organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1819-o1820

(11aS)-1,5,11,11a-Tetra­hydro-1-benzo­thieno[3,2-f]indolizin-3(2H)-one

aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, bInstitute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of Technologyy, Námestie slobody 17, SK-812 31 Bratislava, Slovak Republic, cInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and dInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: viktor.vrabel@stuba.sk

(Received 12 November 2013; accepted 20 November 2013; online 23 November 2013)

The absolute configuration of the title compound, C14H13NOS, was assigned from the synthesis and confirmed by the structure determination. There are two independent mol­ecules in the asymmetric unit. The central six-membered ring of the indolizine moiety adopts an envelope conformation, with the greatest deviations from the mean planes being 0.569 (3) and 0.561 (3) Å for the indolizine bridgehead C atoms of the two mol­ecules. The benzothieno ring attached to the indolizine ring system is planar to within 0.015 (3) Å in both mol­ecules. In the crystal, weak C—H⋯O and C—H⋯π inter­actions lead to the formation of a three-dimensional framework structure.

Related literature

For background to indolizine derivatives, see: Gubin et al. (1992[Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.]); Gupta et al. (2003[Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867-873.]); Liu et al. (2007[Liu, Y., Song, Z. & Yan, B. (2007). Org. Lett. 9, 409-412.]); Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]); Molyneux & James (1982[Molyneux, R. J. & James, L. F. (1982). Science, 216, 190-191.]); Nash et al. (1988[Nash, R. J., Fellows, L. E., Dring, J. V., Stirton, C. H., Carter, D., Hegarty, M. P. & Bell, E. A. (1988). Phytochemistry, 27, 1403-1406.]); Pearson & Guo (2001[Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.]); Ruprecht et al. (1989[Ruprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149-157.]); Smith et al. (2007[Smith, C. R., Bunnelle, E. M., Rhodes, A. J. & Sarpong, R. (2007). Org. Lett. 9, 1169-1171.]); Teklu et al. (2005[Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127-3139.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1362.]). For the synthesis, see: Šafář et al. (2009[Šafář, P., Žužiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009). Tetrahedron Asymmetry, pp. 626-634.]). For a related structure, see: Vrábel et al. (2012[Vrábel, V., Švorc, Ľ., Marchalín, Š. & Šafář, P. (2012). Acta Cryst. E68, o3327-o3328.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NOS

  • Mr = 243.31

  • Monoclinic, P 21

  • a = 9.3327 (8) Å

  • b = 12.4575 (7) Å

  • c = 10.3103 (7) Å

  • β = 105.469 (8)°

  • V = 1155.27 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, , England.]) Tmin = 0.942, Tmax = 0.969

  • 17520 measured reflections

  • 4061 independent reflections

  • 2918 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.065

  • S = 0.94

  • 4061 reflections

  • 307 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1923 Friedel pairs

  • Absolute structure parameter: −0.07 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg14 are the centroids of the C8–C13 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯O2i 0.97 2.48 3.307 (4) 144
C3—H3BCg14 0.97 2.59 3.502 (3) 157
C17—H17ACg4 0.97 2.92 3.800 (4) 151
C29—H29BCg4ii 0.97 2.90 3.706 (3) 142
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, , England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, , England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heterocycles are involved in a wide range of biologically important chemical reactions in living organisms, and therefore they form one of the most important and well investigated classes of organic compounds. One group of heterocycles, indolizines, has received much scientific attention during the recent years. Indolizine derivatives have been found to possess a variety of biological activities such as antibacterial, anti-inflammatory, antiviral, (Nash et al., 1988; Molyneux & James, 1982; Medda et al., 2003), anti-HIV (Ruprecht et al., 1989), anti-cancer (Liu et al., 2007; Smith et al., 2007), and antitumor (Pearson & Guo, 2001). They have also shown to be calcium entry blockers (Gupta et al., 2003) and potent antioxidants inhibiting lipid peroxidation in vitro (Teklu et al., 2005). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992). Based on these facts and in continuation of our interest in developing simple and efficient route for the synthesis of novel indolizine derivatives, we report here the synthesis, molecular and crystal structure of the title compound (I), which crystallizes in the monoclinic space group P21 with two crystallographic independent molecules in asymmetric unit. The absolute configuration has been established without ambiguity from the anomalous dispersion of the S atom (Flack, 1983) and assigned consistent with the starting material. The expected stereochemistry of both atoms C5 and C19 was confirmed as S, see Fig. 1. Molecular packing view of the title compound (I) in the crystal structure is shown in Fig. 2. The central six-membered N-heterocyclic ring is not planar and assumes a chair conformation, with total puckering amplytude QT of 0.406 (3) Å and orientation angles theta and phi of 0.129,5 (5)° and 169 (5)° (QT of 0.400 (3) Å, theta and phi of 173,3 (5)° and 128,8 (4)°, respectively, for second molecule) (Cremer & Pople, 1975). Atoms C5 and C19 are displaced of 0.569 (3) Å and -0.561 (3) Å, respectively, from the C9/C10/C12/C13 and C20/C21/C28/C29/N2 mean planes. The dihedral angles between the planes of the central N-heterocyclic ring and the plane of the pyrrolidine ring are 24.7 (1)° and 24.1 (1)°, respectively, for second molecule. Atoms N1 and N2 are sp2-hybridized, as evidenced by the sum of the valence angles around them (358.54° and 358.99°, respectively, for second molecule). These data are consistent with conjugation of the lone-pair electrons on nitrogen atom with the adjacent carbonyl, similar to what is observed for amides. Bond lengths and angles in the indolizine ring system are in good agreement with values from the literature (Vrábel et al., 2012). The molecular structure is stabilized by weak intramolecular C–H···O interactions (Fig.2). The molecular packing is further stabilized by C–H···Pi interactions [C3–H3B···Cg14i: Cg14 are the centroid of the rings defined by the atoms C22—C27; C17–H17A···Cg4i and C29–H29B···Cg4ii: Cg4 are the centroid of the rings defined by the atoms C8—C13; symmetry operator for generating equivalent atoms: (i) x, y, z; (ii) -1 + x, y, z].

Related literature top

For background to indolizine derivatives, see: Gubin et al. (1992); Gupta et al. (2003); Liu et al. (2007); Medda et al. (2003); Molyneux & James (1982); Nash et al. (1988); Pearson & Guo (2001); Ruprecht et al. (1989); Smith et al. (2007); Teklu et al. (2005). For ring conformations, see: Cremer & Pople (1975). For the synthesis, see: Šafář et al. (2009). For a related structure, see: Vrábel et al. (2012).

Experimental top

The title compound was prepared according to a standard protocol described in literature (Šafář et al., 2009).

Refinement top

All H atoms were positioned with idealized geometry using a riding model with C—H distances are in the range 0.93 - 0.98 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic). An absolute structure was established using anomalous dispersion effects; 1923 Friedel pairs were not merged.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), WinGX (Farrugia, 2012) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme of the two independent molecules. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).
[Figure 2] Fig. 2. Molecular packing view of the title compound (I) in the crystal structure. Hydrogen bonds were shown as dashed lines. H atoms have been omitted for clarity.
(11aS)-1,5,11,11a-Tetrahydro-1-benzothieno[3,2-f]indolizin-3(2H)-one top
Crystal data top
C14H13NOSF(000) = 512
Mr = 243.31Dx = 1.399 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3929 reflections
a = 9.3327 (8) Åθ = 3.9–24.6°
b = 12.4575 (7) ŵ = 0.26 mm1
c = 10.3103 (7) ÅT = 295 K
β = 105.469 (8)°Block, colourless
V = 1155.27 (14) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini)
diffractometer
4061 independent reflections
Radiation source: fine-focus sealed tube2918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 10.4340 pixels mm-1θmax = 25.0°, θmin = 3.8°
ω scansh = 1111
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1414
Tmin = 0.942, Tmax = 0.969l = 1212
17520 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0158P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
4061 reflectionsΔρmax = 0.19 e Å3
307 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1923 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Crystal data top
C14H13NOSV = 1155.27 (14) Å3
Mr = 243.31Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.3327 (8) ŵ = 0.26 mm1
b = 12.4575 (7) ÅT = 295 K
c = 10.3103 (7) Å0.30 × 0.20 × 0.15 mm
β = 105.469 (8)°
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini)
diffractometer
4061 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
2918 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.969Rint = 0.093
17520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.19 e Å3
S = 0.94Δρmin = 0.16 e Å3
4061 reflectionsAbsolute structure: Flack (1983), 1923 Friedel pairs
307 parametersAbsolute structure parameter: 0.07 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C91.1545 (4)0.5063 (2)1.0070 (3)0.0510 (9)
H91.19300.57511.00580.061*
C101.2105 (4)0.4396 (3)1.1129 (3)0.0575 (9)
H101.28650.46321.18530.069*
C111.1545 (4)0.3363 (3)1.1131 (3)0.0549 (9)
H111.19510.29071.18500.066*
C121.0399 (3)0.3006 (2)1.0084 (3)0.0510 (8)
H121.00300.23141.01050.061*
C150.7720 (3)0.2472 (2)0.7527 (3)0.0493 (8)
H15B0.83620.18950.73910.059*
H15A0.73390.22840.82860.059*
C20.5277 (4)0.1948 (2)0.6049 (3)0.0460 (8)
C30.4370 (3)0.2215 (2)0.4647 (3)0.0505 (8)
H3B0.33500.23740.46400.061*
H3A0.43720.16190.40420.061*
C40.5101 (4)0.3191 (2)0.4224 (3)0.0560 (9)
H4B0.45300.38340.42710.067*
H4A0.51830.31090.33110.067*
C60.7111 (3)0.4385 (2)0.5692 (3)0.0483 (8)
H6B0.74760.47570.50180.058*
H6A0.62660.47810.58260.058*
C81.0392 (3)0.4704 (2)0.9009 (3)0.0402 (7)
C130.9791 (3)0.36689 (19)0.8999 (3)0.0386 (7)
C70.8309 (3)0.43324 (19)0.6986 (3)0.0410 (7)
C140.8593 (3)0.3489 (2)0.7827 (3)0.0392 (7)
C50.6634 (3)0.3257 (2)0.5214 (3)0.0443 (8)
H50.73730.29400.48080.053*
C230.0755 (3)0.3963 (2)0.4371 (3)0.0459 (8)
H230.04590.44570.36750.055*
C240.0128 (3)0.2967 (2)0.4263 (3)0.0490 (8)
H240.05900.27760.34830.059*
C250.0553 (3)0.2236 (2)0.5311 (3)0.0489 (8)
H250.01090.15620.52280.059*
C260.1622 (3)0.2495 (2)0.6473 (3)0.0440 (8)
H260.18910.20030.71740.053*
C290.4260 (3)0.3311 (2)0.8896 (3)0.0419 (7)
H29B0.35580.31570.94160.050*
H29A0.46270.26340.86490.050*
C160.6609 (4)0.3507 (2)1.0638 (3)0.0497 (8)
C170.7553 (4)0.4401 (2)1.1378 (3)0.0576 (9)
H17B0.74650.44511.22920.069*
H17A0.85890.42871.14060.069*
C180.6977 (4)0.5393 (3)1.0606 (3)0.0731 (10)
H18B0.76230.56111.00570.088*
H18A0.69150.59761.12130.088*
C200.5094 (3)0.5562 (2)0.8317 (3)0.0439 (7)
H20B0.47900.63060.83230.053*
H20A0.59740.55330.79870.053*
C220.1835 (3)0.42259 (19)0.5527 (3)0.0365 (7)
C270.2297 (3)0.3498 (2)0.6591 (2)0.0338 (7)
C210.3872 (3)0.4920 (2)0.7414 (3)0.0375 (7)
C280.3499 (3)0.3920 (2)0.7654 (2)0.0338 (6)
C190.5440 (4)0.51079 (19)0.9726 (3)0.0466 (8)
H190.46830.53431.01650.056*
N10.6489 (3)0.25973 (16)0.6329 (2)0.0427 (6)
N20.5487 (3)0.39360 (16)0.9700 (2)0.0430 (6)
O10.5026 (3)0.12637 (15)0.6797 (2)0.0613 (6)
O20.6828 (3)0.25454 (16)1.0830 (2)0.0706 (7)
S10.94828 (9)0.54148 (6)0.75781 (7)0.0501 (2)
S20.28209 (8)0.54190 (6)0.58804 (7)0.0476 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.044 (2)0.0506 (19)0.055 (2)0.0032 (15)0.0087 (18)0.0123 (14)
C100.043 (2)0.074 (2)0.049 (2)0.0014 (19)0.0014 (16)0.0114 (17)
C110.048 (2)0.071 (2)0.042 (2)0.0015 (18)0.0059 (17)0.0063 (15)
C120.049 (2)0.0541 (18)0.0468 (19)0.0069 (16)0.0081 (18)0.0042 (14)
C150.048 (2)0.0450 (17)0.049 (2)0.0015 (15)0.0036 (17)0.0027 (13)
C20.036 (2)0.0430 (18)0.057 (2)0.0069 (15)0.0098 (17)0.0096 (16)
C30.039 (2)0.0594 (19)0.050 (2)0.0049 (16)0.0052 (16)0.0099 (15)
C40.052 (2)0.061 (2)0.047 (2)0.0021 (17)0.0016 (17)0.0016 (15)
C60.055 (2)0.0417 (16)0.0427 (18)0.0017 (15)0.0038 (16)0.0023 (13)
C80.040 (2)0.0402 (17)0.0414 (18)0.0004 (14)0.0134 (16)0.0031 (12)
C130.0358 (19)0.0418 (17)0.0387 (17)0.0004 (13)0.0112 (15)0.0003 (13)
C70.043 (2)0.0371 (16)0.0429 (18)0.0020 (13)0.0110 (15)0.0021 (13)
C140.043 (2)0.0348 (15)0.0384 (17)0.0012 (13)0.0079 (15)0.0008 (12)
C50.044 (2)0.0455 (17)0.0397 (18)0.0064 (14)0.0040 (15)0.0017 (13)
C230.035 (2)0.0551 (19)0.0393 (18)0.0062 (15)0.0044 (15)0.0019 (14)
C240.0348 (19)0.064 (2)0.0426 (19)0.0037 (16)0.0001 (15)0.0093 (15)
C250.039 (2)0.0517 (18)0.053 (2)0.0080 (15)0.0067 (17)0.0070 (15)
C260.044 (2)0.0436 (17)0.0400 (18)0.0026 (14)0.0039 (15)0.0021 (13)
C290.041 (2)0.0412 (16)0.0375 (17)0.0023 (14)0.0008 (15)0.0007 (13)
C160.047 (2)0.054 (2)0.043 (2)0.0011 (16)0.0025 (17)0.0058 (15)
C170.049 (2)0.065 (2)0.048 (2)0.0036 (18)0.0049 (16)0.0054 (16)
C180.064 (2)0.0528 (18)0.076 (2)0.009 (2)0.0280 (19)0.011 (2)
C200.0431 (19)0.0358 (15)0.0482 (17)0.0014 (14)0.0043 (15)0.0004 (14)
C220.0300 (18)0.0410 (16)0.0378 (17)0.0039 (13)0.0077 (14)0.0015 (13)
C270.0271 (17)0.0387 (15)0.0341 (16)0.0020 (12)0.0056 (13)0.0019 (12)
C210.0327 (18)0.0419 (15)0.0363 (17)0.0032 (13)0.0064 (15)0.0005 (12)
C280.0286 (17)0.0362 (15)0.0347 (16)0.0042 (12)0.0048 (14)0.0002 (12)
C190.048 (2)0.046 (2)0.0414 (18)0.0017 (14)0.0059 (16)0.0128 (12)
N10.0402 (16)0.0426 (13)0.0399 (15)0.0010 (12)0.0013 (13)0.0031 (10)
N20.0426 (17)0.0377 (13)0.0371 (14)0.0006 (11)0.0098 (13)0.0006 (11)
O10.0606 (16)0.0558 (13)0.0660 (16)0.0128 (12)0.0143 (12)0.0043 (11)
O20.0664 (18)0.0542 (14)0.0728 (16)0.0012 (12)0.0136 (13)0.0196 (11)
S10.0572 (6)0.0374 (4)0.0534 (5)0.0046 (4)0.0106 (4)0.0005 (4)
S20.0444 (5)0.0419 (4)0.0493 (4)0.0005 (4)0.0001 (4)0.0096 (4)
Geometric parameters (Å, º) top
C9—C101.361 (4)C23—C241.364 (4)
C9—C81.389 (4)C23—C221.380 (3)
C9—H90.9300C23—H230.9300
C10—C111.389 (4)C24—C251.387 (4)
C10—H100.9300C24—H240.9300
C11—C121.375 (4)C25—C261.378 (4)
C11—H110.9300C25—H250.9300
C12—C131.385 (4)C26—C271.389 (3)
C12—H120.9300C26—H260.9300
C15—N11.454 (3)C29—N21.449 (3)
C15—C141.493 (4)C29—C281.495 (3)
C15—H15B0.9700C29—H29B0.9700
C15—H15A0.9700C29—H29A0.9700
C2—O11.214 (3)C16—O21.222 (3)
C2—N11.358 (4)C16—N21.333 (3)
C2—C31.505 (4)C16—C171.497 (4)
C3—C41.514 (4)C17—C181.490 (4)
C3—H3B0.9700C17—H17B0.9700
C3—H3A0.9700C17—H17A0.9700
C4—C51.522 (4)C18—C191.520 (4)
C4—H4B0.9700C18—H18B0.9700
C4—H4A0.9700C18—H18A0.9700
C6—C71.496 (4)C20—C211.497 (4)
C6—C51.516 (3)C20—C191.512 (3)
C6—H6B0.9700C20—H20B0.9700
C6—H6A0.9700C20—H20A0.9700
C8—C131.405 (3)C22—C271.399 (3)
C8—S11.736 (3)C22—S21.735 (3)
C13—C141.428 (4)C27—C281.443 (4)
C7—C141.343 (3)C21—C281.333 (3)
C7—S11.742 (3)C21—S21.739 (3)
C5—N11.449 (3)C19—N21.461 (3)
C5—H50.9800C19—H190.9800
C10—C9—C8119.1 (3)C23—C24—H24119.8
C10—C9—H9120.5C25—C24—H24119.8
C8—C9—H9120.5C26—C25—C24120.9 (3)
C9—C10—C11120.3 (3)C26—C25—H25119.5
C9—C10—H10119.9C24—C25—H25119.5
C11—C10—H10119.9C25—C26—C27119.5 (3)
C12—C11—C10120.8 (3)C25—C26—H26120.2
C12—C11—H11119.6C27—C26—H26120.2
C10—C11—H11119.6N2—C29—C28109.9 (2)
C11—C12—C13120.5 (3)N2—C29—H29B109.7
C11—C12—H12119.8C28—C29—H29B109.7
C13—C12—H12119.8N2—C29—H29A109.7
N1—C15—C14110.4 (2)C28—C29—H29A109.7
N1—C15—H15B109.6H29B—C29—H29A108.2
C14—C15—H15B109.6O2—C16—N2125.2 (3)
N1—C15—H15A109.6O2—C16—C17126.6 (3)
C14—C15—H15A109.6N2—C16—C17108.2 (2)
H15B—C15—H15A108.1C18—C17—C16105.4 (2)
O1—C2—N1125.1 (3)C18—C17—H17B110.7
O1—C2—C3127.7 (3)C16—C17—H17B110.7
N1—C2—C3107.2 (3)C18—C17—H17A110.7
C2—C3—C4105.8 (3)C16—C17—H17A110.7
C2—C3—H3B110.6H17B—C17—H17A108.8
C4—C3—H3B110.6C17—C18—C19105.8 (3)
C2—C3—H3A110.6C17—C18—H18B110.6
C4—C3—H3A110.6C19—C18—H18B110.6
H3B—C3—H3A108.7C17—C18—H18A110.6
C3—C4—C5105.4 (2)C19—C18—H18A110.6
C3—C4—H4B110.7H18B—C18—H18A108.7
C5—C4—H4B110.7C21—C20—C19109.3 (2)
C3—C4—H4A110.7C21—C20—H20B109.8
C5—C4—H4A110.7C19—C20—H20B109.8
H4B—C4—H4A108.8C21—C20—H20A109.8
C7—C6—C5109.5 (2)C19—C20—H20A109.8
C7—C6—H6B109.8H20B—C20—H20A108.3
C5—C6—H6B109.8C23—C22—C27121.6 (2)
C7—C6—H6A109.8C23—C22—S2127.6 (2)
C5—C6—H6A109.8C27—C22—S2110.82 (19)
H6B—C6—H6A108.2C26—C27—C22118.5 (2)
C9—C8—C13121.7 (3)C26—C27—C28129.5 (2)
C9—C8—S1127.3 (2)C22—C27—C28111.9 (2)
C13—C8—S1111.0 (2)C28—C21—C20125.3 (3)
C12—C13—C8117.7 (2)C28—C21—S2113.0 (2)
C12—C13—C14130.5 (2)C20—C21—S2121.7 (2)
C8—C13—C14111.8 (2)C21—C28—C27112.9 (2)
C14—C7—C6125.6 (2)C21—C28—C29123.0 (3)
C14—C7—S1112.4 (2)C27—C28—C29124.1 (2)
C6—C7—S1121.96 (19)N2—C19—C20110.9 (2)
C7—C14—C13113.5 (2)N2—C19—C18102.5 (3)
C7—C14—C15121.8 (2)C20—C19—C18114.4 (3)
C13—C14—C15124.7 (2)N2—C19—H19109.6
N1—C5—C6110.4 (2)C20—C19—H19109.6
N1—C5—C4103.4 (2)C18—C19—H19109.6
C6—C5—C4114.2 (2)C2—N1—C5114.7 (2)
N1—C5—H5109.5C2—N1—C15122.8 (2)
C6—C5—H5109.5C5—N1—C15121.0 (2)
C4—C5—H5109.5C16—N2—C29123.2 (2)
C24—C23—C22119.0 (3)C16—N2—C19114.1 (2)
C24—C23—H23120.5C29—N2—C19121.6 (2)
C22—C23—H23120.5C8—S1—C791.27 (13)
C23—C24—C25120.4 (3)C22—S2—C2191.34 (13)
C8—C9—C10—C111.2 (5)C19—C20—C21—C2821.4 (4)
C9—C10—C11—C121.4 (5)C19—C20—C21—S2160.9 (2)
C10—C11—C12—C130.6 (5)C20—C21—C28—C27178.7 (3)
O1—C2—C3—C4175.0 (3)S2—C21—C28—C270.9 (3)
N1—C2—C3—C47.1 (3)C20—C21—C28—C291.1 (4)
C2—C3—C4—C515.9 (3)S2—C21—C28—C29179.0 (2)
C10—C9—C8—C130.1 (5)C26—C27—C28—C21179.2 (3)
C10—C9—C8—S1178.7 (2)C22—C27—C28—C212.2 (3)
C11—C12—C13—C80.4 (4)C26—C27—C28—C290.7 (5)
C11—C12—C13—C14178.5 (3)C22—C27—C28—C29177.7 (2)
C9—C8—C13—C120.7 (4)N2—C29—C28—C214.3 (4)
S1—C8—C13—C12179.7 (2)N2—C29—C28—C27175.6 (3)
C9—C8—C13—C14178.4 (3)C21—C20—C19—N243.4 (3)
S1—C8—C13—C140.6 (3)C21—C20—C19—C18158.6 (3)
C5—C6—C7—C1420.3 (4)C17—C18—C19—N219.3 (3)
C5—C6—C7—S1161.2 (2)C17—C18—C19—C20139.3 (3)
C6—C7—C14—C13179.1 (3)O1—C2—N1—C5172.6 (3)
S1—C7—C14—C130.5 (3)C3—C2—N1—C55.3 (3)
C6—C7—C14—C151.1 (5)O1—C2—N1—C156.3 (5)
S1—C7—C14—C15179.8 (2)C3—C2—N1—C15171.7 (2)
C12—C13—C14—C7179.6 (3)C6—C5—N1—C2137.8 (3)
C8—C13—C14—C70.7 (4)C4—C5—N1—C215.3 (3)
C12—C13—C14—C150.7 (5)C6—C5—N1—C1555.6 (3)
C8—C13—C14—C15179.6 (3)C4—C5—N1—C15178.1 (2)
N1—C15—C14—C76.2 (4)C14—C15—N1—C2159.5 (3)
N1—C15—C14—C13174.1 (3)C14—C15—N1—C535.0 (4)
C7—C6—C5—N143.3 (3)O2—C16—N2—C298.5 (5)
C7—C6—C5—C4159.2 (3)C17—C16—N2—C29172.7 (3)
C3—C4—C5—N118.4 (3)O2—C16—N2—C19177.2 (3)
C3—C4—C5—C6138.4 (2)C17—C16—N2—C194.1 (4)
C22—C23—C24—C251.1 (4)C28—C29—N2—C16160.2 (3)
C23—C24—C25—C260.6 (5)C28—C29—N2—C1931.9 (3)
C24—C25—C26—C270.7 (5)C20—C19—N2—C16137.3 (3)
O2—C16—C17—C18169.8 (3)C18—C19—N2—C1614.9 (3)
N2—C16—C17—C188.9 (4)C20—C19—N2—C2953.8 (3)
C16—C17—C18—C1917.6 (4)C18—C19—N2—C29176.3 (3)
C24—C23—C22—C270.2 (4)C9—C8—S1—C7178.7 (3)
C24—C23—C22—S2178.3 (2)C13—C8—S1—C70.3 (2)
C25—C26—C27—C221.5 (4)C14—C7—S1—C80.1 (2)
C25—C26—C27—C28175.3 (3)C6—C7—S1—C8178.8 (3)
C23—C22—C27—C261.1 (4)C23—C22—S2—C21177.0 (3)
S2—C22—C27—C26179.8 (2)C27—C22—S2—C211.7 (2)
C23—C22—C27—C28176.3 (3)C28—C21—S2—C220.5 (2)
S2—C22—C27—C282.5 (3)C20—C21—S2—C22177.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg14 are the centroids of the C8–C13 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20B···O2i0.972.483.307 (4)144
C3—H3B···Cg140.972.593.502 (3)157
C17—H17A···Cg40.972.923.800 (4)151
C29—H29B···Cg4ii0.972.903.706 (3)142
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg14 are the centroids of the C8–C13 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20B···O2i0.972.483.307 (4)143.6
C3—H3B···Cg140.972.593.502 (3)157.0
C17—H17A···Cg40.972.923.800 (4)151.0
C29—H29B···Cg4ii0.972.903.706 (3)142.0
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x1, y, z.
 

Acknowledgements

The authors thank the Grant Agency of the Ministry of Education of the Slovak Republic, (grant Nos. 1/0429/11 and 1/0679/11) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. This work was supported by the Slovak Research and Development Agency under contract Nos. APVV-0797–11 and APVV-0204–10, and the Structural Funds, Inter­reg IIIA. This contribution is also the result of the project `Research Center for Industrial Synthesis of Drugs, ITMS 26240220061′ supported by the Research & Development Operational Programme funded by the ERDF.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1362.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Song, Z. & Yan, B. (2007). Org. Lett. 9, 409–412.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolyneux, R. J. & James, L. F. (1982). Science, 216, 190–191.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNash, R. J., Fellows, L. E., Dring, J. V., Stirton, C. H., Carter, D., Hegarty, M. P. & Bell, E. A. (1988). Phytochemistry, 27, 1403–1406.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, , England.  Google Scholar
First citationPearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.  Web of Science CrossRef CAS Google Scholar
First citationRuprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149–157.  CAS PubMed Web of Science Google Scholar
First citationŠafář, P., Žužiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009). Tetrahedron Asymmetry, pp. 626–634.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, C. R., Bunnelle, E. M., Rhodes, A. J. & Sarpong, R. (2007). Org. Lett. 9, 1169–1171.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVrábel, V., Švorc, Ľ., Marchalín, Š. & Šafář, P. (2012). Acta Cryst. E68, o3327–o3328.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1819-o1820
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds