metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m586-m587

catena-Poly[[di­aqua­[μ2-4-(4-carb­­oxy­phen­­oxy)benzoato](μ2-4,4′-oxydibenzo­ato)praseodymium(III)] monohydrate]

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: cgzheng@jiangnan.edu.cn

(Received 4 September 2013; accepted 24 September 2013; online 5 October 2013)

In the title compound, {[Pr(C14H8O5)(C14H9O5)(H2O)2]·H2O}n, the PrIII cation is eight-coordinated by six carboxyl O atoms from both a monoanionic 4-(4-carb­oxy­phen­oxy)benzoate and a dianionic 4,4′-oxydibenzoate ligand (four bridging with two from a bidentate chelate inter­action), and two O-atom donors from water mol­ecules. A single water mol­ecule of solvation is also present. The complex units are linked through carboxyl O:O′ bridges giving a two-dimensional sheet polymer lying parallel to (001). An overall three-dimensional network structure is generated through inter­molecular carb­oxy­lic acid and water O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For the potential properties of metal-organic complexes involving polycarboxyl­ate ligands, see: Li et al. (2011[Li, X. X., Wei, Z. Q., Yue, S. T., Wang, N., Mo, H. H. & Liu, Y. L. (2011). J. Chem. Crystallogr. 41, 757-761.]); Wang et al. (2004[Wang, Y. B., Wang, Z. M., Yan, C. H. & Jin, L. P. (2004). J. Mol. Struct. 692, 177-186.], 2005[Wang, Y. B., Sun, C. Y., Zheng, X. J., Gao, S., Lu, S. Z. & Jin, L. P. (2005). Polyhedron, 24, 823-830.]); Lin et al. (2010[Lin, Y. W., Jian, B. R., Huang, S. C., Huang, C. H. & Hsu, K. F. (2010). Inorg. Chem., 49, 2316-2324.]); Sun et al. (2009[Sun, C. Y., Zheng, X. B., Li, L. C. & Jin, L. P. (2009). Inorg. Chim. Acta, 362, 325-330.]); Xu et al. (2011[Xu, J., Su, W. P. & Hong, M. C. (2011). Inorg. Chem. Commun. 14, 1794-1797.]); Łyszczek & Mazur (2012[Łyszczek, R. & Mazur, L. (2012). Inorg. Chem. Commun. 15, 121-125.]). For similar structures, see: Thirumurugan & Natarajan (2004[Thirumurugan, A. & Natarajan, S. (2004). Eur. J. Inorg. Chem. pp. 762-770.]); Zhang et al. (2005[Zhang, J. J., Hu, S. M., Xiang, S. C., Wang, L. S., Li, Y. M., Zhang, H. S. & Wu, X. T. (2005). J. Mol. Struct. 748, 129-136.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr(C14H8O5)(C14H9O5)(H2O)2]·H2O

  • Mr = 708.37

  • Monoclinic, C 2/c

  • a = 27.3970 (17) Å

  • b = 9.5764 (6) Å

  • c = 21.6754 (14) Å

  • β = 97.433 (1)°

  • V = 5639.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 296 K

  • 0.21 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.704, Tmax = 0.774

  • 20449 measured reflections

  • 4972 independent reflections

  • 4498 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 1.08

  • 4972 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Pr1—O9i 2.3983 (18)
Pr1—O5 2.4105 (19)
Pr1—O12ii 2.412 (2)
Pr1—O8iii 2.4692 (19)
Pr1—O11 2.4719 (18)
Pr1—O10 2.5152 (19)
Pr1—O1 2.5163 (19)
Pr1—O7iii 2.6534 (19)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1iv 0.82 2.02 2.822 (3) 166
O10—H10B⋯O2v 0.85 2.09 2.880 (3) 154
O11—H11A⋯O4vi 0.84 1.84 2.683 (3) 176
O11—H11B⋯O8vii 0.84 1.89 2.707 (3) 163
C9—H9⋯O3vi 0.93 2.48 3.337 (4) 153
C25—H25⋯O13iii 0.93 2.59 3.454 (7) 155
Symmetry codes: (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+1, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal–organic frameworks (MOFs) with lanthanides have attracted much attention because of their abundant structural chemistry and valuable optical and magnetic properties (Lin et al., 2010). In contrast to coordination polymers with other transition metals, the architecture of lanthanide coordination polymers is hard to control owing to large coordination numbers and flexible coordination geometries of the lanthanide atom. The ligand 4-(4-carboxyphenoxy)benzoic acid (H2oba) can be deprotonated, giving Hoba- or oba2- species and as V-shaped ligands, they can offer more many coordination modes compared to a linear ligand. Owing to the nonlinear flexibility around the etheric oxygen, this ligand can readily generate helical coordination polymers (Łyszczek & Mazur, 2012).

In the title praseodymium(III) complex with 4-(4-carboxyphenoxy)benzoic acid, {[Pr(C14H11O6)(C14H10O6)(H2O)2] . H2O}n, the PrIII cations have irregular eight-coordinate stereochemistry, the asymmetric unit comprising one PrIII cation, an an Hoba- ligand, an oba2- ligand, two monodentate water molecules (O10 and O11) and one water molecule of solvation (O13) (Fig. 1). There are two types of coordination modes with the oba2- and Hoba- ligands: (a) two carboxylate groups of the oba2- ligand adopt a bridging bidentate mode (O5, O12ii) and a bidentate chelate mode (O7iii, O8iii), respectively, connecting three PrIII atoms; (b) one carboxylate group of the Hoba- ligand adopts a bridging bidentate (O1, O9i) mode, connecting two PrIII atoms. For symmetry codes, see Table 1. The carboxylic acid group (O4, O3) is un-coordinated. The Pr—O bond lengths [range 2.3983 (18)–2.6534 (19) Å] (Table 1) are comparable with those in similar PrIII complexes (Thirumurugan & Natarajan, 2004; Zhang et al., 2005). A two-dimensional coordination polymer is generated, lying parallel to (0 0 1). Adjacent layers are joined into a three-dimensional framework structure (Fig. 2) through intermolecular carboxylic acid and water O—H···O hydrogen bonds and weak C—H···O hydrogen-bonding interactions (Table 2).

Related literature top

For the potential properties of metal-organic complexes involving polycarboxylate ligands, see: Li et al. (2011); Wang et al. (2004, 2005); Lin et al. (2010); Sun et al. (2009); Xu et al. (2011); Łyszczek & Mazur (2012). For similar structures, see: Thirumurugan & Natarajan (2004); Zhang et al. (2005).

Experimental top

A mixture of 4-(4-carboxyphenoxy)benzoic acid (0.026 g, 0.1 mmol), Pr(NO3)3 6H2O (0.15 mmol, 62.2 mg), and deionized water (8 ml) was sealed in a teflon-lined stainless steel vessel (25 ml) and heated at 433 K for 72 h. The vessel was then cooled slowly to room temperature. Green block-like crystals were obtained by filtration and washed with water. Yield: 50.4 mg (47.5%, based on Pr). Elemental analysis: calcd. for C28H23O13Pr, C 47.59%, H 3.25%. Found: C 47.48%, H 3.19%.

Refinement top

C-Bound H atoms were were placed in calculated positions and were treated as riding, with C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C). O-Bound H-atoms were also placed in calculated positions (O—H = 0.82–0.85 Å) and were allowed to ride with Uiso(H) = 1.2–1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex showing 30% probability displacement ellipsoids and the atom-numbering scheme. For symmetry codes: (i) -x, -y +1, -z; (ii) -x, -y, -z; (iii) x -1/2, y +1/2, z.
[Figure 2] Fig. 2. A packing diagram for the three-dimensional structure formed through O—H···O and C—H···O hydrogen-bonding interactions. Hydrogen bonds are indicated by dashed lines.
catena-Poly[[diaqua[µ2-4-(4-carboxyphenoxy)benzoato](µ2-4,4'-oxydibenzoato)praseodymium(III)] monohydrate] top
Crystal data top
[Pr(C14H8O5)(C14H9O5)(H2O)2]·H2OF(000) = 2832
Mr = 708.37Dx = 1.669 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9984 reflections
a = 27.3970 (17) Åθ = 2.4–27.6°
b = 9.5764 (6) ŵ = 1.80 mm1
c = 21.6754 (14) ÅT = 296 K
β = 97.433 (1)°Block, green
V = 5639.1 (6) Å30.21 × 0.16 × 0.15 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
4972 independent reflections
Radiation source: fine-focus sealed tube4498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 3227
Tmin = 0.704, Tmax = 0.774k = 1111
20449 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0163P)2 + 15.8309P]
where P = (Fo2 + 2Fc2)/3
4972 reflections(Δ/σ)max = 0.001
381 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Pr(C14H8O5)(C14H9O5)(H2O)2]·H2OV = 5639.1 (6) Å3
Mr = 708.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.3970 (17) ŵ = 1.80 mm1
b = 9.5764 (6) ÅT = 296 K
c = 21.6754 (14) Å0.21 × 0.16 × 0.15 mm
β = 97.433 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4498 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.774Rint = 0.026
20449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0163P)2 + 15.8309P]
where P = (Fo2 + 2Fc2)/3
4972 reflectionsΔρmax = 0.59 e Å3
381 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.014443 (5)0.250000 (14)0.008512 (7)0.02218 (6)
C10.08267 (9)0.0154 (3)0.06113 (13)0.0281 (6)
C20.12798 (9)0.0851 (3)0.09282 (12)0.0257 (6)
C30.05948 (9)0.5746 (3)0.17173 (12)0.0258 (6)
C40.04362 (9)0.5108 (3)0.10933 (12)0.0254 (6)
C50.21188 (10)0.2111 (3)0.15102 (14)0.0341 (7)
C60.26088 (11)0.8308 (3)0.39077 (15)0.0377 (7)
C70.33610 (11)0.3437 (3)0.18593 (14)0.0397 (7)
H70.33230.39760.22070.048*
C80.09428 (10)0.6972 (3)0.28360 (13)0.0327 (6)
C90.15967 (11)0.0134 (3)0.13644 (16)0.0418 (8)
H90.15270.07850.14590.050*
C100.08283 (12)0.4950 (3)0.22016 (14)0.0401 (7)
H100.08670.39950.21480.048*
C110.10043 (13)0.5567 (4)0.27647 (14)0.0447 (8)
H110.11620.50330.30890.054*
C120.34745 (11)0.1805 (3)0.08407 (14)0.0378 (7)
H120.35130.12460.05000.045*
C130.29695 (11)0.2675 (3)0.15686 (14)0.0324 (7)
C140.05244 (12)0.7155 (3)0.18124 (14)0.0365 (7)
H140.03550.76900.14960.044*
C150.31376 (12)0.8545 (3)0.41214 (17)0.0430 (8)
C160.17743 (11)0.8314 (4)0.41406 (14)0.0432 (8)
H160.15480.84840.44170.052*
C170.16187 (11)0.7811 (3)0.35461 (14)0.0333 (7)
C180.13862 (12)0.2214 (3)0.07976 (17)0.0437 (8)
H180.11720.27200.05130.052*
C190.20161 (12)0.0762 (4)0.16618 (16)0.0459 (8)
H190.22250.02790.19600.055*
C200.18108 (13)0.2837 (4)0.10883 (18)0.0492 (9)
H200.18840.37540.09940.059*
C210.30232 (11)0.1854 (4)0.10597 (15)0.0413 (8)
H210.27590.13400.08660.050*
C220.38089 (11)0.3398 (3)0.16320 (14)0.0357 (7)
H220.40710.39260.18230.043*
C230.24464 (12)0.7818 (4)0.33152 (15)0.0414 (8)
H230.26720.76600.30370.050*
C240.22675 (12)0.8557 (4)0.43135 (15)0.0452 (8)
H240.23740.88940.47100.054*
C250.07024 (12)0.7778 (3)0.23706 (14)0.0396 (7)
H250.06600.87300.24300.048*
C260.38714 (10)0.2577 (3)0.11215 (14)0.0284 (6)
C270.19530 (12)0.7562 (3)0.31339 (15)0.0404 (8)
H270.18470.72240.27370.048*
C280.43485 (10)0.2515 (3)0.08701 (13)0.0273 (6)
O10.05551 (7)0.3854 (2)0.10037 (9)0.0348 (5)
O20.11178 (8)0.7623 (2)0.34028 (10)0.0405 (6)
O30.34277 (8)0.8348 (3)0.36883 (12)0.0494 (6)
H30.37150.84540.38400.074*
O40.32852 (9)0.8911 (3)0.46497 (12)0.0614 (7)
O50.08076 (8)0.1151 (2)0.06299 (11)0.0446 (6)
O60.25350 (8)0.2782 (3)0.18227 (11)0.0452 (6)
O70.46781 (7)0.3427 (2)0.10035 (9)0.0312 (4)
O80.44170 (7)0.1528 (2)0.04974 (10)0.0350 (5)
O90.01975 (7)0.5838 (2)0.06788 (9)0.0328 (4)
O100.04446 (8)0.1241 (2)0.08121 (10)0.0385 (5)
H10A0.02000.08880.10400.058*
H10B0.05910.18150.10240.058*
O110.08179 (7)0.38020 (19)0.03119 (9)0.0326 (4)
H11B0.07520.46170.04460.039*
H11A0.11060.38330.01200.039*
O120.04866 (7)0.0880 (2)0.03345 (10)0.0393 (5)
O130.5392 (3)0.6238 (7)0.2092 (3)0.251 (4)
H13B0.50980.59330.20090.377*
H13A0.54190.66680.17550.377*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01793 (9)0.02186 (9)0.02589 (10)0.00108 (5)0.00048 (6)0.00062 (5)
C10.0228 (14)0.0318 (16)0.0294 (15)0.0028 (12)0.0028 (11)0.0000 (12)
C20.0199 (13)0.0250 (14)0.0317 (15)0.0013 (11)0.0016 (11)0.0019 (11)
C30.0234 (14)0.0281 (14)0.0245 (14)0.0003 (11)0.0014 (11)0.0007 (11)
C40.0202 (13)0.0269 (14)0.0289 (14)0.0007 (11)0.0020 (11)0.0017 (11)
C50.0213 (15)0.0440 (17)0.0377 (17)0.0088 (13)0.0071 (12)0.0143 (14)
C60.0304 (16)0.0357 (17)0.0446 (18)0.0017 (13)0.0044 (13)0.0023 (14)
C70.0328 (16)0.0498 (19)0.0375 (17)0.0124 (14)0.0086 (13)0.0182 (15)
C80.0258 (15)0.0468 (18)0.0249 (15)0.0038 (13)0.0009 (11)0.0083 (13)
C90.0391 (18)0.0255 (15)0.056 (2)0.0058 (13)0.0112 (15)0.0054 (14)
C100.054 (2)0.0275 (16)0.0357 (17)0.0031 (14)0.0073 (14)0.0014 (13)
C110.056 (2)0.0457 (19)0.0278 (16)0.0031 (16)0.0100 (14)0.0035 (14)
C120.0316 (16)0.0418 (18)0.0407 (17)0.0061 (13)0.0074 (13)0.0163 (14)
C130.0248 (15)0.0407 (17)0.0322 (16)0.0070 (12)0.0053 (12)0.0079 (13)
C140.0419 (18)0.0323 (16)0.0322 (16)0.0088 (13)0.0073 (13)0.0025 (13)
C150.0335 (17)0.0340 (17)0.058 (2)0.0008 (14)0.0056 (16)0.0016 (15)
C160.0330 (17)0.064 (2)0.0319 (16)0.0041 (15)0.0032 (13)0.0085 (15)
C170.0280 (16)0.0407 (17)0.0298 (16)0.0009 (13)0.0012 (12)0.0018 (13)
C180.0370 (18)0.0334 (17)0.057 (2)0.0043 (14)0.0082 (15)0.0103 (15)
C190.0370 (18)0.0427 (19)0.053 (2)0.0028 (15)0.0151 (15)0.0004 (16)
C200.046 (2)0.0336 (17)0.065 (2)0.0169 (15)0.0038 (17)0.0079 (16)
C210.0266 (16)0.052 (2)0.0455 (19)0.0139 (14)0.0052 (13)0.0185 (16)
C220.0276 (15)0.0398 (17)0.0395 (17)0.0119 (13)0.0040 (13)0.0103 (14)
C230.0320 (18)0.052 (2)0.0402 (18)0.0020 (14)0.0054 (14)0.0041 (15)
C240.0392 (18)0.058 (2)0.0354 (17)0.0057 (16)0.0077 (14)0.0089 (15)
C250.048 (2)0.0332 (16)0.0358 (17)0.0049 (14)0.0032 (14)0.0105 (13)
C260.0241 (15)0.0284 (15)0.0328 (16)0.0021 (11)0.0042 (12)0.0008 (11)
C270.0337 (18)0.057 (2)0.0291 (16)0.0031 (14)0.0003 (13)0.0080 (14)
C280.0264 (15)0.0236 (14)0.0320 (15)0.0001 (11)0.0036 (12)0.0045 (11)
O10.0362 (11)0.0281 (11)0.0372 (11)0.0063 (9)0.0059 (9)0.0082 (9)
O20.0262 (11)0.0669 (16)0.0277 (11)0.0045 (10)0.0008 (9)0.0187 (10)
O30.0271 (12)0.0528 (15)0.0660 (16)0.0030 (11)0.0029 (11)0.0014 (12)
O40.0358 (13)0.0807 (19)0.0625 (17)0.0016 (13)0.0140 (12)0.0126 (14)
O50.0427 (13)0.0291 (12)0.0562 (14)0.0126 (9)0.0158 (11)0.0028 (10)
O60.0261 (12)0.0661 (15)0.0452 (13)0.0183 (10)0.0115 (10)0.0271 (11)
O70.0251 (10)0.0284 (10)0.0404 (11)0.0060 (8)0.0058 (8)0.0038 (9)
O80.0313 (11)0.0269 (10)0.0490 (13)0.0038 (8)0.0139 (9)0.0085 (9)
O90.0336 (11)0.0345 (11)0.0276 (10)0.0028 (9)0.0064 (8)0.0035 (9)
O100.0444 (13)0.0315 (11)0.0424 (12)0.0071 (9)0.0161 (10)0.0033 (9)
O110.0248 (10)0.0259 (10)0.0462 (12)0.0007 (8)0.0009 (9)0.0057 (9)
O120.0240 (11)0.0488 (13)0.0428 (12)0.0061 (9)0.0045 (9)0.0011 (10)
O130.354 (10)0.169 (6)0.185 (6)0.015 (6)0.141 (6)0.009 (5)
Geometric parameters (Å, º) top
Pr1—O9i2.3983 (18)C12—C261.389 (4)
Pr1—O52.4105 (19)C12—H120.9300
Pr1—O12ii2.412 (2)C13—C211.378 (4)
Pr1—O8iii2.4692 (19)C13—O61.379 (3)
Pr1—O112.4719 (18)C14—C251.380 (4)
Pr1—O102.5152 (19)C14—H140.9300
Pr1—O12.5163 (19)C15—O41.216 (4)
Pr1—O7iii2.6534 (19)C15—O31.320 (4)
C1—O51.252 (3)C16—C241.375 (4)
C1—O121.252 (3)C16—C171.390 (4)
C1—C21.496 (4)C16—H160.9300
C2—C181.375 (4)C17—O21.379 (4)
C2—C91.381 (4)C17—C271.380 (4)
C3—C141.382 (4)C18—C201.384 (5)
C3—C101.385 (4)C18—H180.9300
C3—C41.497 (4)C19—H190.9300
C4—O91.254 (3)C20—H200.9300
C4—O11.266 (3)C21—H210.9300
C5—C201.353 (5)C22—C261.386 (4)
C5—C191.371 (5)C22—H220.9300
C5—O61.404 (3)C23—C271.380 (5)
C6—C241.385 (5)C23—H230.9300
C6—C231.386 (4)C24—H240.9300
C6—C151.480 (4)C25—H250.9300
C7—C221.381 (4)C26—C281.481 (4)
C7—C131.381 (4)C27—H270.9300
C7—H70.9300C28—O71.262 (3)
C8—C111.367 (5)C28—O81.273 (3)
C8—C251.369 (4)O3—H30.8200
C8—O21.406 (3)O10—H10A0.8499
C9—C191.381 (4)O10—H10B0.8500
C9—H90.9300O11—H11B0.8444
C10—C111.385 (4)O11—H11A0.8444
C10—H100.9300O13—H13B0.8542
C11—H110.9300O13—H13A0.8500
C12—C211.381 (4)
O9i—Pr1—O5153.69 (8)O6—C13—C7116.0 (3)
O9i—Pr1—O12ii88.26 (7)C25—C14—C3120.8 (3)
O5—Pr1—O12ii107.34 (7)C25—C14—H14119.6
O9i—Pr1—O8iii74.83 (7)C3—C14—H14119.6
O5—Pr1—O8iii128.11 (7)O4—C15—O3123.6 (3)
O12ii—Pr1—O8iii78.82 (7)O4—C15—C6122.1 (3)
O9i—Pr1—O1170.57 (6)O3—C15—C6114.2 (3)
O5—Pr1—O1183.78 (7)C24—C16—C17118.9 (3)
O12ii—Pr1—O11136.39 (7)C24—C16—H16120.5
O8iii—Pr1—O11127.57 (6)C17—C16—H16120.5
O9i—Pr1—O1085.53 (7)O2—C17—C27123.8 (3)
O5—Pr1—O1079.66 (7)O2—C17—C16115.5 (3)
O12ii—Pr1—O1071.94 (7)C27—C17—C16120.7 (3)
O8iii—Pr1—O10145.13 (7)C2—C18—C20120.2 (3)
O11—Pr1—O1068.85 (6)C2—C18—H18119.9
O9i—Pr1—O1107.40 (6)C20—C18—H18119.9
O5—Pr1—O169.94 (7)C5—C19—C9118.9 (3)
O12ii—Pr1—O1148.79 (7)C5—C19—H19120.6
O8iii—Pr1—O179.55 (7)C9—C19—H19120.6
O11—Pr1—O174.82 (7)C5—C20—C18120.0 (3)
O10—Pr1—O1134.54 (7)C5—C20—H20120.0
O9i—Pr1—O7iii123.84 (6)C18—C20—H20120.0
O5—Pr1—O7iii81.88 (7)C13—C21—C12119.2 (3)
O12ii—Pr1—O7iii71.13 (7)C13—C21—H21120.4
O8iii—Pr1—O7iii50.58 (6)C12—C21—H21120.4
O11—Pr1—O7iii152.06 (6)C7—C22—C26120.5 (3)
O10—Pr1—O7iii131.07 (6)C7—C22—H22119.7
O1—Pr1—O7iii77.77 (6)C26—C22—H22119.7
O5—C1—O12122.6 (3)C27—C23—C6120.6 (3)
O5—C1—C2117.8 (2)C27—C23—H23119.7
O12—C1—C2119.7 (2)C6—C23—H23119.7
C18—C2—C9118.8 (3)C16—C24—C6121.2 (3)
C18—C2—C1121.0 (3)C16—C24—H24119.4
C9—C2—C1120.2 (2)C6—C24—H24119.4
C14—C3—C10118.9 (3)C8—C25—C14118.9 (3)
C14—C3—C4120.3 (2)C8—C25—H25120.5
C10—C3—C4120.8 (2)C14—C25—H25120.5
O9—C4—O1122.7 (2)C22—C26—C12118.8 (3)
O9—C4—C3118.9 (2)C22—C26—C28121.5 (3)
O1—C4—C3118.4 (2)C12—C26—C28119.7 (3)
C20—C5—C19121.1 (3)C23—C27—C17119.5 (3)
C20—C5—O6119.2 (3)C23—C27—H27120.3
C19—C5—O6119.6 (3)C17—C27—H27120.3
C24—C6—C23119.0 (3)O7—C28—O8119.9 (3)
C24—C6—C15119.3 (3)O7—C28—C26121.8 (2)
C23—C6—C15121.7 (3)O8—C28—C26118.2 (2)
C22—C7—C13119.8 (3)O7—C28—Pr1iv64.72 (15)
C22—C7—H7120.1O8—C28—Pr1iv56.40 (14)
C13—C7—H7120.1C26—C28—Pr1iv166.2 (2)
C11—C8—C25121.7 (3)C4—O1—Pr1120.84 (17)
C11—C8—O2120.2 (3)C17—O2—C8118.1 (2)
C25—C8—O2118.1 (3)C15—O3—H3109.5
C19—C9—C2121.0 (3)C1—O5—Pr1123.47 (18)
C19—C9—H9119.5C13—O6—C5117.6 (2)
C2—C9—H9119.5C28—O7—Pr1iv89.80 (16)
C3—C10—C11120.5 (3)C28—O8—Pr1iv98.18 (16)
C3—C10—H10119.8C4—O9—Pr1i170.37 (18)
C11—C10—H10119.8Pr1—O10—H10A109.2
C8—C11—C10119.0 (3)Pr1—O10—H10B109.4
C8—C11—H11120.5H10A—O10—H10B109.5
C10—C11—H11120.5Pr1—O11—H11B116.8
C21—C12—C26121.1 (3)Pr1—O11—H11A122.6
C21—C12—H12119.5H11B—O11—H11A106.3
C26—C12—H12119.5C1—O12—Pr1ii172.3 (2)
C21—C13—O6123.3 (3)H13B—O13—H13A99.7
C21—C13—C7120.7 (3)
O5—C1—C2—C18163.0 (3)C7—C22—C26—C120.5 (5)
O12—C1—C2—C1816.2 (4)C7—C22—C26—C28179.8 (3)
O5—C1—C2—C917.7 (4)C21—C12—C26—C220.4 (5)
O12—C1—C2—C9163.1 (3)C21—C12—C26—C28179.2 (3)
C14—C3—C4—O96.8 (4)C6—C23—C27—C170.7 (5)
C10—C3—C4—O9175.4 (3)O2—C17—C27—C23178.2 (3)
C14—C3—C4—O1172.3 (3)C16—C17—C27—C230.1 (5)
C10—C3—C4—O15.6 (4)C22—C26—C28—O717.2 (4)
C18—C2—C9—C190.6 (5)C12—C26—C28—O7162.4 (3)
C1—C2—C9—C19179.9 (3)C22—C26—C28—O8164.6 (3)
C14—C3—C10—C112.3 (5)C12—C26—C28—O815.7 (4)
C4—C3—C10—C11175.5 (3)C22—C26—C28—Pr1iv131.9 (7)
C25—C8—C11—C101.5 (5)C12—C26—C28—Pr1iv47.8 (9)
O2—C8—C11—C10180.0 (3)O9—C4—O1—Pr116.0 (4)
C3—C10—C11—C80.2 (5)C3—C4—O1—Pr1165.01 (17)
C22—C7—C13—C211.1 (5)O9i—Pr1—O1—C421.5 (2)
C22—C7—C13—O6179.5 (3)O5—Pr1—O1—C4173.8 (2)
C10—C3—C14—C252.9 (5)O12ii—Pr1—O1—C495.6 (2)
C4—C3—C14—C25175.0 (3)O8iii—Pr1—O1—C448.8 (2)
C24—C6—C15—O42.3 (5)O11—Pr1—O1—C485.0 (2)
C23—C6—C15—O4176.4 (3)O10—Pr1—O1—C4122.68 (19)
C24—C6—C15—O3176.6 (3)O7iii—Pr1—O1—C4100.5 (2)
C23—C6—C15—O34.7 (5)C28iii—Pr1—O1—C474.6 (2)
C24—C16—C17—O2178.6 (3)C27—C17—O2—C88.6 (4)
C24—C16—C17—C270.2 (5)C16—C17—O2—C8173.0 (3)
C9—C2—C18—C201.7 (5)C11—C8—O2—C1773.5 (4)
C1—C2—C18—C20179.0 (3)C25—C8—O2—C17108.0 (3)
C20—C5—C19—C91.6 (5)O12—C1—O5—Pr14.2 (4)
O6—C5—C19—C9177.9 (3)C2—C1—O5—Pr1174.99 (17)
C2—C9—C19—C51.0 (5)O9i—Pr1—O5—C1115.7 (2)
C19—C5—C20—C180.6 (5)O12ii—Pr1—O5—C18.3 (3)
O6—C5—C20—C18176.9 (3)O8iii—Pr1—O5—C197.6 (2)
C2—C18—C20—C51.1 (6)O11—Pr1—O5—C1128.5 (2)
O6—C13—C21—C12179.5 (3)O10—Pr1—O5—C158.9 (2)
C7—C13—C21—C120.2 (5)O1—Pr1—O5—C1155.5 (3)
C26—C12—C21—C130.6 (5)O7iii—Pr1—O5—C175.6 (2)
C13—C7—C22—C261.3 (5)C28iii—Pr1—O5—C182.5 (2)
C24—C6—C23—C270.9 (5)C21—C13—O6—C55.7 (5)
C15—C6—C23—C27177.9 (3)C7—C13—O6—C5175.0 (3)
C17—C16—C24—C60.1 (5)C20—C5—O6—C1392.8 (4)
C23—C6—C24—C160.6 (5)C19—C5—O6—C1390.9 (4)
C15—C6—C24—C16178.2 (3)O8—C28—O7—Pr1iv12.0 (3)
C11—C8—C25—C141.0 (5)C26—C28—O7—Pr1iv166.1 (2)
O2—C8—C25—C14179.5 (3)O7—C28—O8—Pr1iv13.1 (3)
C3—C14—C25—C81.2 (5)C26—C28—O8—Pr1iv165.1 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1v0.822.022.822 (3)166
O10—H10B···O2vi0.852.092.880 (3)154
O11—H11A···O4vii0.841.842.683 (3)176
O11—H11B···O8viii0.841.892.707 (3)163
C9—H9···O3vii0.932.483.337 (4)153
C25—H25···O13iii0.932.593.454 (7)155
Symmetry codes: (iii) x1/2, y+1/2, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y+1, z1/2; (vii) x+1/2, y1/2, z+1/2; (viii) x+1/2, y+1/2, z.
Selected bond lengths (Å) top
Pr1—O9i2.3983 (18)Pr1—O112.4719 (18)
Pr1—O52.4105 (19)Pr1—O102.5152 (19)
Pr1—O12ii2.412 (2)Pr1—O12.5163 (19)
Pr1—O8iii2.4692 (19)Pr1—O7iii2.6534 (19)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1iv0.822.022.822 (3)166
O10—H10B···O2v0.852.092.880 (3)154
O11—H11A···O4vi0.841.842.683 (3)176
O11—H11B···O8vii0.841.892.707 (3)163
C9—H9···O3vi0.932.483.337 (4)153
C25—H25···O13iii0.932.593.454 (7)155
Symmetry codes: (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Research Institute of Element-Organic Chemistry of the East China Institute of Technology

References

First citationBruker (1997). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X. X., Wei, Z. Q., Yue, S. T., Wang, N., Mo, H. H. & Liu, Y. L. (2011). J. Chem. Crystallogr. 41, 757–761.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, Y. W., Jian, B. R., Huang, S. C., Huang, C. H. & Hsu, K. F. (2010). Inorg. Chem., 49, 2316–2324.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationŁyszczek, R. & Mazur, L. (2012). Inorg. Chem. Commun. 15, 121–125.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C. Y., Zheng, X. B., Li, L. C. & Jin, L. P. (2009). Inorg. Chim. Acta, 362, 325–330.  Web of Science CSD CrossRef CAS Google Scholar
First citationThirumurugan, A. & Natarajan, S. (2004). Eur. J. Inorg. Chem. pp. 762–770.  CSD CrossRef Google Scholar
First citationWang, Y. B., Sun, C. Y., Zheng, X. J., Gao, S., Lu, S. Z. & Jin, L. P. (2005). Polyhedron, 24, 823–830.  Web of Science CSD CrossRef Google Scholar
First citationWang, Y. B., Wang, Z. M., Yan, C. H. & Jin, L. P. (2004). J. Mol. Struct. 692, 177–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, J., Su, W. P. & Hong, M. C. (2011). Inorg. Chem. Commun. 14, 1794–1797.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J. J., Hu, S. M., Xiang, S. C., Wang, L. S., Li, Y. M., Zhang, H. S. & Wu, X. T. (2005). J. Mol. Struct. 748, 129–136.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m586-m587
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds