organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1687-o1688

4-Methyl-N-(4-nitro­benzyl­­idene)piperazin-1-amine

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 16 October 2013; accepted 16 October 2013; online 23 October 2013)

In the title compound, C12H16N4O2, the piperazine ring is in a slightly distorted chair conformation. In the mol­ecule, the mean plane of the nitro group is twisted by 8.0 (3)° from that of the benzene ring. Also, the mean plane of the 2-nitro­benzyl ring is twisted slightly from that of the piperazine ring, with an N—N=C—C torsion angle of −176.24 (11)°. In the crystal, pairs of weak C—H⋯O inter­actions link the mol­ecules into dimers approximately along [010].

Related literature

For the biological activity of Schiff base piperzine derivatives, see: Kharb et al. (2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470-2488.]); Savaliya et al. (2010[Savaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267-271.]); Xu et al. (2009[Xu, R.-B., Xu, X.-Y., Wang, D.-Q., Yang, X.-J. & Li, S. (2009). Acta Cryst. E65, o2997.]); Zhou et al. (2011[Zhou, L.-N., Yan, L., Zhou, H.-L., Yang, Q.-F. & Hu, Q.-L. (2011). Acta Cryst. E67, o100.]). For therapeutic areas related to piperazines as drug mol­ecules, see: Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]); Cai et al. (2009[Cai, J.-L., Lu, Y.-H., Gan, L.-L. & Zhou, C.-H. (2009). Chin. J. Antibiot. 34, 454-462.]); Choudhary et al. (2006[Choudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819-1826.]); Upadhayaya et al. (2004[Upadhayaya, P. S., Sinha, N. & Jain, S. (2004). Bioorg. Med. Chem. 12, 2225-2238.]). For a review of current pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011[Elliott, S. (2011). Drug Test Anal. 3, 430-438]). For the synthesis of related piperazine compounds and their medicinal and pharmaceutical activity, see: Capuano et al. (2002[Capuano, B., Crosby, I. T., Lloyd, E. J. & Taylor, D. A. (2002). Aust. J. Chem. 55, 565-576.]); Contreras et al. (2001[Contreras, J. M., Parrot, I., Sippl, W., Rival, Y. M. & Wermuth, C. G. (2001). J. Med. Chem. 44, 2707-2718.]). For related structures, see: Guo (2007[Guo, M.-L. (2007). Acta Cryst. E63, o1788-o1789.]); Ming-Lin et al. (2007[Ming-Lin, G. & You-Nong, Q. (2007). Acta Cryst. E63, o4641.]); Xu et al. (2012[Xu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S. P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928-932.]); Zhou et al. (2011[Zhou, L.-N., Yan, L., Zhou, H.-L., Yang, Q.-F. & Hu, Q.-L. (2011). Acta Cryst. E67, o100.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N4O2

  • Mr = 248.29

  • Monoclinic, C 2/c

  • a = 27.9353 (14) Å

  • b = 5.9247 (3) Å

  • c = 18.7763 (7) Å

  • β = 126.527 (3)°

  • V = 2497.2 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 173 K

  • 0.38 × 0.32 × 0.22 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.868, Tmax = 1.000

  • 7200 measured reflections

  • 2439 independent reflections

  • 2022 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.02

  • 2439 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.99 2.47 3.4052 (19) 158
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z+2].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Schiff base ligands derived from 1-amino-4-methylpiperazine have attracted interest due to diverse biological activities associated with the piperazine moiety. Schiff base piperazine derivatives have been designed to study their antimicrobial (Savaliya et al., 2010; Kharb et al., 2012)) and antibacterial activity (Xu et al., 2012). In addition, many drugs contain a piperazine ring as part of their molecular structure (Cai et al., 2009). Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006) such as antifungal (Upadhayaya et al., 2004), anti-bacterial, antimalarial activity and as in antipsychotic agents (Choudhary et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives has been recently presented (Elliott, 2011). The synthesis of related piperazine compounds and their medicinal and pharmaceutical activity have also been reported (Contreras et al., 2001; Capuano et al., 2002). The crystal structures of some related compounds, viz., 2-[(4-methylpiperazin-1-yl)iminomethyl]phenol (Guo, 2007), 1,4-bis{3-[4-(dimethylamino)benzylideneamino] propyl}piperazine (Xu et al., 2009), 2-methoxy-4-[(4-methylpiperazin-1-yl)- iminomethyl]phenol (Zhou et al., 2011) and 2,4-dibromo-6- [(4-methylpiperazin-1-yl)iminomethyl]phenol (Ming-Lin et al., 2007) have been reported. In view of the above importance of N-piperazinyl Schiff bases, the title compound, (I), C12H16N4O2 has been synthesized and the crystal structure is reported herin.

In the title compound, (I), the piperazine ring is in a slightly distorted chair conformation with puckering parameters Q, θ, and ϕ = 0.5646Å, 170.8 (5)° and 187.961 (8)° (Cremer & Pople, 1975) (Fig. 1). In the molecule, the mean plane of the nitro group is twisted by 8.0 (3)° from that of the phenyl ring. Also, the mean plane of the 2-nitrobenzyl ring is twisted slightly from that of the piperazine ring with an N1/N2/C5/C6 torsion angle of -176.24 (11)°. Bond lengths are in normal ranges (Allen et al., 1987). Weak C—H···O intermolecular interactions are observed which lead to formation of dimers approximately along [010] and influence crystal packing (Fig. 2).

Related literature top

For the biological activity of Schiff base piperzine derivatives, see: Kharb et al. (2012); Savaliya et al. (2010); Xu et al. (2009); Zhou et al. (2011). For therapeutic areas related to piperazines as drug molecules, see: Bogatcheva et al. (2006); Brockunier et al. (2004); Cai et al. (2009); Choudhary et al. (2006); Upadhayaya et al. (2004). For a review of current pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011). For the synthesis of related piperazine compounds and their medicinal and pharmaceutical activity, see: Capuano et al. (2002); Contreras et al. (2001). For related structures, see: Guo (2007); Ming-Lin et al. (2007); Xu et al. (2012); Zhou et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of o-nitrobenzaldehyde (0.75 g, 0.005 mol) in 10 ml of methanol, an equimolar amount of (1-amino-4-methyl)piperazine (0.57 g, 0.005 mol) is added dropwise with constant stirring. The mixture was refluxed for 8 hours to obtain an orange solution. The solution was evaporated to a small volume at room temperature and allowed to stand. Yellow crystals were formed in one day (m.p.: 358–360 K) and were used as such for x-ray diffraction studies.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me were refined as rotating groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C12H16N4O2 ) showing the labeling scheme with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate weak C—H···O intermolecular intereactions linking the molecules into dimers along [0 1 0]. H atoms not involved in hydrogen bonding have been removed for clarity.
4-Methyl-N-(4-nitrobenzylidene)piperazin-1-amine top
Crystal data top
C12H16N4O2F(000) = 1056
Mr = 248.29Dx = 1.321 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 27.9353 (14) ÅCell parameters from 2934 reflections
b = 5.9247 (3) Åθ = 3.2–72.3°
c = 18.7763 (7) ŵ = 0.77 mm1
β = 126.527 (3)°T = 173 K
V = 2497.2 (2) Å3Irregular, yellow
Z = 80.38 × 0.32 × 0.22 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2439 independent reflections
Radiation source: Enhance (Cu) X-ray Source2022 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.031
ω scansθmax = 72.3°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 3432
Tmin = 0.868, Tmax = 1.000k = 77
7200 measured reflectionsl = 1522
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.9105P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.22 e Å3
2439 reflectionsΔρmin = 0.18 e Å3
165 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00056 (10)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H16N4O2V = 2497.2 (2) Å3
Mr = 248.29Z = 8
Monoclinic, C2/cCu Kα radiation
a = 27.9353 (14) ŵ = 0.77 mm1
b = 5.9247 (3) ÅT = 173 K
c = 18.7763 (7) Å0.38 × 0.32 × 0.22 mm
β = 126.527 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2439 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2022 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 1.000Rint = 0.031
7200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
2439 reflectionsΔρmin = 0.18 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93562 (6)1.1504 (2)1.26970 (8)0.0636 (4)
O20.96924 (5)0.8095 (2)1.29508 (7)0.0509 (3)
N10.60437 (5)0.7685 (2)0.55865 (7)0.0301 (3)
N20.66959 (5)0.80238 (19)0.74619 (7)0.0282 (3)
N30.71366 (5)0.8675 (2)0.83118 (7)0.0290 (3)
N40.93437 (5)0.9567 (3)1.24576 (8)0.0403 (3)
C10.58784 (6)0.9349 (2)0.59774 (9)0.0328 (3)
H1A0.55700.87090.60230.039*
H1B0.57101.07020.55940.039*
C20.64208 (6)1.0007 (2)0.68894 (9)0.0329 (3)
H2A0.67141.07610.68360.039*
H2B0.63021.10900.71600.039*
C30.68086 (6)0.6183 (2)0.70644 (9)0.0311 (3)
H3A0.69280.48160.74380.037*
H3B0.71400.66010.70370.037*
C40.62582 (6)0.5677 (2)0.61410 (9)0.0317 (3)
H4A0.63520.44940.58680.038*
H4B0.59410.50900.61770.038*
C50.75644 (6)0.7311 (2)0.88472 (8)0.0290 (3)
H50.75860.58800.86400.035*
C60.80153 (6)0.7948 (2)0.97695 (9)0.0282 (3)
C70.80100 (6)1.0039 (2)1.01127 (9)0.0317 (3)
H70.77061.11010.97370.038*
C80.84416 (6)1.0572 (3)1.09893 (9)0.0336 (3)
H80.84381.19911.12210.040*
C90.88821 (6)0.8997 (3)1.15268 (9)0.0326 (3)
C100.89029 (6)0.6922 (3)1.12129 (9)0.0344 (3)
H100.92080.58671.15940.041*
C110.84702 (6)0.6411 (2)1.03298 (9)0.0330 (3)
H110.84820.49981.01010.040*
C120.55353 (7)0.7136 (3)0.46826 (9)0.0387 (4)
H12A0.52110.65370.46890.058*
H12B0.56540.60020.44360.058*
H12C0.54000.85020.43170.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0527 (8)0.0698 (9)0.0412 (7)0.0008 (6)0.0132 (6)0.0240 (6)
O20.0326 (6)0.0792 (9)0.0295 (6)0.0096 (6)0.0123 (5)0.0014 (6)
N10.0278 (6)0.0347 (6)0.0256 (6)0.0026 (5)0.0146 (5)0.0031 (5)
N20.0279 (6)0.0289 (6)0.0245 (6)0.0001 (4)0.0138 (5)0.0035 (4)
N30.0278 (6)0.0326 (6)0.0257 (6)0.0038 (5)0.0154 (5)0.0042 (4)
N40.0280 (6)0.0624 (9)0.0287 (6)0.0011 (6)0.0159 (6)0.0066 (6)
C10.0290 (7)0.0327 (7)0.0301 (7)0.0031 (5)0.0140 (6)0.0005 (5)
C20.0335 (7)0.0274 (7)0.0310 (7)0.0027 (5)0.0156 (6)0.0022 (6)
C30.0312 (7)0.0286 (7)0.0284 (7)0.0021 (5)0.0150 (6)0.0031 (5)
C40.0334 (7)0.0291 (7)0.0302 (7)0.0029 (5)0.0177 (6)0.0061 (5)
C50.0291 (7)0.0304 (7)0.0290 (7)0.0023 (5)0.0181 (6)0.0026 (5)
C60.0271 (7)0.0331 (7)0.0278 (7)0.0036 (5)0.0183 (6)0.0010 (5)
C70.0291 (7)0.0354 (7)0.0289 (7)0.0009 (6)0.0163 (6)0.0002 (6)
C80.0325 (7)0.0365 (8)0.0330 (7)0.0035 (6)0.0202 (6)0.0065 (6)
C90.0261 (7)0.0467 (8)0.0264 (7)0.0050 (6)0.0165 (6)0.0041 (6)
C100.0282 (7)0.0437 (8)0.0295 (7)0.0037 (6)0.0161 (6)0.0037 (6)
C110.0325 (7)0.0341 (7)0.0334 (7)0.0004 (6)0.0201 (6)0.0018 (6)
C120.0333 (8)0.0498 (9)0.0265 (7)0.0039 (6)0.0142 (6)0.0052 (6)
Geometric parameters (Å, º) top
O1—N41.2253 (19)C4—H4A0.9900
O2—N41.2219 (18)C4—H4B0.9900
N1—C11.4586 (17)C5—H50.9500
N1—C41.4546 (18)C5—C61.4598 (19)
N1—C121.4608 (17)C6—C71.401 (2)
N2—N31.3682 (15)C6—C111.400 (2)
N2—C21.4639 (17)C7—H70.9500
N2—C31.4580 (16)C7—C81.379 (2)
N3—C51.2889 (18)C8—H80.9500
N4—C91.4657 (18)C8—C91.388 (2)
C1—H1A0.9900C9—C101.379 (2)
C1—H1B0.9900C10—H100.9500
C1—C21.5137 (19)C10—C111.384 (2)
C2—H2A0.9900C11—H110.9500
C2—H2B0.9900C12—H12A0.9800
C3—H3A0.9900C12—H12B0.9800
C3—H3B0.9900C12—H12C0.9800
C3—C41.5122 (18)
C1—N1—C12110.78 (11)C3—C4—H4A109.4
C4—N1—C1108.16 (10)C3—C4—H4B109.4
C4—N1—C12110.55 (11)H4A—C4—H4B108.0
N3—N2—C2110.17 (10)N3—C5—H5119.7
N3—N2—C3119.30 (10)N3—C5—C6120.54 (13)
C3—N2—C2113.80 (10)C6—C5—H5119.7
C5—N3—N2120.39 (12)C7—C6—C5122.44 (13)
O1—N4—C9117.78 (14)C11—C6—C5118.67 (13)
O2—N4—O1123.67 (13)C11—C6—C7118.89 (13)
O2—N4—C9118.55 (14)C6—C7—H7119.6
N1—C1—H1A109.7C8—C7—C6120.72 (14)
N1—C1—H1B109.7C8—C7—H7119.6
N1—C1—C2109.86 (11)C7—C8—H8120.6
H1A—C1—H1B108.2C7—C8—C9118.76 (13)
C2—C1—H1A109.7C9—C8—H8120.6
C2—C1—H1B109.7C8—C9—N4118.83 (13)
N2—C2—C1111.02 (11)C10—C9—N4118.94 (13)
N2—C2—H2A109.4C10—C9—C8122.22 (13)
N2—C2—H2B109.4C9—C10—H10120.7
C1—C2—H2A109.4C9—C10—C11118.56 (13)
C1—C2—H2B109.4C11—C10—H10120.7
H2A—C2—H2B108.0C6—C11—H11119.6
N2—C3—H3A109.5C10—C11—C6120.84 (13)
N2—C3—H3B109.5C10—C11—H11119.6
N2—C3—C4110.69 (11)N1—C12—H12A109.5
H3A—C3—H3B108.1N1—C12—H12B109.5
C4—C3—H3A109.5N1—C12—H12C109.5
C4—C3—H3B109.5H12A—C12—H12B109.5
N1—C4—C3111.29 (11)H12A—C12—H12C109.5
N1—C4—H4A109.4H12B—C12—H12C109.5
N1—C4—H4B109.4
O1—N4—C9—C87.5 (2)C3—N2—N3—C521.56 (18)
O1—N4—C9—C10171.92 (14)C3—N2—C2—C150.72 (15)
O2—N4—C9—C8172.30 (13)C4—N1—C1—C262.44 (14)
O2—N4—C9—C108.2 (2)C5—C6—C7—C8179.56 (12)
N1—C1—C2—N256.86 (15)C5—C6—C11—C10179.02 (12)
N2—N3—C5—C6176.24 (11)C6—C7—C8—C90.0 (2)
N2—C3—C4—N155.30 (15)C7—C6—C11—C101.1 (2)
N3—N2—C2—C1172.24 (11)C7—C8—C9—N4179.59 (12)
N3—N2—C3—C4177.74 (11)C7—C8—C9—C100.1 (2)
N3—C5—C6—C70.5 (2)C8—C9—C10—C110.4 (2)
N3—C5—C6—C11179.62 (12)C9—C10—C11—C61.0 (2)
N4—C9—C10—C11179.07 (12)C11—C6—C7—C80.6 (2)
C1—N1—C4—C362.15 (14)C12—N1—C1—C2176.25 (11)
C2—N2—N3—C5155.91 (12)C12—N1—C4—C3176.40 (11)
C2—N2—C3—C449.44 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.992.473.4052 (19)158
Symmetry code: (i) x+3/2, y+5/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.992.473.4052 (19)158.4
Symmetry code: (i) x+3/2, y+5/2, z+2.
 

Acknowledgements

CNK thanks University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCai, J.-L., Lu, Y.-H., Gan, L.-L. & Zhou, C.-H. (2009). Chin. J. Antibiot. 34, 454–462.  CAS Google Scholar
First citationCapuano, B., Crosby, I. T., Lloyd, E. J. & Taylor, D. A. (2002). Aust. J. Chem. 55, 565–576.  Web of Science CrossRef CAS Google Scholar
First citationChoudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed Google Scholar
First citationContreras, J. M., Parrot, I., Sippl, W., Rival, Y. M. & Wermuth, C. G. (2001). J. Med. Chem. 44, 2707–2718.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug Test Anal. 3, 430–438  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuo, M.-L. (2007). Acta Cryst. E63, o1788–o1789.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationMing-Lin, G. & You-Nong, Q. (2007). Acta Cryst. E63, o4641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSavaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267–271.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, P. S., Sinha, N. & Jain, S. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, R.-B., Xu, X.-Y., Wang, D.-Q., Yang, X.-J. & Li, S. (2009). Acta Cryst. E65, o2997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S. P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928–932.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, L.-N., Yan, L., Zhou, H.-L., Yang, Q.-F. & Hu, Q.-L. (2011). Acta Cryst. E67, o100.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1687-o1688
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds