metal-organic compounds
(2,2′-Bipyridine-κ2N,N′)bis(nitrato-κ2O,O′)copper(II)
aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
*Correspondence e-mail: kjf416@163.com
In the title complex, [Cu(NO3)2(C10H8N2)], the CuII cation is chelated by two nitrate anions and by one 2,2′-bipyridine ligand in a distorted N2O4 octahedral geometry. The dihedral angle between the pyridine rings is 1.92 (11)°. In the crystal, π–π stacking between parallel pyridine rings of adjacent complex molecules is observed, the centroid–centroid distance being 3.6788 (19) Å. Weak C—H⋯O hydrogen bonds further link the molecules into a three-dimensional supramolecular architecture.
CCDC reference: 966337
Related literature
For applications of copper(II) complexes in magnetochemistry, see: Garribba et al. (2000); Mukherjee (2000).
Experimental
Crystal data
|
|
|
Data collection: CrystalStructure (Rigaku/MSC, 2006); cell CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 966337
10.1107/S1600536813028201/xu5745sup1.cif
contains datablocks I, new_global_publ_block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028201/xu5745Isup2.hkl
A solution of copper(II) nitrate hydrate (0.2 mmol, 48 mg) in methanol (2 ml) was mixed with 2 ml of an aqueous solution of p-aminobenzoic acid (0.1 mmol, 17 mg) in presence of 2,2-bipyridine (0.1 mmol, 16 mg). The resulting mixture was allowed to evaporate for one week to yield a blue crystal, suitable to X-ray work.
H atoms were geometrically fixed and allowed to ride on the non-H atom with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C).
Data collection: CrystalStructure (Rigaku/MSC, 2006); cell
CrystalStructure (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(NO3)2(C10H8N2)] | F(000) = 692 |
Mr = 343.74 | Dx = 1.766 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2955 reflections |
a = 8.4282 (17) Å | θ = 3.0–27.5° |
b = 11.132 (2) Å | µ = 1.73 mm−1 |
c = 16.140 (5) Å | T = 293 K |
β = 121.39 (2)° | Block, blue |
V = 1292.7 (5) Å3 | 0.30 × 0.28 × 0.25 mm |
Z = 4 |
Rigaku MM007-HF CCD (Saturn 724+) diffractometer | 2237 reflections with I > 2σ(I) |
Radiation source: rotating anode | Rint = 0.038 |
Confocal monochromator | θmax = 27.5°, θmin = 3.0° |
ω scans at fixed χ = 45° | h = −10→10 |
12333 measured reflections | k = −14→14 |
2955 independent reflections | l = −20→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.050P)2 + 0.3548P] where P = (Fo2 + 2Fc2)/3 |
2955 reflections | (Δ/σ)max = 0.002 |
190 parameters | Δρmax = 0.44 e Å−3 |
7 restraints | Δρmin = −0.45 e Å−3 |
[Cu(NO3)2(C10H8N2)] | V = 1292.7 (5) Å3 |
Mr = 343.74 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.4282 (17) Å | µ = 1.73 mm−1 |
b = 11.132 (2) Å | T = 293 K |
c = 16.140 (5) Å | 0.30 × 0.28 × 0.25 mm |
β = 121.39 (2)° |
Rigaku MM007-HF CCD (Saturn 724+) diffractometer | 2237 reflections with I > 2σ(I) |
12333 measured reflections | Rint = 0.038 |
2955 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | 7 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.44 e Å−3 |
2955 reflections | Δρmin = −0.45 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.85476 (4) | 0.75682 (3) | 1.00645 (2) | 0.04079 (13) | |
N1 | 0.6302 (3) | 0.85640 (18) | 0.93496 (14) | 0.0382 (5) | |
N2 | 0.7092 (3) | 0.68048 (19) | 1.05583 (16) | 0.0432 (5) | |
N3 | 1.1760 (3) | 0.7822 (2) | 1.16329 (17) | 0.0455 (5) | |
N4 | 0.9216 (4) | 0.7086 (3) | 0.8692 (2) | 0.0665 (6) | |
O1 | 1.0825 (3) | 0.87642 (17) | 1.14048 (15) | 0.0557 (5) | |
O2 | 1.0982 (3) | 0.68978 (17) | 1.10938 (14) | 0.0517 (5) | |
O3 | 1.3353 (3) | 0.7747 (2) | 1.23263 (17) | 0.0651 (6) | |
O4 | 0.8432 (3) | 0.6241 (2) | 0.88330 (17) | 0.0742 (6) | |
O5 | 0.9581 (3) | 0.80226 (19) | 0.92397 (15) | 0.0522 (5) | |
O6 | 0.9683 (4) | 0.7076 (3) | 0.8099 (2) | 0.0924 (9) | |
C1 | 0.6062 (4) | 0.9480 (2) | 0.87584 (19) | 0.0459 (6) | |
H1 | 0.7007 | 0.9662 | 0.8643 | 0.055* | |
C2 | 0.4471 (4) | 1.0162 (3) | 0.83155 (19) | 0.0496 (7) | |
H2 | 0.4345 | 1.0798 | 0.7912 | 0.059* | |
C3 | 0.3067 (4) | 0.9886 (3) | 0.8480 (2) | 0.0500 (7) | |
H3 | 0.1970 | 1.0328 | 0.8182 | 0.060* | |
C4 | 0.3301 (4) | 0.8943 (2) | 0.90937 (19) | 0.0438 (6) | |
H4 | 0.2369 | 0.8749 | 0.9216 | 0.053* | |
C5 | 0.4940 (3) | 0.8294 (2) | 0.95232 (17) | 0.0365 (5) | |
C6 | 0.5380 (4) | 0.7277 (2) | 1.02006 (18) | 0.0377 (5) | |
C7 | 0.4185 (4) | 0.6821 (3) | 1.0464 (2) | 0.0491 (7) | |
H7 | 0.3015 | 0.7159 | 1.0222 | 0.059* | |
C8 | 0.4744 (5) | 0.5857 (3) | 1.1093 (2) | 0.0584 (8) | |
H8 | 0.3950 | 0.5538 | 1.1275 | 0.070* | |
C9 | 0.6479 (5) | 0.5371 (3) | 1.1448 (2) | 0.0634 (8) | |
H9 | 0.6870 | 0.4716 | 1.1867 | 0.076* | |
C10 | 0.7635 (4) | 0.5873 (3) | 1.1170 (2) | 0.0557 (7) | |
H10 | 0.8818 | 0.5555 | 1.1414 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03299 (19) | 0.0431 (2) | 0.0462 (2) | −0.00251 (13) | 0.02050 (16) | −0.00080 (13) |
N1 | 0.0358 (11) | 0.0423 (10) | 0.0365 (11) | −0.0015 (9) | 0.0188 (10) | 0.0014 (9) |
N2 | 0.0410 (13) | 0.0437 (12) | 0.0431 (12) | −0.0026 (9) | 0.0206 (11) | 0.0018 (10) |
N3 | 0.0402 (13) | 0.0523 (13) | 0.0418 (13) | −0.0059 (10) | 0.0199 (11) | −0.0011 (10) |
N4 | 0.0721 (14) | 0.0727 (13) | 0.0619 (12) | −0.0265 (11) | 0.0400 (11) | −0.0237 (11) |
O1 | 0.0553 (13) | 0.0447 (11) | 0.0573 (12) | 0.0011 (9) | 0.0224 (11) | −0.0035 (9) |
O2 | 0.0386 (11) | 0.0447 (10) | 0.0592 (12) | −0.0014 (8) | 0.0167 (10) | −0.0086 (9) |
O3 | 0.0428 (13) | 0.0776 (15) | 0.0510 (13) | −0.0054 (10) | 0.0077 (11) | 0.0021 (11) |
O4 | 0.0794 (14) | 0.0738 (12) | 0.0672 (12) | −0.0313 (10) | 0.0366 (11) | −0.0219 (10) |
O5 | 0.0488 (12) | 0.0558 (11) | 0.0627 (13) | −0.0111 (9) | 0.0364 (11) | −0.0134 (10) |
O6 | 0.107 (2) | 0.119 (2) | 0.0800 (19) | −0.0350 (19) | 0.0689 (19) | −0.0397 (17) |
C1 | 0.0490 (16) | 0.0491 (15) | 0.0432 (15) | −0.0057 (12) | 0.0266 (14) | 0.0033 (12) |
C2 | 0.0590 (18) | 0.0460 (15) | 0.0401 (15) | 0.0019 (13) | 0.0234 (14) | 0.0079 (12) |
C3 | 0.0449 (16) | 0.0477 (15) | 0.0456 (15) | 0.0049 (12) | 0.0152 (14) | −0.0002 (13) |
C4 | 0.0369 (14) | 0.0487 (14) | 0.0440 (14) | −0.0026 (11) | 0.0198 (12) | −0.0014 (12) |
C5 | 0.0343 (13) | 0.0420 (13) | 0.0314 (12) | −0.0063 (10) | 0.0158 (11) | −0.0053 (10) |
C6 | 0.0388 (14) | 0.0393 (12) | 0.0342 (13) | −0.0046 (10) | 0.0185 (11) | −0.0013 (10) |
C7 | 0.0463 (16) | 0.0550 (16) | 0.0514 (16) | −0.0056 (13) | 0.0293 (14) | 0.0022 (13) |
C8 | 0.070 (2) | 0.0595 (17) | 0.0580 (19) | −0.0072 (16) | 0.0421 (18) | 0.0075 (15) |
C9 | 0.081 (2) | 0.0558 (17) | 0.0531 (18) | −0.0018 (16) | 0.0347 (18) | 0.0170 (15) |
C10 | 0.0571 (19) | 0.0517 (16) | 0.0519 (17) | 0.0059 (14) | 0.0239 (15) | 0.0120 (14) |
Cu1—N1 | 1.966 (2) | C1—H1 | 0.9300 |
Cu1—N2 | 1.970 (2) | C2—C3 | 1.376 (4) |
Cu1—O1 | 2.411 (2) | C2—H2 | 0.9300 |
Cu1—O2 | 1.994 (2) | C3—C4 | 1.385 (4) |
Cu1—O4 | 2.437 (2) | C3—H3 | 0.9300 |
Cu1—O5 | 1.9987 (19) | C4—C5 | 1.383 (3) |
N1—C1 | 1.338 (3) | C4—H4 | 0.9300 |
N1—C5 | 1.350 (3) | C5—C6 | 1.480 (3) |
N2—C10 | 1.337 (3) | C6—C7 | 1.378 (3) |
N2—C6 | 1.351 (3) | C7—C8 | 1.380 (4) |
N3—O3 | 1.223 (3) | C7—H7 | 0.9300 |
N3—O1 | 1.247 (3) | C8—C9 | 1.374 (4) |
N3—O2 | 1.285 (3) | C8—H8 | 0.9300 |
N4—O6 | 1.210 (3) | C9—C10 | 1.386 (4) |
N4—O4 | 1.236 (3) | C9—H9 | 0.9300 |
N4—O5 | 1.296 (3) | C10—H10 | 0.9300 |
C1—C2 | 1.373 (4) | ||
N1—Cu1—N2 | 82.47 (9) | N1—C1—C2 | 122.5 (2) |
N1—Cu1—O2 | 163.34 (8) | N1—C1—H1 | 118.8 |
N2—Cu1—O2 | 95.09 (9) | C2—C1—H1 | 118.8 |
N1—Cu1—O5 | 94.96 (9) | C1—C2—C3 | 118.7 (3) |
N2—Cu1—O5 | 163.31 (9) | C1—C2—H2 | 120.6 |
O2—Cu1—O5 | 91.92 (9) | C3—C2—H2 | 120.6 |
N1—Cu1—O1 | 106.76 (8) | C2—C3—C4 | 119.4 (3) |
N2—Cu1—O1 | 104.35 (8) | C2—C3—H3 | 120.3 |
O2—Cu1—O1 | 57.74 (8) | C4—C3—H3 | 120.3 |
O5—Cu1—O1 | 92.20 (8) | C5—C4—C3 | 119.2 (2) |
N1—Cu1—O4 | 104.21 (9) | C5—C4—H4 | 120.4 |
N2—Cu1—O4 | 107.43 (8) | C3—C4—H4 | 120.4 |
O2—Cu1—O4 | 92.26 (9) | N1—C5—C4 | 121.0 (2) |
O5—Cu1—O4 | 57.07 (8) | N1—C5—C6 | 114.3 (2) |
O1—Cu1—O4 | 137.86 (8) | C4—C5—C6 | 124.8 (2) |
C1—N1—C5 | 119.2 (2) | N2—C6—C7 | 121.0 (2) |
C1—N1—Cu1 | 126.18 (17) | N2—C6—C5 | 114.4 (2) |
C5—N1—Cu1 | 114.53 (16) | C7—C6—C5 | 124.6 (2) |
C10—N2—C6 | 119.7 (2) | C6—C7—C8 | 119.3 (3) |
C10—N2—Cu1 | 126.0 (2) | C6—C7—H7 | 120.4 |
C6—N2—Cu1 | 114.28 (17) | C8—C7—H7 | 120.4 |
O3—N3—O1 | 123.4 (3) | C9—C8—C7 | 119.6 (3) |
O3—N3—O2 | 119.6 (2) | C9—C8—H8 | 120.2 |
O1—N3—O2 | 116.9 (2) | C7—C8—H8 | 120.2 |
O6—N4—O4 | 124.3 (3) | C8—C9—C10 | 118.8 (3) |
O6—N4—O5 | 119.2 (3) | C8—C9—H9 | 120.6 |
O4—N4—O5 | 116.5 (2) | C10—C9—H9 | 120.6 |
N3—O1—Cu1 | 83.43 (15) | N2—C10—C9 | 121.6 (3) |
N3—O2—Cu1 | 101.85 (16) | N2—C10—H10 | 119.2 |
N4—O4—Cu1 | 83.75 (17) | C9—C10—H10 | 119.2 |
N4—O5—Cu1 | 102.68 (17) | ||
N2—Cu1—N1—C1 | 178.0 (2) | N2—Cu1—O4—N4 | 172.5 (2) |
O2—Cu1—N1—C1 | 95.5 (3) | O2—Cu1—O4—N4 | −91.5 (2) |
O5—Cu1—N1—C1 | −18.6 (2) | O5—Cu1—O4—N4 | −0.64 (19) |
O1—Cu1—N1—C1 | 75.2 (2) | O1—Cu1—O4—N4 | −50.3 (3) |
O4—Cu1—N1—C1 | −75.8 (2) | O6—N4—O5—Cu1 | −179.7 (3) |
N2—Cu1—N1—C5 | 0.66 (17) | O4—N4—O5—Cu1 | −1.1 (3) |
O2—Cu1—N1—C5 | −81.9 (3) | N1—Cu1—O5—N4 | −103.1 (2) |
O5—Cu1—N1—C5 | 164.07 (17) | N2—Cu1—O5—N4 | −22.8 (4) |
O1—Cu1—N1—C5 | −102.12 (17) | O2—Cu1—O5—N4 | 92.1 (2) |
O4—Cu1—N1—C5 | 106.82 (17) | O1—Cu1—O5—N4 | 149.85 (19) |
N1—Cu1—N2—C10 | 178.3 (2) | O4—Cu1—O5—N4 | 0.62 (19) |
O2—Cu1—N2—C10 | −18.3 (2) | C5—N1—C1—C2 | −0.1 (4) |
O5—Cu1—N2—C10 | 96.2 (4) | Cu1—N1—C1—C2 | −177.4 (2) |
O1—Cu1—N2—C10 | −76.3 (2) | N1—C1—C2—C3 | −0.5 (4) |
O4—Cu1—N2—C10 | 75.7 (2) | C1—C2—C3—C4 | 0.8 (4) |
N1—Cu1—N2—C6 | 0.38 (18) | C2—C3—C4—C5 | −0.4 (4) |
O2—Cu1—N2—C6 | 163.80 (18) | C1—N1—C5—C4 | 0.5 (3) |
O5—Cu1—N2—C6 | −81.7 (4) | Cu1—N1—C5—C4 | 178.04 (18) |
O1—Cu1—N2—C6 | 105.83 (18) | C1—N1—C5—C6 | −179.0 (2) |
O4—Cu1—N2—C6 | −102.22 (18) | Cu1—N1—C5—C6 | −1.5 (3) |
O3—N3—O1—Cu1 | 176.9 (2) | C3—C4—C5—N1 | −0.2 (4) |
O2—N3—O1—Cu1 | −2.4 (2) | C3—C4—C5—C6 | 179.3 (2) |
N1—Cu1—O1—N3 | 174.92 (14) | C10—N2—C6—C7 | 0.7 (4) |
N2—Cu1—O1—N3 | 88.61 (15) | Cu1—N2—C6—C7 | 178.7 (2) |
O2—Cu1—O1—N3 | 1.66 (14) | C10—N2—C6—C5 | −179.3 (2) |
O5—Cu1—O1—N3 | −89.22 (15) | Cu1—N2—C6—C5 | −1.3 (3) |
O4—Cu1—O1—N3 | −49.43 (19) | N1—C5—C6—N2 | 1.8 (3) |
O3—N3—O2—Cu1 | −176.4 (2) | C4—C5—C6—N2 | −177.7 (2) |
O1—N3—O2—Cu1 | 3.0 (2) | N1—C5—C6—C7 | −178.2 (2) |
N1—Cu1—O2—N3 | −24.7 (4) | C4—C5—C6—C7 | 2.3 (4) |
N2—Cu1—O2—N3 | −105.41 (15) | N2—C6—C7—C8 | −0.9 (4) |
O5—Cu1—O2—N3 | 89.75 (15) | C5—C6—C7—C8 | 179.1 (3) |
O1—Cu1—O2—N3 | −1.63 (13) | C6—C7—C8—C9 | 0.3 (5) |
O4—Cu1—O2—N3 | 146.86 (15) | C7—C8—C9—C10 | 0.6 (5) |
O6—N4—O4—Cu1 | 179.4 (4) | C6—N2—C10—C9 | 0.2 (4) |
O5—N4—O4—Cu1 | 0.9 (3) | Cu1—N2—C10—C9 | −177.6 (2) |
N1—Cu1—O4—N4 | 86.1 (2) | C8—C9—C10—N2 | −0.8 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.93 | 2.56 | 3.390 (3) | 149 |
C4—H4···O5ii | 0.93 | 2.50 | 3.422 (3) | 169 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) x−1, y, z. |
Acknowledgements
The work was supported by the Scientific Research Foundation of Yunnan Provincial Department of Education, China (grant No. 22012Z019).
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Garribba, E., Micera, G., Sanna, D. & Strinna-Erre, L. (2000). Inorg. Chim. Acta, 6, 753–756. Google Scholar
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS Google Scholar
Rigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Copper(II) is one of the most important transition metals in magnetochemistry (Garribba et al. 2000; Mukherjee, 2000). Herein we report the synthesis and structure of the title copper(II) complex with 2,2'-bipyridine.
As shown in Fig.1, the Cu(II) atom is chelated by two N atoms of 2,2'-bipyridine and four O atoms of from two nitrate anions, forming an irregular octahedral coordination geometry. The Cu—N bond distances are 1.9661 (19) Å and 1.9691 (18) Å with basal angle of 82.48 (8). The apical positions are occupied by O atoms of the two different bis-chelating nitrate anions [Cu—O distances of 2.4100 (19) Å, 1.9948 (18) Å, 2.28 (3) Å and 1.9983 (16) Å) with an angle of 57.76 (7), 91.89 (8) and 55.9 (7). The dihedral angle between the planes of the two pyridine rings is 1.92 (11)°. Further, π–π stacking interactions with a centroids separation of 3.6788 (19) Å between pyridine rings and weak C1—H1···O1 and C4—H4···O5 hydrogen bonds link the molecules into the three dimensional supramolecular structure in Fig. 2 and Fig. 3.