organic compounds
N,N′-Dimethyl-N′′-(trichloroacetyl)phosphoramide
aDepartment of Inorganic Chemistry, Kiev National Taras Shevchenko University, Vladimirskaya St. 64/13, Kiev 01601, Ukraine
*Correspondence e-mail: ovchynnikov@univ.kiev.ua
In the title compound, C4H9Cl3N3O2P or CCl3C(O)NHP(O)(NHCH3)2, the P atom has a strongly distorted tetrahedral geometry due to the formation of intermolecular strong hydrogen bonds involving the N atoms. In the crystal, N—H⋯O=P and N—H⋯O=C hydrogen bonds connect the molecules into a two-dimensional array parallel to (100). An intramolecular P⋯O contact [P⋯O = 2.975 (3) Å] is observed. The CCl3 group is rotationally disordered, with occupancies of 0.60 (3) and 0.40 (3)
CCDC reference: 970429
Related literature
For the use of carbacylamidophosphates as potential new ligands for metal ions, see: Skopenko et al. (2004); Znovjyak et al. (2009); Yizhak et al. (2013); Gubina et al. (2009). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1984). For P=O and C=O bond lengths, see: Mizrahi & Modro (1982); Amirkhanov et al. (1997); Gubina & Amirkhanov (2000). For the preparation of trichloroacetylamidophosphoric acid dichloranhydride, see: Kirsanov & Derkach (1956).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1995); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 970429
10.1107/S1600536813030389/bg2520sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813030389/bg2520Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813030389/bg2520Isup3.cml
Carbacylamidophosphates of the general formula RC(O)NHP(O)R'2 are potential new ligands for metal ions (Skopenko et al., 2004; Znovjyak et al., 2009; Gubina et al., 2009). Many of these compounds also show biological activity (Amirkhanov et al., 1996, Rebrova et al., 1984). This work reports the structure of N,N'-Dimethyl-N''-trichloracetylphosphoramide (C4H9N3O2PCl3) (I).
The dichloranhydride of trichloroacetylamidophosphoric acid was prepared according to the method reported by Kirsanov (Kirsanov & Derkach, 1956). The dioxane solution (200 ml) of dichloranhydride of trichloroacetylamidophosphoric acid (27.9 g, 0.1 mol) was placed in a three-neck round-bottomed flask and cooled by ice to 268 K. Then the dry methylamine was bubbled through the dioxane solution of CCl3C(O)NHP(O)Cl2 under stirring until the solution became alkaline. The temperature was not allowed to rise above 278 K. The stirring was continued for 1 h and the solution was left under ambient conditions. H2NCH3·HCl was filtered off after 12 h and the filtrate was evaporated. The oily precipitate of I was added to acetone which led to the formation of a white crystalline powder (yield 80%). White crystals suitable for X-ray analysis were obtained from slow evaporation of a 2-propanol solution.
H atoms of methyl groups were placed at calculated positions and treated as riding on the parent atoms, with Uiso(H) = 1.5 Ueq(C). H atoms of the amide group were located in a difference Fourier map and and further refined with similarity restraints for d(N—H) and Uiso(H) = 1.2Ueq(N). The CCl3 group apperas rotationally disordered around the C1—C2 bond, with occupations of 0.60/0.40 (3)
In the title compound (I), the phosphorus environment has a strong distorted tetrahedral conformation due to the formation of strong N1—H1···O1 and N3—H3···O1 hydrogen bonds (Table 2, Fig.1). The N1—P—N3 angle has a value 98.72° and as a consequence there is an increase in the O1—P1—N3 and O1—P1—N1 angles (119.2° and 111.29°, respectively). The orientation of the C(O) and P(O) groups differs from the conformation of most CAF-ligands (Gubina & Amirkhanov, 2000), the angle between the O2C1N1 and N1PO1 planes having a value 57.3° (the pseudo-torsion angle O=C···P=O is -53.39°).
In the crystal, two intermolecular N–H···O=P hydrogen bonds connect molecules into a chain and a third N—H···O=C hydrogen bond connects the chains into a 2D array parallel to (100) (Fig.2). An intramolecular P···O contact is also present in the crystal [d(P···O) = 2.975 (3) Å], sorter than the sum of commonly accepted Van der Waals Radii (3.3 Å).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1995); cell
CAD-4 EXPRESS (Enraf–Nonius, 1995); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. A view of the title compound (I) showing the atom-numbering scheme and the formation of three type of hydrogen bonds (dashed lines). Displacement ellipsoids drawn at a 30% probability level. | |
Fig. 2. Packing view of (I) along the b axis. Only the major fraction of the CCl3 group has been represented. |
C4H9Cl3N3O2P | F(000) = 544 |
Mr = 268.46 | Dx = 1.583 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2348 reflections |
a = 10.231 (2) Å | θ = 2.0–27.1° |
b = 8.754 (2) Å | µ = 0.93 mm−1 |
c = 12.826 (3) Å | T = 293 K |
β = 101.27 (3)° | Block, colorless |
V = 1126.6 (4) Å3 | 0.4 × 0.3 × 0.3 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.060 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.0° |
Graphite monochromator | h = −12→12 |
ω/Θ scans | k = 0→10 |
3806 measured reflections | l = −15→15 |
1908 independent reflections | 3 standard reflections every 200 reflections |
1419 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.077 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.195 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.1369P)2] where P = (Fo2 + 2Fc2)/3 |
1908 reflections | (Δ/σ)max < 0.001 |
157 parameters | Δρmax = 0.82 e Å−3 |
33 restraints | Δρmin = −0.77 e Å−3 |
C4H9Cl3N3O2P | V = 1126.6 (4) Å3 |
Mr = 268.46 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.231 (2) Å | µ = 0.93 mm−1 |
b = 8.754 (2) Å | T = 293 K |
c = 12.826 (3) Å | 0.4 × 0.3 × 0.3 mm |
β = 101.27 (3)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.060 |
3806 measured reflections | 3 standard reflections every 200 reflections |
1908 independent reflections | intensity decay: 1% |
1419 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.077 | 33 restraints |
wR(F2) = 0.195 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.82 e Å−3 |
1908 reflections | Δρmin = −0.77 e Å−3 |
157 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.55195 (8) | 0.17846 (12) | 0.16971 (7) | 0.0379 (4) | |
Cl1 | 0.0184 (6) | 0.1759 (10) | 0.0571 (8) | 0.098 (2) | 0.60 (3) |
Cl2 | 0.1528 (7) | 0.2717 (16) | 0.2675 (4) | 0.108 (2) | 0.60 (3) |
Cl3 | 0.1588 (6) | 0.4570 (7) | 0.0816 (9) | 0.114 (3) | 0.60 (3) |
Cl1A | 0.0175 (8) | 0.1557 (17) | 0.0770 (15) | 0.108 (5) | 0.40 (3) |
Cl2A | 0.1466 (9) | 0.321 (3) | 0.2554 (10) | 0.134 (5) | 0.40 (3) |
Cl3A | 0.1524 (15) | 0.434 (2) | 0.050 (2) | 0.185 (9) | 0.40 (3) |
