organic compounds
(11aS)-1,5,11,11a-Tetrahydro-1-benzothieno[3,2-f]indolizin-3(2H)-one
aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, bInstitute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of Technologyy, Námestie slobody 17, SK-812 31 Bratislava, Slovak Republic, cInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and dInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: viktor.vrabel@stuba.sk
The 14H13NOS, was assigned from the synthesis and confirmed by the There are two independent molecules in the The central six-membered ring of the indolizine moiety adopts an with the greatest deviations from the mean planes being 0.569 (3) and 0.561 (3) Å for the indolizine bridgehead C atoms of the two molecules. The benzothieno ring attached to the indolizine ring system is planar to within 0.015 (3) Å in both molecules. In the crystal, weak C—H⋯O and C—H⋯π interactions lead to the formation of a three-dimensional framework structure.
of the title compound, CCCDC reference: 972900
Related literature
For background to indolizine derivatives, see: Gubin et al. (1992); Gupta et al. (2003); Liu et al. (2007); Medda et al. (2003); Molyneux & James (1982); Nash et al. (1988); Pearson & Guo (2001); Ruprecht et al. (1989); Smith et al. (2007); Teklu et al. (2005). For ring conformations, see: Cremer & Pople (1975). For the synthesis, see: Šafář et al. (2009). For a related structure, see: Vrábel et al. (2012).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), WinGX (Farrugia, 2012) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 972900
10.1107/S1600536813031693/bq2390sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813031693/bq2390Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813031693/bq2390Isup3.cml
The title compound was prepared according to a standard protocol described in literature (Šafář et al., 2009).
All H atoms were positioned with idealized geometry using a riding model with C—H distances are in the range 0.93 - 0.98 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic). An
was established using effects; 1923 Friedel pairs were not merged.Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), WinGX (Farrugia, 2012) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound showing the atom labeling scheme of the two independent molecules. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001). | |
Fig. 2. Molecular packing view of the title compound (I) in the crystal structure. Hydrogen bonds were shown as dashed lines. H atoms have been omitted for clarity. |
C14H13NOS | F(000) = 512 |
Mr = 243.31 | Dx = 1.399 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 3929 reflections |
a = 9.3327 (8) Å | θ = 3.9–24.6° |
b = 12.4575 (7) Å | µ = 0.26 mm−1 |
c = 10.3103 (7) Å | T = 295 K |
β = 105.469 (8)° | Block, colourless |
V = 1155.27 (14) Å3 | 0.30 × 0.20 × 0.15 mm |
Z = 4 |
Oxford Diffraction Xcalibur (Ruby, Gemini) diffractometer | 4061 independent reflections |
Radiation source: fine-focus sealed tube | 2918 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.093 |
Detector resolution: 10.4340 pixels mm-1 | θmax = 25.0°, θmin = 3.8° |
ω scans | h = −11→11 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009) | k = −14→14 |
Tmin = 0.942, Tmax = 0.969 | l = −12→12 |
17520 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.0158P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.94 | (Δ/σ)max < 0.001 |
4061 reflections | Δρmax = 0.19 e Å−3 |
307 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1923 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.07 (6) |
C14H13NOS | V = 1155.27 (14) Å3 |
Mr = 243.31 | Z = 4 |
Monoclinic, P21 | Mo Kα radiation |
a = 9.3327 (8) Å | µ = 0.26 mm−1 |
b = 12.4575 (7) Å | T = 295 K |
c = 10.3103 (7) Å | 0.30 × 0.20 × 0.15 mm |
β = 105.469 (8)° |
Oxford Diffraction Xcalibur (Ruby, Gemini) diffractometer | 4061 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009) | 2918 reflections with I > 2σ(I) |
Tmin = 0.942, Tmax = 0.969 | Rint = 0.093 |
17520 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.065 | Δρmax = 0.19 e Å−3 |
S = 0.94 | Δρmin = −0.16 e Å−3 |
4061 reflections | Absolute structure: Flack (1983), 1923 Friedel pairs |
307 parameters | Absolute structure parameter: −0.07 (6) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C9 | 1.1545 (4) | 0.5063 (2) | 1.0070 (3) | 0.0510 (9) | |
H9 | 1.1930 | 0.5751 | 1.0058 | 0.061* | |
C10 | 1.2105 (4) | 0.4396 (3) | 1.1129 (3) | 0.0575 (9) | |
H10 | 1.2865 | 0.4632 | 1.1853 | 0.069* | |
C11 | 1.1545 (4) | 0.3363 (3) | 1.1131 (3) | 0.0549 (9) | |
H11 | 1.1951 | 0.2907 | 1.1850 | 0.066* | |
C12 | 1.0399 (3) | 0.3006 (2) | 1.0084 (3) | 0.0510 (8) | |
H12 | 1.0030 | 0.2314 | 1.0105 | 0.061* | |
C15 | 0.7720 (3) | 0.2472 (2) | 0.7527 (3) | 0.0493 (8) | |
H15B | 0.8362 | 0.1895 | 0.7391 | 0.059* | |
H15A | 0.7339 | 0.2284 | 0.8286 | 0.059* | |
C2 | 0.5277 (4) | 0.1948 (2) | 0.6049 (3) | 0.0460 (8) | |
C3 | 0.4370 (3) | 0.2215 (2) | 0.4647 (3) | 0.0505 (8) | |
H3B | 0.3350 | 0.2374 | 0.4640 | 0.061* | |
H3A | 0.4372 | 0.1619 | 0.4042 | 0.061* | |
C4 | 0.5101 (4) | 0.3191 (2) | 0.4224 (3) | 0.0560 (9) | |
H4B | 0.4530 | 0.3834 | 0.4271 | 0.067* | |
H4A | 0.5183 | 0.3109 | 0.3311 | 0.067* | |
C6 | 0.7111 (3) | 0.4385 (2) | 0.5692 (3) | 0.0483 (8) | |
H6B | 0.7476 | 0.4757 | 0.5018 | 0.058* | |
H6A | 0.6266 | 0.4781 | 0.5826 | 0.058* | |
C8 | 1.0392 (3) | 0.4704 (2) | 0.9009 (3) | 0.0402 (7) | |
C13 | 0.9791 (3) | 0.36689 (19) | 0.8999 (3) | 0.0386 (7) | |
C7 | 0.8309 (3) | 0.43324 (19) | 0.6986 (3) | 0.0410 (7) | |
C14 | 0.8593 (3) | 0.3489 (2) | 0.7827 (3) | 0.0392 (7) | |
C5 | 0.6634 (3) | 0.3257 (2) | 0.5214 (3) | 0.0443 (8) | |
H5 | 0.7373 | 0.2940 | 0.4808 | 0.053* | |
C23 | 0.0755 (3) | 0.3963 (2) | 0.4371 (3) | 0.0459 (8) | |
H23 | 0.0459 | 0.4457 | 0.3675 | 0.055* | |
C24 | 0.0128 (3) | 0.2967 (2) | 0.4263 (3) | 0.0490 (8) | |
H24 | −0.0590 | 0.2776 | 0.3483 | 0.059* | |
C25 | 0.0553 (3) | 0.2236 (2) | 0.5311 (3) | 0.0489 (8) | |
H25 | 0.0109 | 0.1562 | 0.5228 | 0.059* | |
C26 | 0.1622 (3) | 0.2495 (2) | 0.6473 (3) | 0.0440 (8) | |
H26 | 0.1891 | 0.2003 | 0.7174 | 0.053* | |
C29 | 0.4260 (3) | 0.3311 (2) | 0.8896 (3) | 0.0419 (7) | |
H29B | 0.3558 | 0.3157 | 0.9416 | 0.050* | |
H29A | 0.4627 | 0.2634 | 0.8649 | 0.050* | |
C16 | 0.6609 (4) | 0.3507 (2) | 1.0638 (3) | 0.0497 (8) | |
C17 | 0.7553 (4) | 0.4401 (2) | 1.1378 (3) | 0.0576 (9) | |
H17B | 0.7465 | 0.4451 | 1.2292 | 0.069* | |
H17A | 0.8589 | 0.4287 | 1.1406 | 0.069* | |
C18 | 0.6977 (4) | 0.5393 (3) | 1.0606 (3) | 0.0731 (10) | |
H18B | 0.7623 | 0.5611 | 1.0057 | 0.088* | |
H18A | 0.6915 | 0.5976 | 1.1213 | 0.088* | |
C20 | 0.5094 (3) | 0.5562 (2) | 0.8317 (3) | 0.0439 (7) | |
H20B | 0.4790 | 0.6306 | 0.8323 | 0.053* | |
H20A | 0.5974 | 0.5533 | 0.7987 | 0.053* | |
C22 | 0.1835 (3) | 0.42259 (19) | 0.5527 (3) | 0.0365 (7) | |
C27 | 0.2297 (3) | 0.3498 (2) | 0.6591 (2) | 0.0338 (7) | |
C21 | 0.3872 (3) | 0.4920 (2) | 0.7414 (3) | 0.0375 (7) | |
C28 | 0.3499 (3) | 0.3920 (2) | 0.7654 (2) | 0.0338 (6) | |
C19 | 0.5440 (4) | 0.51079 (19) | 0.9726 (3) | 0.0466 (8) | |
H19 | 0.4683 | 0.5343 | 1.0165 | 0.056* | |
N1 | 0.6489 (3) | 0.25973 (16) | 0.6329 (2) | 0.0427 (6) | |
N2 | 0.5487 (3) | 0.39360 (16) | 0.9700 (2) | 0.0430 (6) | |
O1 | 0.5026 (3) | 0.12637 (15) | 0.6797 (2) | 0.0613 (6) | |
O2 | 0.6828 (3) | 0.25454 (16) | 1.0830 (2) | 0.0706 (7) | |
S1 | 0.94828 (9) | 0.54148 (6) | 0.75781 (7) | 0.0501 (2) | |
S2 | 0.28209 (8) | 0.54190 (6) | 0.58804 (7) | 0.0476 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C9 | 0.044 (2) | 0.0506 (19) | 0.055 (2) | −0.0032 (15) | 0.0087 (18) | −0.0123 (14) |
C10 | 0.043 (2) | 0.074 (2) | 0.049 (2) | −0.0014 (19) | 0.0014 (16) | −0.0114 (17) |
C11 | 0.048 (2) | 0.071 (2) | 0.042 (2) | 0.0015 (18) | 0.0059 (17) | 0.0063 (15) |
C12 | 0.049 (2) | 0.0541 (18) | 0.0468 (19) | −0.0069 (16) | 0.0081 (18) | 0.0042 (14) |
C15 | 0.048 (2) | 0.0450 (17) | 0.049 (2) | 0.0015 (15) | 0.0036 (17) | 0.0027 (13) |
C2 | 0.036 (2) | 0.0430 (18) | 0.057 (2) | 0.0069 (15) | 0.0098 (17) | −0.0096 (16) |
C3 | 0.039 (2) | 0.0594 (19) | 0.050 (2) | 0.0049 (16) | 0.0052 (16) | −0.0099 (15) |
C4 | 0.052 (2) | 0.061 (2) | 0.047 (2) | 0.0021 (17) | 0.0016 (17) | −0.0016 (15) |
C6 | 0.055 (2) | 0.0417 (16) | 0.0427 (18) | 0.0017 (15) | 0.0038 (16) | 0.0023 (13) |
C8 | 0.040 (2) | 0.0402 (17) | 0.0414 (18) | 0.0004 (14) | 0.0134 (16) | −0.0031 (12) |
C13 | 0.0358 (19) | 0.0418 (17) | 0.0387 (17) | 0.0004 (13) | 0.0112 (15) | −0.0003 (13) |
C7 | 0.043 (2) | 0.0371 (16) | 0.0429 (18) | 0.0020 (13) | 0.0110 (15) | −0.0021 (13) |
C14 | 0.043 (2) | 0.0348 (15) | 0.0384 (17) | −0.0012 (13) | 0.0079 (15) | 0.0008 (12) |
C5 | 0.044 (2) | 0.0455 (17) | 0.0397 (18) | 0.0064 (14) | 0.0040 (15) | −0.0017 (13) |
C23 | 0.035 (2) | 0.0551 (19) | 0.0393 (18) | 0.0062 (15) | −0.0044 (15) | 0.0019 (14) |
C24 | 0.0348 (19) | 0.064 (2) | 0.0426 (19) | −0.0037 (16) | −0.0001 (15) | −0.0093 (15) |
C25 | 0.039 (2) | 0.0517 (18) | 0.053 (2) | −0.0080 (15) | 0.0067 (17) | −0.0070 (15) |
C26 | 0.044 (2) | 0.0436 (17) | 0.0400 (18) | −0.0026 (14) | 0.0039 (15) | 0.0021 (13) |
C29 | 0.041 (2) | 0.0412 (16) | 0.0375 (17) | −0.0023 (14) | 0.0008 (15) | 0.0007 (13) |
C16 | 0.047 (2) | 0.054 (2) | 0.043 (2) | −0.0011 (16) | 0.0025 (17) | 0.0058 (15) |
C17 | 0.049 (2) | 0.065 (2) | 0.048 (2) | −0.0036 (18) | −0.0049 (16) | −0.0054 (16) |
C18 | 0.064 (2) | 0.0528 (18) | 0.076 (2) | −0.009 (2) | −0.0280 (19) | −0.011 (2) |
C20 | 0.0431 (19) | 0.0358 (15) | 0.0482 (17) | −0.0014 (14) | 0.0043 (15) | −0.0004 (14) |
C22 | 0.0300 (18) | 0.0410 (16) | 0.0378 (17) | 0.0039 (13) | 0.0077 (14) | −0.0015 (13) |
C27 | 0.0271 (17) | 0.0387 (15) | 0.0341 (16) | 0.0020 (12) | 0.0056 (13) | −0.0019 (12) |
C21 | 0.0327 (18) | 0.0419 (15) | 0.0363 (17) | 0.0032 (13) | 0.0064 (15) | −0.0005 (12) |
C28 | 0.0286 (17) | 0.0362 (15) | 0.0347 (16) | 0.0042 (12) | 0.0048 (14) | 0.0002 (12) |
C19 | 0.048 (2) | 0.046 (2) | 0.0414 (18) | 0.0017 (14) | 0.0059 (16) | −0.0128 (12) |
N1 | 0.0402 (16) | 0.0426 (13) | 0.0399 (15) | −0.0010 (12) | 0.0013 (13) | 0.0031 (10) |
N2 | 0.0426 (17) | 0.0377 (13) | 0.0371 (14) | −0.0006 (11) | −0.0098 (13) | 0.0006 (11) |
O1 | 0.0606 (16) | 0.0558 (13) | 0.0660 (16) | −0.0128 (12) | 0.0143 (12) | 0.0043 (11) |
O2 | 0.0664 (18) | 0.0542 (14) | 0.0728 (16) | −0.0012 (12) | −0.0136 (13) | 0.0196 (11) |
S1 | 0.0572 (6) | 0.0374 (4) | 0.0534 (5) | −0.0046 (4) | 0.0106 (4) | 0.0005 (4) |
S2 | 0.0444 (5) | 0.0419 (4) | 0.0493 (4) | 0.0005 (4) | 0.0001 (4) | 0.0096 (4) |
C9—C10 | 1.361 (4) | C23—C24 | 1.364 (4) |
C9—C8 | 1.389 (4) | C23—C22 | 1.380 (3) |
C9—H9 | 0.9300 | C23—H23 | 0.9300 |
C10—C11 | 1.389 (4) | C24—C25 | 1.387 (4) |
C10—H10 | 0.9300 | C24—H24 | 0.9300 |
C11—C12 | 1.375 (4) | C25—C26 | 1.378 (4) |
C11—H11 | 0.9300 | C25—H25 | 0.9300 |
C12—C13 | 1.385 (4) | C26—C27 | 1.389 (3) |
C12—H12 | 0.9300 | C26—H26 | 0.9300 |
C15—N1 | 1.454 (3) | C29—N2 | 1.449 (3) |
C15—C14 | 1.493 (4) | C29—C28 | 1.495 (3) |
C15—H15B | 0.9700 | C29—H29B | 0.9700 |
C15—H15A | 0.9700 | C29—H29A | 0.9700 |
C2—O1 | 1.214 (3) | C16—O2 | 1.222 (3) |
C2—N1 | 1.358 (4) | C16—N2 | 1.333 (3) |
C2—C3 | 1.505 (4) | C16—C17 | 1.497 (4) |
C3—C4 | 1.514 (4) | C17—C18 | 1.490 (4) |
C3—H3B | 0.9700 | C17—H17B | 0.9700 |
C3—H3A | 0.9700 | C17—H17A | 0.9700 |
C4—C5 | 1.522 (4) | C18—C19 | 1.520 (4) |
C4—H4B | 0.9700 | C18—H18B | 0.9700 |
C4—H4A | 0.9700 | C18—H18A | 0.9700 |
C6—C7 | 1.496 (4) | C20—C21 | 1.497 (4) |
C6—C5 | 1.516 (3) | C20—C19 | 1.512 (3) |
C6—H6B | 0.9700 | C20—H20B | 0.9700 |
C6—H6A | 0.9700 | C20—H20A | 0.9700 |
C8—C13 | 1.405 (3) | C22—C27 | 1.399 (3) |
C8—S1 | 1.736 (3) | C22—S2 | 1.735 (3) |
C13—C14 | 1.428 (4) | C27—C28 | 1.443 (4) |
C7—C14 | 1.343 (3) | C21—C28 | 1.333 (3) |
C7—S1 | 1.742 (3) | C21—S2 | 1.739 (3) |
C5—N1 | 1.449 (3) | C19—N2 | 1.461 (3) |
C5—H5 | 0.9800 | C19—H19 | 0.9800 |
C10—C9—C8 | 119.1 (3) | C23—C24—H24 | 119.8 |
C10—C9—H9 | 120.5 | C25—C24—H24 | 119.8 |
C8—C9—H9 | 120.5 | C26—C25—C24 | 120.9 (3) |
C9—C10—C11 | 120.3 (3) | C26—C25—H25 | 119.5 |
C9—C10—H10 | 119.9 | C24—C25—H25 | 119.5 |
C11—C10—H10 | 119.9 | C25—C26—C27 | 119.5 (3) |
C12—C11—C10 | 120.8 (3) | C25—C26—H26 | 120.2 |
C12—C11—H11 | 119.6 | C27—C26—H26 | 120.2 |
C10—C11—H11 | 119.6 | N2—C29—C28 | 109.9 (2) |
C11—C12—C13 | 120.5 (3) | N2—C29—H29B | 109.7 |
C11—C12—H12 | 119.8 | C28—C29—H29B | 109.7 |
C13—C12—H12 | 119.8 | N2—C29—H29A | 109.7 |
N1—C15—C14 | 110.4 (2) | C28—C29—H29A | 109.7 |
N1—C15—H15B | 109.6 | H29B—C29—H29A | 108.2 |
C14—C15—H15B | 109.6 | O2—C16—N2 | 125.2 (3) |
N1—C15—H15A | 109.6 | O2—C16—C17 | 126.6 (3) |
C14—C15—H15A | 109.6 | N2—C16—C17 | 108.2 (2) |
H15B—C15—H15A | 108.1 | C18—C17—C16 | 105.4 (2) |
O1—C2—N1 | 125.1 (3) | C18—C17—H17B | 110.7 |
O1—C2—C3 | 127.7 (3) | C16—C17—H17B | 110.7 |
N1—C2—C3 | 107.2 (3) | C18—C17—H17A | 110.7 |
C2—C3—C4 | 105.8 (3) | C16—C17—H17A | 110.7 |
C2—C3—H3B | 110.6 | H17B—C17—H17A | 108.8 |
C4—C3—H3B | 110.6 | C17—C18—C19 | 105.8 (3) |
C2—C3—H3A | 110.6 | C17—C18—H18B | 110.6 |
C4—C3—H3A | 110.6 | C19—C18—H18B | 110.6 |
H3B—C3—H3A | 108.7 | C17—C18—H18A | 110.6 |
C3—C4—C5 | 105.4 (2) | C19—C18—H18A | 110.6 |
C3—C4—H4B | 110.7 | H18B—C18—H18A | 108.7 |
C5—C4—H4B | 110.7 | C21—C20—C19 | 109.3 (2) |
C3—C4—H4A | 110.7 | C21—C20—H20B | 109.8 |
C5—C4—H4A | 110.7 | C19—C20—H20B | 109.8 |
H4B—C4—H4A | 108.8 | C21—C20—H20A | 109.8 |
C7—C6—C5 | 109.5 (2) | C19—C20—H20A | 109.8 |
C7—C6—H6B | 109.8 | H20B—C20—H20A | 108.3 |
C5—C6—H6B | 109.8 | C23—C22—C27 | 121.6 (2) |
C7—C6—H6A | 109.8 | C23—C22—S2 | 127.6 (2) |
C5—C6—H6A | 109.8 | C27—C22—S2 | 110.82 (19) |
H6B—C6—H6A | 108.2 | C26—C27—C22 | 118.5 (2) |
C9—C8—C13 | 121.7 (3) | C26—C27—C28 | 129.5 (2) |
C9—C8—S1 | 127.3 (2) | C22—C27—C28 | 111.9 (2) |
C13—C8—S1 | 111.0 (2) | C28—C21—C20 | 125.3 (3) |
C12—C13—C8 | 117.7 (2) | C28—C21—S2 | 113.0 (2) |
C12—C13—C14 | 130.5 (2) | C20—C21—S2 | 121.7 (2) |
C8—C13—C14 | 111.8 (2) | C21—C28—C27 | 112.9 (2) |
C14—C7—C6 | 125.6 (2) | C21—C28—C29 | 123.0 (3) |
C14—C7—S1 | 112.4 (2) | C27—C28—C29 | 124.1 (2) |
C6—C7—S1 | 121.96 (19) | N2—C19—C20 | 110.9 (2) |
C7—C14—C13 | 113.5 (2) | N2—C19—C18 | 102.5 (3) |
C7—C14—C15 | 121.8 (2) | C20—C19—C18 | 114.4 (3) |
C13—C14—C15 | 124.7 (2) | N2—C19—H19 | 109.6 |
N1—C5—C6 | 110.4 (2) | C20—C19—H19 | 109.6 |
N1—C5—C4 | 103.4 (2) | C18—C19—H19 | 109.6 |
C6—C5—C4 | 114.2 (2) | C2—N1—C5 | 114.7 (2) |
N1—C5—H5 | 109.5 | C2—N1—C15 | 122.8 (2) |
C6—C5—H5 | 109.5 | C5—N1—C15 | 121.0 (2) |
C4—C5—H5 | 109.5 | C16—N2—C29 | 123.2 (2) |
C24—C23—C22 | 119.0 (3) | C16—N2—C19 | 114.1 (2) |
C24—C23—H23 | 120.5 | C29—N2—C19 | 121.6 (2) |
C22—C23—H23 | 120.5 | C8—S1—C7 | 91.27 (13) |
C23—C24—C25 | 120.4 (3) | C22—S2—C21 | 91.34 (13) |
C8—C9—C10—C11 | 1.2 (5) | C19—C20—C21—C28 | −21.4 (4) |
C9—C10—C11—C12 | −1.4 (5) | C19—C20—C21—S2 | 160.9 (2) |
C10—C11—C12—C13 | 0.6 (5) | C20—C21—C28—C27 | −178.7 (3) |
O1—C2—C3—C4 | 175.0 (3) | S2—C21—C28—C27 | −0.9 (3) |
N1—C2—C3—C4 | −7.1 (3) | C20—C21—C28—C29 | 1.1 (4) |
C2—C3—C4—C5 | 15.9 (3) | S2—C21—C28—C29 | 179.0 (2) |
C10—C9—C8—C13 | −0.1 (5) | C26—C27—C28—C21 | 179.2 (3) |
C10—C9—C8—S1 | 178.7 (2) | C22—C27—C28—C21 | 2.2 (3) |
C11—C12—C13—C8 | 0.4 (4) | C26—C27—C28—C29 | −0.7 (5) |
C11—C12—C13—C14 | −178.5 (3) | C22—C27—C28—C29 | −177.7 (2) |
C9—C8—C13—C12 | −0.7 (4) | N2—C29—C28—C21 | −4.3 (4) |
S1—C8—C13—C12 | −179.7 (2) | N2—C29—C28—C27 | 175.6 (3) |
C9—C8—C13—C14 | 178.4 (3) | C21—C20—C19—N2 | 43.4 (3) |
S1—C8—C13—C14 | −0.6 (3) | C21—C20—C19—C18 | 158.6 (3) |
C5—C6—C7—C14 | −20.3 (4) | C17—C18—C19—N2 | −19.3 (3) |
C5—C6—C7—S1 | 161.2 (2) | C17—C18—C19—C20 | −139.3 (3) |
C6—C7—C14—C13 | −179.1 (3) | O1—C2—N1—C5 | 172.6 (3) |
S1—C7—C14—C13 | −0.5 (3) | C3—C2—N1—C5 | −5.3 (3) |
C6—C7—C14—C15 | 1.1 (5) | O1—C2—N1—C15 | 6.3 (5) |
S1—C7—C14—C15 | 179.8 (2) | C3—C2—N1—C15 | −171.7 (2) |
C12—C13—C14—C7 | 179.6 (3) | C6—C5—N1—C2 | 137.8 (3) |
C8—C13—C14—C7 | 0.7 (4) | C4—C5—N1—C2 | 15.3 (3) |
C12—C13—C14—C15 | −0.7 (5) | C6—C5—N1—C15 | −55.6 (3) |
C8—C13—C14—C15 | −179.6 (3) | C4—C5—N1—C15 | −178.1 (2) |
N1—C15—C14—C7 | −6.2 (4) | C14—C15—N1—C2 | −159.5 (3) |
N1—C15—C14—C13 | 174.1 (3) | C14—C15—N1—C5 | 35.0 (4) |
C7—C6—C5—N1 | 43.3 (3) | O2—C16—N2—C29 | 8.5 (5) |
C7—C6—C5—C4 | 159.2 (3) | C17—C16—N2—C29 | −172.7 (3) |
C3—C4—C5—N1 | −18.4 (3) | O2—C16—N2—C19 | 177.2 (3) |
C3—C4—C5—C6 | −138.4 (2) | C17—C16—N2—C19 | −4.1 (4) |
C22—C23—C24—C25 | 1.1 (4) | C28—C29—N2—C16 | −160.2 (3) |
C23—C24—C25—C26 | −0.6 (5) | C28—C29—N2—C19 | 31.9 (3) |
C24—C25—C26—C27 | −0.7 (5) | C20—C19—N2—C16 | 137.3 (3) |
O2—C16—C17—C18 | 169.8 (3) | C18—C19—N2—C16 | 14.9 (3) |
N2—C16—C17—C18 | −8.9 (4) | C20—C19—N2—C29 | −53.8 (3) |
C16—C17—C18—C19 | 17.6 (4) | C18—C19—N2—C29 | −176.3 (3) |
C24—C23—C22—C27 | −0.2 (4) | C9—C8—S1—C7 | −178.7 (3) |
C24—C23—C22—S2 | 178.3 (2) | C13—C8—S1—C7 | 0.3 (2) |
C25—C26—C27—C22 | 1.5 (4) | C14—C7—S1—C8 | 0.1 (2) |
C25—C26—C27—C28 | −175.3 (3) | C6—C7—S1—C8 | 178.8 (3) |
C23—C22—C27—C26 | −1.1 (4) | C23—C22—S2—C21 | −177.0 (3) |
S2—C22—C27—C26 | −179.8 (2) | C27—C22—S2—C21 | 1.7 (2) |
C23—C22—C27—C28 | 176.3 (3) | C28—C21—S2—C22 | −0.5 (2) |
S2—C22—C27—C28 | −2.5 (3) | C20—C21—S2—C22 | 177.5 (3) |
Cg4 and Cg14 are the centroids of the C8–C13 and C22–C27 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20B···O2i | 0.97 | 2.48 | 3.307 (4) | 144 |
C3—H3B···Cg14 | 0.97 | 2.59 | 3.502 (3) | 157 |
C17—H17A···Cg4 | 0.97 | 2.92 | 3.800 (4) | 151 |
C29—H29B···Cg4ii | 0.97 | 2.90 | 3.706 (3) | 142 |
Symmetry codes: (i) −x+1, y+1/2, −z+2; (ii) x−1, y, z. |
Cg4 and Cg14 are the centroids of the C8–C13 and C22–C27 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20B···O2i | 0.97 | 2.48 | 3.307 (4) | 143.6 |
C3—H3B···Cg14 | 0.97 | 2.59 | 3.502 (3) | 157.0 |
C17—H17A···Cg4 | 0.97 | 2.92 | 3.800 (4) | 151.0 |
C29—H29B···Cg4ii | 0.97 | 2.90 | 3.706 (3) | 142.0 |
Symmetry codes: (i) −x+1, y+1/2, −z+2; (ii) x−1, y, z. |
Acknowledgements
The authors thank the Grant Agency of the Ministry of Education of the Slovak Republic, (grant Nos. 1/0429/11 and 1/0679/11) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. This work was supported by the Slovak Research and Development Agency under contract Nos. APVV-0797–11 and APVV-0204–10, and the Structural Funds, Interreg IIIA. This contribution is also the result of the project `Research Center for Industrial Synthesis of Drugs, ITMS 26240220061′ supported by the Research & Development Operational Programme funded by the ERDF.
References
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1362. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988. CrossRef PubMed CAS Web of Science Google Scholar
Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873. Web of Science CrossRef PubMed CAS Google Scholar
Liu, Y., Song, Z. & Yan, B. (2007). Org. Lett. 9, 409–412. Web of Science CSD CrossRef PubMed CAS Google Scholar
Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128. Web of Science CrossRef PubMed CAS Google Scholar
Molyneux, R. J. & James, L. F. (1982). Science, 216, 190–191. CrossRef CAS PubMed Web of Science Google Scholar
Nash, R. J., Fellows, L. E., Dring, J. V., Stirton, C. H., Carter, D., Hegarty, M. P. & Bell, E. A. (1988). Phytochemistry, 27, 1403–1406. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, , England. Google Scholar
Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271. Web of Science CrossRef CAS Google Scholar
Ruprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149–157. CAS PubMed Web of Science Google Scholar
Šafář, P., Žužiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009). Tetrahedron Asymmetry, pp. 626–634. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, C. R., Bunnelle, E. M., Rhodes, A. J. & Sarpong, R. (2007). Org. Lett. 9, 1169–1171. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139. Web of Science CrossRef PubMed CAS Google Scholar
Vrábel, V., Švorc, Ľ., Marchalín, Š. & Šafář, P. (2012). Acta Cryst. E68, o3327–o3328. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocycles are involved in a wide range of biologically important chemical reactions in living organisms, and therefore they form one of the most important and well investigated classes of organic compounds. One group of heterocycles, indolizines, has received much scientific attention during the recent years. Indolizine derivatives have been found to possess a variety of biological activities such as antibacterial, anti-inflammatory, antiviral, (Nash et al., 1988; Molyneux & James, 1982; Medda et al., 2003), anti-HIV (Ruprecht et al., 1989), anti-cancer (Liu et al., 2007; Smith et al., 2007), and antitumor (Pearson & Guo, 2001). They have also shown to be calcium entry blockers (Gupta et al., 2003) and potent antioxidants inhibiting lipid peroxidation in vitro (Teklu et al., 2005). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992). Based on these facts and in continuation of our interest in developing simple and efficient route for the synthesis of novel indolizine derivatives, we report here the synthesis, molecular and crystal structure of the title compound (I), which crystallizes in the monoclinic space group P21 with two crystallographic independent molecules in asymmetric unit. The absolute configuration has been established without ambiguity from the anomalous dispersion of the S atom (Flack, 1983) and assigned consistent with the starting material. The expected stereochemistry of both atoms C5 and C19 was confirmed as S, see Fig. 1. Molecular packing view of the title compound (I) in the crystal structure is shown in Fig. 2. The central six-membered N-heterocyclic ring is not planar and assumes a chair conformation, with total puckering amplytude QT of 0.406 (3) Å and orientation angles theta and phi of 0.129,5 (5)° and 169 (5)° (QT of 0.400 (3) Å, theta and phi of 173,3 (5)° and 128,8 (4)°, respectively, for second molecule) (Cremer & Pople, 1975). Atoms C5 and C19 are displaced of 0.569 (3) Å and -0.561 (3) Å, respectively, from the C9/C10/C12/C13 and C20/C21/C28/C29/N2 mean planes. The dihedral angles between the planes of the central N-heterocyclic ring and the plane of the pyrrolidine ring are 24.7 (1)° and 24.1 (1)°, respectively, for second molecule. Atoms N1 and N2 are sp2-hybridized, as evidenced by the sum of the valence angles around them (358.54° and 358.99°, respectively, for second molecule). These data are consistent with conjugation of the lone-pair electrons on nitrogen atom with the adjacent carbonyl, similar to what is observed for amides. Bond lengths and angles in the indolizine ring system are in good agreement with values from the literature (Vrábel et al., 2012). The molecular structure is stabilized by weak intramolecular C–H···O interactions (Fig.2). The molecular packing is further stabilized by C–H···Pi interactions [C3–H3B···Cg14i: Cg14 are the centroid of the rings defined by the atoms C22—C27; C17–H17A···Cg4i and C29–H29B···Cg4ii: Cg4 are the centroid of the rings defined by the atoms C8—C13; symmetry operator for generating equivalent atoms: (i) x, y, z; (ii) -1 + x, y, z].