062 (6) | 0.0155 (7) | 0.0174 (7) |
O2 | 0.0184 (7) | 0.0165 (7) | 0.0331 (8) | 0.0035 (6) | 0.0083 (6) | 0.0094 (6) |
C1 | 0.0137 (9) | 0.0186 (10) | 0.0310 (10) | 0.0029 (7) | 0.0061 (7) | 0.0127 (8) |
C2 | 0.0128 (8) | 0.0175 (9) | 0.0320 (10) | 0.0050 (7) | 0.0081 (7) | 0.0131 (8) |
C3 | 0.0214 (10) | 0.0188 (10) | 0.0273 (10) | 0.0045 (8) | 0.0079 (8) | 0.0079 (8) |
C4 | 0.0196 (10) | 0.0219 (10) | 0.0302 (10) | 0.0063 (8) | 0.0140 (8) | 0.0132 (8) |
O3 | 0.0258 (8) | 0.0301 (9) | 0.0332 (9) | 0.0046 (7) | 0.0055 (7) | 0.0032 (7) |
C5 | 0.051 (5) | 0.033 (3) | 0.049 (3) | −0.001 (3) | −0.009 (3) | −0.005 (3) |
C6 | 0.109 (7) | 0.128 (8) | 0.040 (4) | 0.079 (7) | 0.002 (4) | 0.004 (4) |
C5A | 0.053 (5) | 0.072 (7) | 0.033 (4) | −0.028 (5) | −0.004 (3) | 0.015 (4) |
C6A | 0.033 (4) | 0.124 (9) | 0.036 (4) | −0.017 (5) | 0.000 (3) | 0.009 (4) |
Cd1—O1i | 2.2526 (15) | O3—C5 | 1.444 (4) |
Cd1—O1 | 2.2526 (15) | O3—C5A | 1.449 (5) |
Cd1—O2ii | 2.3194 (15) | O3—H3OA | 0.850 (5) |
Cd1—O2iii | 2.3194 (15) | O3—H3OB | 0.849 (5) |
Cd1—O3i | 2.2929 (18) | C5—C6 | 1.487 (5) |
Cd1—O3 | 2.2929 (18) | C5—H5A | 0.9900 |
F1—C3 | 1.343 (3) | C5—H5B | 0.9900 |
F2—C4 | 1.342 (2) | C6—H6A | 0.9800 |
O1—C1 | 1.252 (3) | C6—H6B | 0.9800 |
O2—C1 | 1.264 (3) | C6—H6C | 0.9800 |
O2—Cd1iv | 2.3194 (15) | C5A—C6A | 1.481 (5) |
C1—C2 | 1.513 (3) | C5A—H5AA | 0.9900 |
C2—C4 | 1.384 (3) | C5A—H5AB | 0.9900 |
C2—C3 | 1.391 (3) | C6A—H6AA | 0.9800 |
C3—C4v | 1.382 (3) | C6A—H6AB | 0.9800 |
C4—C3v | 1.382 (3) | C6A—H6AC | 0.9800 |
O1i—Cd1—O1 | 180.0 | C5—O3—H3OA | 120 (3) |
O1i—Cd1—O3i | 91.52 (7) | C5A—O3—H3OA | 97 (3) |
O1—Cd1—O3i | 88.48 (6) | Cd1—O3—H3OA | 103 (3) |
O1i—Cd1—O3 | 88.48 (6) | C5—O3—H3OB | 100 (4) |
O1—Cd1—O3 | 91.52 (7) | C5A—O3—H3OB | 120 (3) |
O3i—Cd1—O3 | 180.0 | Cd1—O3—H3OB | 103 (3) |
O1i—Cd1—O2ii | 87.93 (6) | H3OA—O3—H3OB | 98 (6) |
O1—Cd1—O2ii | 92.07 (6) | O3—C5—C6 | 109.1 (5) |
O3i—Cd1—O2ii | 97.63 (6) | O3—C5—H5A | 109.9 |
O3—Cd1—O2ii | 82.37 (6) | C6—C5—H5A | 109.9 |
O1i—Cd1—O2iii | 92.07 (5) | O3—C5—H5B | 109.9 |
O1—Cd1—O2iii | 87.93 (6) | C6—C5—H5B | 109.9 |
O3i—Cd1—O2iii | 82.37 (6) | H5A—C5—H5B | 108.3 |
O3—Cd1—O2iii | 97.63 (6) | C5—C6—H6A | 109.5 |
O2ii—Cd1—O2iii | 180.0 | C5—C6—H6B | 109.5 |
C1—O1—Cd1 | 123.39 (14) | H6A—C6—H6B | 109.5 |
C1—O2—Cd1iv | 120.48 (13) | C5—C6—H6C | 109.5 |
O1—C1—O2 | 126.19 (19) | H6A—C6—H6C | 109.5 |
O1—C1—C2 | 116.46 (19) | H6B—C6—H6C | 109.5 |
O2—C1—C2 | 117.36 (18) | C6A—C5A—O3 | 108.5 (5) |
C4—C2—C3 | 116.23 (19) | C6A—C5A—H5AA | 110.0 |
C4—C2—C1 | 122.13 (19) | O3—C5A—H5AA | 110.0 |
C3—C2—C1 | 121.62 (19) | C6A—C5A—H5AB | 110.0 |
F1—C3—C4v | 117.7 (2) | O3—C5A—H5AB | 110.0 |
F1—C3—C2 | 120.24 (19) | H5AA—C5A—H5AB | 108.4 |
C4v—C3—C2 | 122.0 (2) | C5A—C6A—H6AA | 109.5 |
F2—C4—C3v | 117.5 (2) | C5A—C6A—H6AB | 109.5 |
F2—C4—C2 | 120.81 (19) | H6AA—C6A—H6AB | 109.5 |
C3v—C4—C2 | 121.7 (2) | C5A—C6A—H6AC | 109.5 |
C5—O3—Cd1 | 127.3 (4) | H6AA—C6A—H6AC | 109.5 |
C5A—O3—Cd1 | 129.2 (6) | H6AB—C6A—H6AC | 109.5 |
Cd1—O1—C1—O2 | −10.2 (3) | C4—C2—C3—C4v | −0.6 (3) |
Cd1—O1—C1—C2 | 169.78 (13) | C1—C2—C3—C4v | 177.71 (19) |
Cd1iv—O2—C1—O1 | 113.9 (2) | C3—C2—C4—F2 | 179.70 (19) |
Cd1iv—O2—C1—C2 | −66.1 (2) | C1—C2—C4—F2 | 1.4 (3) |
O1—C1—C2—C4 | −41.9 (3) | C3—C2—C4—C3v | 0.6 (3) |
O2—C1—C2—C4 | 138.0 (2) | C1—C2—C4—C3v | −177.70 (19) |
O1—C1—C2—C3 | 139.9 (2) | C5A—O3—C5—C6 | −28.4 (13) |
O2—C1—C2—C3 | −40.1 (3) | Cd1—O3—C5—C6 | 76.5 (7) |
C4—C2—C3—F1 | 179.42 (19) | C5—O3—C5A—C6A | 23.6 (10) |
C1—C2—C3—F1 | −2.3 (3) | Cd1—O3—C5A—C6A | −73.7 (11) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2; (iv) x−1, y, z; (v) −x, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3OA···O2i | 0.85 (1) | 1.94 (2) | 2.719 (2) | 152 (4) |
O3—H3OB···F2ii | 0.85 (1) | 2.40 (2) | 3.196 (2) | 156 (4) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x+1, y, z. |
Cd1—O1 | 2.2526 (15) | Cd1—O3 | 2.2929 (18) |
Cd1—O2i | 2.3194 (15) |
Symmetry code: (i) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3OA···O2ii | 0.850 (5) | 1.94 (2) | 2.719 (2) | 152 (4) |
O3—H3OB···F2i | 0.849 (5) | 2.402 (18) | 3.196 (2) | 156 (4) |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+2. |
Acknowledgements
This research was supported by the Ministry of Knowledge Economy (MKE) and the Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology.
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, B., Yang, Y., Zapata, F., Qian, G., Luo, Y., Zhang, J. & Lobkovsky, E. B. (2006). Inorg. Chem. 45, 8882–8886. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chen, S.-C., Zhang, Z.-H., Chen, Q., Gao, H.-B., Liu, Q., He, M.-Y. & Du, M. (2009). Inorg. Chem. Commun. 12, 835–838. Web of Science CSD CrossRef CAS Google Scholar
Hulvey, Z., Ayala, E. & Cheetham, A. K. (2009). Z. Anorg. Allg. Chem. 635, 1753–1757. Web of Science CSD CrossRef CAS Google Scholar
Hulvey, Z., Ayala, E., Furman, J. D., Forster, P. M. & Cheetham, A. K. (2009). Cryst. Growth Des. 9, 4759–4765. Web of Science CSD CrossRef CAS Google Scholar
Hulvey, Z., Falco, E. H. L., Eckert, J. & Cheetham, A. K. (2009). J. Mater. Chem. 19, 4307–4309. Web of Science CSD CrossRef CAS Google Scholar
Hulvey, Z., Sava, D. A., Eckert, J. & Cheetham, A. K. (2011). Inorg. Chem. 50, 403–405. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kitaura, R., Iwahori, F., Matsuda, R., Kitagawa, S., Kubota, Y., Takata, M. & Kobayashi, T. C. (2004). Inorg. Chem. 43, 6522–6524. Web of Science CSD CrossRef PubMed CAS Google Scholar
MacNeill, C. M., Day, C. S., Marts, A., Lachgar, A. & Noftle, R. E. (2011). Inorg. Chim. Acta, 365, 196–203. Web of Science CSD CrossRef CAS Google Scholar
Mikhalyova, E. A., Kolotilov, S. V., Zeller, M., Thompson, L. K., Addison, A. W., Pavlishchuk, V. V. & Hunter, A. D. (2011). Dalton Trans. 40, 10989–10996. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seidel, C., Ahlers, R. & Ruschewitz, U. (2011). Cryst. Growth Des. 11, 5053–5063. Web of Science CSD CrossRef CAS Google Scholar
Seidel, C., Lorbeer, C., Cybinska, J., Mudring, A.-V. & Ruschewitz, U. (2012). Inorg. Chem. 51, 4679–4688. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoon, J. H., Choi, S. B., Oh, Y. J., Seo, M. J., Jhon, Y. H., Lee, T.-B., Kim, D., Choi, S. H. & Kim, J. (2007). Catal. Today, 120, 324–329. Web of Science CSD CrossRef CAS Google Scholar
Yu, J., Zhang, Y.-F., Sun, F.-A. & Chen, Q. (2011). Acta Cryst. E67, m527–m528. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zheng, C.-G., Hong, J.-Q., Zhang, J. & Wang, C. (2008). Acta Cryst. E64, m879. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, E., Liu, Q., Chen, Q., He, M., Chen, S., Zhang, Z. & Huang, H. (2009). J. Coord. Chem. 62, 2449–2456. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We reported previously a metal-organic framework (MOF) composed of iron ions and 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate (or tetrafluoroterephthalate) linkers (Yoon et al., 2007). The title compound in this work was obtained in the course of making a new MOF using cadmium ion with the same organic linker. However, unlike other MOFs prepared through solvothermal reactions in common amine solvent such as N,N-dimethylformamide, the title compound could be obtained as single crystals in hot ethanol.