O1 | 0.5607 (3) | 0.0273 (4) | 0.2191 (3) | 0.0597 (8) | |
O2 | 0.2813 (3) | 0.0649 (4) | 0.0732 (3) | 0.0683 (10) | |
N1 | 0.3994 (3) | 0.2573 (4) | 0.1646 (3) | 0.0461 (8) | |
H1 | 0.396 (5) | 0.335 (5) | 0.197 (4) | 0.055* | |
N2 | 0.5807 (5) | 0.1646 (5) | 0.0515 (3) | 0.0668 (12) | |
H2 | 0.602 (6) | 0.080 (5) | 0.036 (5) | 0.080* | |
N3 | 0.6418 (3) | 0.3153 (4) | 0.2290 (3) | 0.0495 (9) | |
H3 | 0.605 (4) | 0.373 (6) | 0.263 (3) | 0.059* | |
C1 | 0.2872 (4) | 0.1851 (5) | 0.1188 (3) | 0.0508 (10) | |
C2 | 0.1579 (4) | 0.2697 (6) | 0.1287 (4) | 0.0724 (15) | |
C3 | 0.5757 (12) | 0.2923 (9) | −0.0197 (5) | 0.130 (4) | |
H3A | 0.6401 | 0.2781 | −0.0641 | 0.195* | |
H3B | 0.5954 | 0.3845 | 0.0208 | 0.195* | |
H3C | 0.4882 | 0.2994 | −0.0632 | 0.195* | |
C4 | 0.7862 (4) | 0.3127 (8) | 0.2458 (5) | 0.0814 (17) | |
H4A | 0.8171 | 0.4026 | 0.2152 | 0.122* | |
H4B | 0.8145 | 0.2236 | 0.2126 | 0.122* | |
H4C | 0.8226 | 0.3102 | 0.3207 | 0.122* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0356 (5) | 0.0399 (6) | 0.0419 (6) | 0.0050 (3) | 0.0166 (4) | 0.0026 (4) |
Cl1 | 0.049 (3) | 0.089 (3) | 0.137 (4) | −0.0087 (18) | −0.028 (3) | −0.040 (3) |
Cl2 | 0.069 (3) | 0.172 (6) | 0.090 (3) | 0.021 (3) | 0.0296 (16) | −0.044 (4) |
Cl3 | 0.059 (2) | 0.058 (2) | 0.198 (5) | 0.0179 (14) | −0.041 (3) | −0.004 (3) |
Cl1A | 0.037 (3) | 0.109 (7) | 0.176 (9) | 0.002 (3) | 0.017 (4) | −0.075 (6) |
Cl2A | 0.040 (3) | 0.161 (9) | 0.208 (11) | −0.018 (4) | 0.043 (4) | −0.130 (8) |
Cl3A | 0.116 (7) | 0.096 (8) | 0.292 (17) | 0.032 (5) | −0.084 (9) | 0.022 (9) |
O1 | 0.0463 (14) | 0.0482 (19) | 0.086 (2) | 0.0032 (12) | 0.0153 (13) | 0.0251 (16) |
O2 | 0.0524 (17) | 0.062 (2) | 0.087 (2) | 0.0047 (14) | 0.0037 (15) | −0.0299 (18) |
N1 | 0.0347 (15) | 0.053 (2) | 0.0496 (17) | 0.0054 (14) | 0.0070 (12) | −0.0148 (16) |
N2 | 0.103 (3) | 0.050 (3) | 0.060 (2) | 0.004 (2) | 0.049 (2) | −0.0094 (19) |
N3 | 0.0321 (16) | 0.061 (2) | 0.059 (2) | −0.0007 (13) | 0.0171 (13) | −0.0123 (17) |
C1 | 0.045 (2) | 0.051 (3) | 0.055 (2) | 0.0054 (16) | 0.0051 (17) | −0.0146 (19) |
C2 | 0.039 (2) | 0.072 (4) | 0.099 (4) | 0.006 (2) | −0.005 (2) | −0.034 (3) |
C3 | 0.263 (11) | 0.083 (5) | 0.062 (3) | 0.001 (6) | 0.076 (5) | 0.006 (3) |
C4 | 0.038 (2) | 0.090 (4) | 0.119 (5) | −0.008 (2) | 0.023 (2) | −0.016 (3) |
P1—O1 | 1.462 (3) | N1—H1 | 0.81 (3) |
P1—N2 | 1.605 (4) | N2—C3 | 1.437 (8) |
P1—N3 | 1.608 (4) | N2—H2 | 0.81 (3) |
P1—N1 | 1.696 (3) | N3—C4 | 1.451 (5) |
Cl1—C2 | 1.744 (6) | N3—H3 | 0.81 (3) |
Cl2—C2 | 1.791 (7) | C1—C2 | 1.544 (6) |
Cl3—C2 | 1.748 (7) | C3—H3A | 0.9600 |
Cl1A—C2 | 1.768 (8) | C3—H3B | 0.9600 |
Cl2A—C2 | 1.710 (9) | C3—H3C | 0.9600 |
Cl3A—C2 | 1.753 (9) | C4—H4A | 0.9600 |
O2—C1 | 1.199 (5) | C4—H4B | 0.9600 |
N1—C1 | 1.342 (5) | C4—H4C | 0.9600 |
O1—P1—N2 | 109.5 (2) | C1—C2—Cl3A | 106.1 (7) |
O1—P1—N3 | 119.3 (2) | Cl2A—C2—Cl3A | 109.4 (7) |
N2—P1—N3 | 108.0 (2) | Cl1—C2—Cl3A | 98.8 (8) |
O1—P1—N1 | 111.30 (18) | C1—C2—Cl1A | 110.2 (4) |
N2—P1—N1 | 109.4 (2) | Cl2A—C2—Cl1A | 107.6 (5) |
N3—P1—N1 | 98.72 (18) | Cl3—C2—Cl1A | 117.3 (7) |
C1—N1—P1 | 121.8 (3) | Cl3A—C2—Cl1A | 108.4 (6) |
C1—N1—H1 | 120 (3) | C1—C2—Cl2 | 106.2 (4) |
P1—N1—H1 | 118 (3) | Cl1—C2—Cl2 | 110.4 (5) |
C3—N2—P1 | 123.4 (4) | Cl3—C2—Cl2 | 109.7 (5) |
C3—N2—H2 | 122 (4) | Cl3A—C2—Cl2 | 124.1 (9) |
P1—N2—H2 | 114 (4) | Cl1A—C2—Cl2 | 101.5 (6) |
C4—N3—P1 | 122.0 (4) | N2—C3—H3A | 109.5 |
C4—N3—H3 | 120 (3) | N2—C3—H3B | 109.5 |
P1—N3—H3 | 116 (4) | H3A—C3—H3B | 109.5 |
O2—C1—N1 | 125.7 (4) | N2—C3—H3C | 109.5 |
O2—C1—C2 | 119.9 (4) | H3A—C3—H3C | 109.5 |
N1—C1—C2 | 114.3 (4) | H3B—C3—H3C | 109.5 |
C1—C2—Cl2A | 115.0 (6) | N3—C4—H4A | 109.5 |
C1—C2—Cl1 | 110.9 (4) | N3—C4—H4B | 109.5 |
Cl2A—C2—Cl1 | 115.0 (5) | H4A—C4—H4B | 109.5 |
C1—C2—Cl3 | 111.0 (4) | N3—C4—H4C | 109.5 |
Cl2A—C2—Cl3 | 95.1 (8) | H4A—C4—H4C | 109.5 |
Cl1—C2—Cl3 | 108.6 (5) | H4B—C4—H4C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.81 (3) | 2.00 (4) | 2.782 (5) | 164 (5) |
N3—H3···O1i | 0.81 (3) | 2.21 (4) | 2.953 (4) | 153 (4) |
N2—H2···O2ii | 0.81 (3) | 2.38 (4) | 3.077 (5) | 146 (6) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.81 (3) | 2.00 (4) | 2.782 (5) | 164 (5) |
N3—H3···O1i | 0.81 (3) | 2.21 (4) | 2.953 (4) | 153 (4) |
N2—H2···O2ii | 0.81 (3) | 2.38 (4) | 3.077 (5) | 146 (6) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z. |
References
Amirkhanov, V., Ovchynnikov, V., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331–1336. CAS Google Scholar
Amirkhanov, V., Ovchynnikov, V., Legendziewicz, J., Graczyk, A., Hanuza, J. & Masalik, L. (1996). Acta Phys. Pol. A, 90, 455–460. CAS Google Scholar
Enraf–Nonius (1995). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gubina, K. & Amirkhanov, V. (2000). Z. Naturforsch. Teil B, 55, 1015–1019. CAS Google Scholar
Gubina, K., Maslov, O., Trush, E., Trush, V., Ovchynnikov, V., Shishkina, S. & Amirkhanov, V. (2009). Polyhedron, 28, 2661–2666. Web of Science CSD CrossRef CAS Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Kirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 26, 2009–2014. CAS Google Scholar
Mizrahi, V. & Modro, T. (1982). Cryst. Struct. Commun. 11, 627–631. CAS Google Scholar
Rebrova, O. H., Biyushkin, V. N., Malinovskiy, T. I., Procenko, L. D. & Dneprova, T. N. (1984). Dokl. Akad. Nauk SSSR, 274, 328–332. CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skopenko, V., Amirkhanov, V., Silva, T., Vasilchenko, I., Anpilova, E. & Garnovskii, A. (2004). Usp. Khim. 73, 797–814. Google Scholar
Yizhak, R., Znovjyak, K., Ovchynnikov, V., Sliva, T., Konovalova, I., Medviediev, V., Shishkin, O. & Amirkhanov, V. (2013). Polyhedron, 62, 293–299. Web of Science CSD CrossRef CAS Google Scholar
Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.