organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Hy­dr­oxy-3,5-di­methyl­phen­yl)(phen­yl)methanone

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India, and cDepartment of Physics, St Philomena's College, Mysore, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 6 September 2013; accepted 16 October 2013; online 19 October 2013)

In the mol­ecule of the title compound, C15H14O2, the dihedral angle between the benzene and phenyl rings is 61.27 (8)°. In the crystal, O—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into chains extending along the c-axis direction.

Related literature

For the biological activity of benzo­phenone derivatives, see: Naldoni et al. (2009[Naldoni, F. J., Claudino, A. L. R., Cruz, J. W., Chavasco, J. K., Faria e Silva, P. M., Veloso, M. P. & Dos Santos, M. H. (2009). J. Med. Food, 12, 403-407.]); Naveen et al. (2006[Naveen, S., Khanum, S. A., Devaiah, V. T., Shashikanth, S., Anandalwar, S. M. & Prasad, S. (2006). Anal. Sci. 22, 183-184.]); Selvi et al. (2003[Selvi, A. T., Joseph, G. S. & Jayaprakasha, G. K. (2003). Food Microbiol. 20, 455-460.]). For bond-length and angle data in a related structure, see: Mahendra et al. (2005[Mahendra, M., Khanum, S. A., Singh, A. K., Shashikanth, S., Doreswamy, B. H., Sridhar, M. A. & Shashidhara Prasad, J. (2005). Acta Cryst. E61, o2990-o2991.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O2

  • Mr = 226.26

  • Monoclinic, P 21 /c

  • a = 4.7741 (13) Å

  • b = 15.198 (4) Å

  • c = 17.274 (5) Å

  • β = 95.275 (12)°

  • V = 1248.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 2238 measured reflections

  • 2238 independent reflections

  • 1777 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.140

  • S = 1.02

  • 2238 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O11i 0.82 2.03 2.7528 (17) 147
C13—H13⋯O5ii 0.93 2.55 3.301 (2) 138
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzophenone and its derivatives show various biological activities such as anti-fungal and anti-inflamatory (Naldoni et al., 2009 and Selvi et al., 2003). The presence of various substituents in the benzophenone nucleus is essential in determining the quantitative structure-activity relationships for these systems. The competence of benzophenones as chemotherapeutic agents, especially as inhibitors of HIV-1 reverse transcriptase RT, cancer and inflammation, is well established and their chemistry has been studied extensively. In addition, methyl-substituted benzophenones exhibit chemotherapeutical activity against fungi. Some studies were carried out to show that these compounds exhibit anti-fungal properties (Naveen et al., 2006) In view of its extensive background, the title compound, C15H14O2, was prepared and characterized by single-crystal X-ray diffraction and the structure is reported herein.

In the molecular structure of this compound (Fig. 1), bond lengths and angles do not show large deviations from and are comparable with those reported for a similar structure (Mahendra et al., 2005). The dihedral angle between the two benzene rings is 61.27 (8)°. The crystal structure is stabilized by intermolecular O—H···O and weak C—H···O hydrogen bonds, forming one-dimensional chains extending along the c axis in the unit cell (Fig. 2).

Related literature top

For the biological activity of benzophenone derivatives, see: Naldoni et al. (2009); Naveen et al. (2006); Selvi et al. (2003). For bond-length and angle data in a related structure, see: Mahendra et al. (2005).

Experimental top

(4-Hydroxy-3,5-dimethyl-phenyl)phenyl-methanone was synthesized by the Fries rearrangement. 2,6-Dimethylphenyl benzoate (0.022 mol) was mixed with anhydrous aluminium chloride (0.044 mol) and fused at 150–170 °C under dry conditions for about 2–3 h. The reaction mixture was then cooled to room temperature and quenched with 6 M HCl in the presence of ice water. The reaction mixture was stirred for about 2–3 h, then filtered and the product was recrystallized from ethanol to obtain colourless crystals.

Refinement top

All H-atoms were located from difference maps but were then positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and and O—H = 0.82 Å, with Uiso(H) = 1.2Ueq(C) (aromatic) or 1.5Ueq(C) (methyl or O). One reflection (0 2 0) was considered to be seriously affected by beamstop interference and was omitted from the data set.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecule in the unit cell viewed down the a axis.
(4-Hydroxy-3,5-dimethylphenyl)(phenyl)methanone top
Crystal data top
C15H14O2F(000) = 480
Mr = 226.26Dx = 1.204 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2238 reflections
a = 4.7741 (13) Åθ = 1.8–25.3°
b = 15.198 (4) ŵ = 0.08 mm1
c = 17.274 (5) ÅT = 293 K
β = 95.275 (12)°Block, colorless
V = 1248.0 (6) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1777 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω and ϕ scansh = 55
2238 measured reflectionsk = 018
2238 independent reflectionsl = 020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0867P)2 + 0.1512P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.011
2238 reflectionsΔρmax = 0.15 e Å3
157 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (6)
Crystal data top
C15H14O2V = 1248.0 (6) Å3
Mr = 226.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7741 (13) ŵ = 0.08 mm1
b = 15.198 (4) ÅT = 293 K
c = 17.274 (5) Å0.30 × 0.25 × 0.20 mm
β = 95.275 (12)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1777 reflections with I > 2σ(I)
2238 measured reflectionsRint = 0.000
2238 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
2238 reflectionsΔρmin = 0.13 e Å3
157 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.0022 (3)0.17634 (8)0.08784 (6)0.0634 (4)
O110.1206 (3)0.26574 (7)0.26812 (6)0.0637 (5)
C10.2554 (3)0.31934 (9)0.07292 (8)0.0450 (5)
C20.2212 (3)0.28659 (10)0.00211 (8)0.0454 (5)
C30.3756 (4)0.32668 (13)0.06525 (9)0.0641 (6)
C40.0447 (3)0.21413 (10)0.01672 (8)0.0454 (5)
C60.0962 (3)0.17493 (10)0.04227 (8)0.0466 (5)
C70.2852 (4)0.09705 (12)0.02409 (11)0.0663 (7)
C80.0532 (3)0.20949 (10)0.11568 (8)0.0463 (5)
C90.1201 (3)0.28197 (9)0.13271 (8)0.0430 (5)
C100.1712 (3)0.31344 (9)0.21370 (8)0.0458 (5)
C120.2919 (3)0.40255 (9)0.22965 (8)0.0440 (5)
C130.5127 (4)0.41181 (11)0.28726 (9)0.0551 (6)
C140.6304 (4)0.49312 (14)0.30321 (11)0.0692 (7)
C150.5237 (5)0.56614 (12)0.26413 (11)0.0684 (7)
C160.3009 (4)0.55860 (11)0.20861 (11)0.0634 (6)
C170.1870 (4)0.47666 (10)0.19002 (9)0.0535 (5)
H10.372100.367700.083600.0540*
H3A0.497800.372400.043700.0960*
H3B0.242600.351100.104500.0960*
H3C0.485000.282200.088000.0960*
H50.086400.202900.119000.0950*
H7A0.177300.049300.005900.0990*
H7B0.431200.112900.015400.0990*
H7C0.368000.079200.070200.0990*
H80.142900.183700.155500.0560*
H130.581200.362800.315200.0660*
H140.782600.498600.340600.0830*
H150.603100.621100.275400.0820*
H160.226100.608500.183400.0760*
H170.040300.471300.151000.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0797 (8)0.0818 (8)0.0287 (6)0.0183 (6)0.0057 (5)0.0122 (5)
O110.1119 (10)0.0537 (7)0.0258 (6)0.0055 (6)0.0085 (6)0.0042 (5)
C10.0549 (9)0.0495 (8)0.0305 (8)0.0022 (6)0.0031 (6)0.0003 (6)
C20.0523 (9)0.0571 (9)0.0270 (8)0.0006 (7)0.0049 (6)0.0013 (6)
C30.0787 (12)0.0819 (12)0.0333 (9)0.0148 (9)0.0137 (8)0.0005 (8)
C40.0524 (9)0.0586 (9)0.0246 (7)0.0031 (7)0.0004 (6)0.0037 (6)
C60.0520 (9)0.0545 (8)0.0330 (8)0.0007 (6)0.0016 (6)0.0001 (6)
C70.0764 (12)0.0698 (11)0.0525 (11)0.0179 (9)0.0048 (9)0.0067 (8)
C80.0570 (9)0.0526 (8)0.0302 (8)0.0004 (7)0.0091 (7)0.0040 (6)
C90.0565 (9)0.0474 (8)0.0248 (7)0.0036 (6)0.0027 (6)0.0009 (6)
C100.0627 (10)0.0481 (8)0.0269 (8)0.0086 (7)0.0057 (6)0.0029 (6)
C120.0586 (9)0.0497 (8)0.0244 (7)0.0060 (6)0.0078 (6)0.0018 (6)
C130.0649 (10)0.0651 (10)0.0351 (9)0.0031 (8)0.0036 (8)0.0004 (7)
C140.0708 (12)0.0884 (14)0.0481 (10)0.0165 (10)0.0036 (9)0.0103 (9)
C150.0848 (13)0.0628 (11)0.0610 (12)0.0199 (9)0.0259 (10)0.0163 (9)
C160.0850 (13)0.0479 (9)0.0605 (11)0.0057 (8)0.0247 (10)0.0041 (8)
C170.0649 (10)0.0534 (9)0.0423 (9)0.0055 (7)0.0050 (7)0.0025 (7)
Geometric parameters (Å, º) top
O5—C41.3560 (18)C14—C151.372 (3)
O11—C101.2286 (18)C15—C161.370 (3)
O5—H50.8200C16—C171.385 (2)
C1—C21.384 (2)C1—H10.9300
C1—C91.389 (2)C3—H3A0.9600
C2—C41.396 (2)C3—H3B0.9600
C2—C31.501 (2)C3—H3C0.9600
C4—C61.404 (2)C7—H7A0.9600
C6—C71.504 (2)C7—H7B0.9600
C6—C81.371 (2)C7—H7C0.9600
C8—C91.393 (2)C8—H80.9300
C9—C101.477 (2)C13—H130.9300
C10—C121.488 (2)C14—H140.9300
C12—C171.387 (2)C15—H150.9300
C12—C131.389 (2)C16—H160.9300
C13—C141.375 (3)C17—H170.9300
C4—O5—H5109.00C2—C1—H1119.00
C2—C1—C9121.76 (13)C9—C1—H1119.00
C1—C2—C3120.74 (14)C2—C3—H3A109.00
C1—C2—C4118.07 (13)C2—C3—H3B109.00
C3—C2—C4121.18 (13)C2—C3—H3C109.00
O5—C4—C6115.31 (13)H3A—C3—H3B109.00
C2—C4—C6121.68 (13)H3A—C3—H3C110.00
O5—C4—C2123.01 (13)H3B—C3—H3C109.00
C4—C6—C8117.90 (14)C6—C7—H7A110.00
C7—C6—C8122.06 (14)C6—C7—H7B109.00
C4—C6—C7120.04 (13)C6—C7—H7C110.00
C6—C8—C9122.28 (13)H7A—C7—H7B109.00
C1—C9—C10121.61 (13)H7A—C7—H7C109.00
C8—C9—C10119.95 (12)H7B—C7—H7C109.00
C1—C9—C8118.31 (13)C6—C8—H8119.00
O11—C10—C9120.44 (13)C9—C8—H8119.00
C9—C10—C12119.84 (12)C12—C13—H13120.00
O11—C10—C12119.71 (13)C14—C13—H13120.00
C10—C12—C13118.72 (13)C13—C14—H14120.00
C13—C12—C17119.15 (14)C15—C14—H14120.00
C10—C12—C17122.11 (13)C14—C15—H15120.00
C12—C13—C14120.27 (16)C16—C15—H15120.00
C13—C14—C15120.12 (18)C15—C16—H16120.00
C14—C15—C16120.39 (18)C17—C16—H16120.00
C15—C16—C17120.04 (16)C12—C17—H17120.00
C12—C17—C16119.96 (16)C16—C17—H17120.00
C9—C1—C2—C3178.40 (15)C1—C9—C10—O11158.32 (15)
C9—C1—C2—C40.1 (2)C1—C9—C10—C1220.0 (2)
C2—C1—C9—C80.2 (2)C8—C9—C10—O1117.4 (2)
C2—C1—C9—C10176.00 (13)C8—C9—C10—C12164.22 (13)
C1—C2—C4—O5179.48 (14)O11—C10—C12—C1345.2 (2)
C1—C2—C4—C60.2 (2)O11—C10—C12—C17133.42 (17)
C3—C2—C4—O51.0 (2)C9—C10—C12—C13133.19 (15)
C3—C2—C4—C6178.64 (15)C9—C10—C12—C1748.2 (2)
O5—C4—C6—C70.5 (2)C10—C12—C13—C14179.61 (15)
O5—C4—C6—C8178.98 (14)C17—C12—C13—C141.8 (2)
C2—C4—C6—C7179.84 (15)C10—C12—C17—C16178.02 (15)
C2—C4—C6—C80.7 (2)C13—C12—C17—C160.6 (2)
C4—C6—C8—C91.0 (2)C12—C13—C14—C152.3 (3)
C7—C6—C8—C9179.55 (15)C13—C14—C15—C160.5 (3)
C6—C8—C9—C10.7 (2)C14—C15—C16—C171.8 (3)
C6—C8—C9—C10176.64 (14)C15—C16—C17—C122.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O11i0.822.032.7528 (17)147
C13—H13···O5ii0.932.553.301 (2)138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O11i0.822.032.7528 (17)147
C13—H13···O5ii0.932.553.301 (2)138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2.
 

Acknowledgements

CSD would like to thank the University of Mysore for the award of an RFSMS fellowship under the head DV5/Physics/389/RFSMS/2009–2010/10.07.2012. The authors SAK and TP acknowledge the financial support provided by the UGC, New Delhi, under the Major Research Project Scheme No. F.39/737/2010 (SR).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMahendra, M., Khanum, S. A., Singh, A. K., Shashikanth, S., Doreswamy, B. H., Sridhar, M. A. & Shashidhara Prasad, J. (2005). Acta Cryst. E61, o2990–o2991.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaldoni, F. J., Claudino, A. L. R., Cruz, J. W., Chavasco, J. K., Faria e Silva, P. M., Veloso, M. P. & Dos Santos, M. H. (2009). J. Med. Food, 12, 403–407.  Google Scholar
First citationNaveen, S., Khanum, S. A., Devaiah, V. T., Shashikanth, S., Anandalwar, S. M. & Prasad, S. (2006). Anal. Sci. 22, 183–184.  Web of Science PubMed Google Scholar
First citationSelvi, A. T., Joseph, G. S. & Jayaprakasha, G. K. (2003). Food Microbiol. 20, 455–460.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds