organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1785-o1786

(E)-N,N-Di­ethyl-2,6-diiso­propyl-4-[2-(4-nitro­phen­yl)ethen­yl]aniline

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 4 November 2013; accepted 11 November 2013; online 20 November 2013)

The title compound, C24H32N2O2, was prepared by Horner olefination of 4-di­ethyl­amino-3,5-diiso­propyl­benzaldehyde and diethyl p-nitro­benzyl­phospho­nate. There are two independent mol­ecules (A and B) in the asymmetric unit. Their main axes, defined by the line connecting the N atoms of the nitro and amino groups, open an angle of 79.42 (3)°. Steric hindrance around the amino group is reflected in a long aryl C—N bond [1.434 (3) Å for mol­ecule A and 1.440 (3) Å for mol­ecule B], a pyramidal geometry [angle sum = 350.0 (2)° for mol­ecule A and 349.6 (2)° for mol­ecule B], and dihedral angles between the phenyl­ene group and the plane defined by the CH2—N—CH2 unit of 86.9 (3)° for mol­ecule A and 88.3 (3)° for mol­ecule B. This gives structural support for the electronic decoupling of the amino group from the nearly planar nitro­stilbene moiety (r.m.s. deviation for C, N and O atoms = 0.097 for mol­ecule A and 0.107 Å for mol­ecule B).

Related literature

For the synthesis of amino­nitro­stilbenes, see: Pfeiffer et al. (1915[Pfeiffer, P., Braude, S., Kleber, J., Marcon, G. & Wittkop, P. (1915). Ber. Dtsch Chem. Ges. 48, 1777-1809.]); Meier et al. (2004[Meier, H., Gerold, J., Kolshorn, H. & Muehling, B. (2004). Chem. Eur. J. 10, 360-370.]). For torsion-depent optical properties, see: Baumann et al. (1977[Baumann, W., Deckers, H., Loosen, K. D. & Petzke, F. (1977). Ber. Bunsen Ges. Phys. Chem. 81, 799-804.]); Wink & Detert (2013[Wink, C. & Detert, H. (2013). J. Phys. Org. Chem. 26, 137-143.]); Dekhtyar & Rettig (2007[Dekhtyar, M. & Rettig, W. (2007). J. Phys. Chem. A, 111, 2035-2039.]). For conjugated oligomers as sensing materials, see: Schmitt et al. (2008[Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1-7.]); Zucchero et al. (2009[Zucchero, A. J., Tolosa, J., Tolbert, L. M. & Bunz, U. H. F. (2009). Chem. Eur. J. 15, 13075-13081.]). For the structures of donor–acceptor stilbenoid dyes, see: Schollmeyer & Detert (2011[Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1384-o1385.]); Fischer et al. (2011[Fischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875.]). For structures of sterically crowded push–pull analogues, see: Wink & Detert (2013[Wink, C. & Detert, H. (2013). J. Phys. Org. Chem. 26, 137-143.]). For the synthesis of the starting materiel, see: Wink et al. (2011[Wink, C., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o3336.]). For chromophores and fluoro­phores based on quadrupolar donor–acceptor-substituted stilbenoid systems, see: Detert & Sugiono (2005[Detert, H. & Sugiono, E. (2005). J. Lumin. 112, 372-376.]); Schmitt et al. (2013[Schmitt, V., Moschel, S. & Detert, H. (2013). Eur. J. Org. Chem. 25, 5655-5669.]); Nemkovich et al. (2010[Nemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37-41.]).

[Scheme 1]

Experimental

Crystal data
  • C24H32N2O2

  • Mr = 380.52

  • Triclinic, [P \overline 1]

  • a = 7.3477 (7) Å

  • b = 15.4143 (14) Å

  • c = 20.3747 (19) Å

  • α = 104.642 (8)°

  • β = 92.414 (8)°

  • γ = 90.793 (7)°

  • V = 2230.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 193 K

  • 0.60 × 0.10 × 0.05 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 21656 measured reflections

  • 10640 independent reflections

  • 3887 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.174

  • S = 0.79

  • 10640 reflections

  • 518 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared as a reference compound in a project focusing on chromophores and fluorophores based on quadrupolar donor-acceptor substituted stilbenoid systems, see: Detert & Sugiono (2005); Schmitt et al. (2013); and Nemkovich et al. (2010). In comparison to the sterically non congested derivative lacking the diisopropyl substitution (Schollmeyer & Detert, 2011), the sterical hindrance around the amino group shifts the UV-vis absorption about 70 nm to the blue and inverts the positive to a negative solvatochromism.

The unit cell is filled with two independent molecules A, B. Parallel layers of molecules A and B are twisted by 79.42 (3)°. As A and B are very similar, only the structural features of A are discussed. The π-system is composed of four almost planar subunits with torsion angles of ±1.6° between nitro group and adjacent phenyl ring. The nitro group is planar (angle sum at N18 = 360°) and the bond length C12—N26 [1.460 (4) Å] is slightly shorter than that of the non-congested analogue, this also holds for the bond lengths of the vinylene group. The torsion angles between the planes of the phenylene rings and the connecting vinylene unit are larger: C6—C1—C7—C8 [175.8 (3)°] and C7—C8—C9—C14 [171.6 (3)°]. Even the vinylene group is twisted: C1—C7—C8—C9 [177.8 (3)°]. Steric congestion around the amino group elongates the aniline C—N bond: 1.434 (3) Å in comparison to 1.385 or 1.378 Å for the compound without 2,6-diisopropyl substitution. Furthermore, the substituents in the 1,2,6-positions adopt an anti,anti conformation with torsion angles of 5.0 (4)° (C15—C3—C4—N18) and 3.7 (4)° (N18—C4—C5—C23). The amino group is pyramidal with an angle sum of 350° on N18. This and the dihedral angles C3—C4—N18—C19 [-69.7 (3)°] and C3—C4—N18—C21 [106.9 (3)°] are structural indicators for an electronic decoupling of the amino group from the acceptor-substituted stilbene unit and therefore the inhibition of the charge transfer and the blue-shifted absorption band in the UV.

Related literature top

For the synthesis of aminonitrostilbenes, see: Pfeiffer et al. (1915); Meier et al. (2004). For torsion-depent optical properties, see: Baumann et al. (1977); Wink & Detert (2013); Dekhtyar & Rettig (2007). For conjugated oligomers as sensing materials, see: Schmitt et al. (2008); Zucchero et al. (2009). For the structures of donor–acceptor stilbenoid dyes, see: Schollmeyer & Detert (2011); Fischer et al. (2011). For structures of sterically crowded push–pull analogues, see: Wink & Detert (2013). For the synthesis of the starting materiel, see: Wink et al. (2011). For chromophores and fluorophores based on quadrupolar donor–acceptor-substituted stilbenoid systems, see: Detert & Sugiono (2005); Schmitt et al. (2013); Nemkovich et al. (2010).

Experimental top

The title compound was prepared by adding potassium tert-butylate (0.167 g, 1.5 mmol) under nitrogen to a cooled solution of 4-N,N-diethylamino3,5-diisopropylbenzaldehyde (0.26 g, 0.6 mmol) and diethyl p-nitrobenzylphosphonate (0.313 g, 1.1 mmol) in THF (anhyd., 40 ml) and the mixture was stirred for 40 min at 273 K and for further 1 h at ambient temperature. Water (70 ml) was added, the mixture was extracted with chloroform (3 x 30 ml) and the pooled organic solutions were washed with brine (3 x 20 ml), dried (MgSO4), concentrated in vacuo and the title compound was isolated in 80% yield from the red oil by chromatography on silica gel using petrouleum ether / ethyl acetate (9 / 1). Yellow needles with with m.p. = 408 - 409 K were obtained by slow evaporation of a solution of the title compound in methanol/chloroform.

Refinement top

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atoms). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Second molecule and hydrogen atoms omitted for clearity.
(E)-N,N-Diethyl-2,6-diisopropyl-4-[2-(4-nitrophenyl)ethenyl]aniline top
Crystal data top
C24H32N2O2Z = 4
Mr = 380.52F(000) = 824
Triclinic, P1Dx = 1.133 Mg m3
Hall symbol: -P 1Melting point: 408 K
a = 7.3477 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.4143 (14) ÅCell parameters from 12450 reflections
c = 20.3747 (19) Åθ = 2.6–27.5°
α = 104.642 (8)°µ = 0.07 mm1
β = 92.414 (8)°T = 193 K
γ = 90.793 (7)°Needle, yellow
V = 2230.0 (4) Å30.60 × 0.10 × 0.05 mm
Data collection top
Stoe IPDS 2T
diffractometer
3887 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.086
Plane graphite monochromatorθmax = 28.0°, θmin = 2.7°
Detector resolution: 6.67 pixels mm-1h = 99
rotation method scansk = 2019
21656 measured reflectionsl = 026
10640 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0886P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.79(Δ/σ)max < 0.001
10640 reflectionsΔρmax = 0.25 e Å3
518 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0087 (11)
Crystal data top
C24H32N2O2γ = 90.793 (7)°
Mr = 380.52V = 2230.0 (4) Å3
Triclinic, P1Z = 4
a = 7.3477 (7) ÅMo Kα radiation
b = 15.4143 (14) ŵ = 0.07 mm1
c = 20.3747 (19) ÅT = 193 K
α = 104.642 (8)°0.60 × 0.10 × 0.05 mm
β = 92.414 (8)°
Data collection top
Stoe IPDS 2T
diffractometer
3887 reflections with I > 2σ(I)
21656 measured reflectionsRint = 0.086
10640 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 0.79Δρmax = 0.25 e Å3
10640 reflectionsΔρmin = 0.24 e Å3
518 parameters
Special details top

Experimental. 1H-NMR (CDCl3): δ = 8.22 ("d", J = 8.8 Hz, 2 H, 3-H, 5-H, Ph—NO2); 7.64 ("d", J = 8.8 Hz, 2 H, 2-H, 6-H, Ph—NO2); 7.27 (d, J = 16.3 Hz, 1 H, vin); 7.27 (s, 2 H, 3-H, 5-H Ph); 7.08 (d, J = 16.3 Hz, 1 H, vin); 3.51 (sept, J = 6.9 Hz, 2 H, 2-H, i-prop); 3.09 (q, 4 H, NCH2); 1.23 (d, J = 6.9 Hz, 12 H,1-H, 3-H i-prop); 1.05 (t, J = 7.1 Hz, 6 C CH3 et) 1.27 (m, 12 H, CH2); 0.90 ("t", 6 H, CH3). 13C-NMR(CDCl3): δ = 150.4 (C-1, Ph), 146.9 (C-4 PhNO2), 146.7 (C-1 PhNO2), 144.5 (C-2, C-6 Ph), 134.0 (C-1 vin), 124.3 (C-2, C-6 PhNO2), 123.0 (C-3, C-5 PhNO2), 49.3 (NCH2), 28.0 (CH i-pr), 24.6 (CH3 i-pr), 15.4 (CH3 et). IR (ATR) 2959, 2931, 2871, 1633, 1590, 1512, 1457, 1336, 1186, 1105, 964, 862, 745, 6890 cm-1. HR-ESI-MS:found: 381.2545, calcd for (M+H+): 381.2542. UV-Vis: λ'max = 364 nm (cyclohexane); λ'max = 347 nm (toluene); λ'max = 344 nm, ε = 29304 l mol-1 cm-1 (dichloromethane); λ'max = 344 nm (acetonitrile).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4949 (3)0.30348 (17)0.27877 (12)0.0396 (6)
C20.5948 (4)0.26657 (17)0.22148 (13)0.0422 (6)
H20.63390.20650.21400.051*
C30.6378 (3)0.31579 (17)0.17551 (13)0.0410 (6)
C40.5801 (3)0.40409 (17)0.18589 (12)0.0394 (6)
C50.4832 (3)0.44422 (17)0.24438 (13)0.0412 (6)
C60.4431 (4)0.39198 (17)0.28856 (13)0.0422 (6)
H60.37680.41810.32740.051*
C70.4422 (4)0.25363 (18)0.32733 (13)0.0429 (6)
H70.38100.28590.36580.051*
C80.4714 (3)0.16727 (18)0.32324 (13)0.0428 (6)
H80.53660.13560.28570.051*
C90.4133 (3)0.11634 (17)0.37066 (13)0.0403 (6)
C100.3318 (4)0.15621 (19)0.43165 (14)0.0499 (7)
H100.31720.21930.44430.060*
C110.2725 (4)0.1049 (2)0.47359 (15)0.0554 (7)
H110.21740.13220.51480.067*
C120.2945 (4)0.0136 (2)0.45466 (14)0.0475 (7)
C130.3759 (4)0.0285 (2)0.39530 (15)0.0512 (7)
H130.39130.09150.38320.061*
C140.4338 (4)0.02433 (18)0.35431 (14)0.0470 (7)
H140.48990.00350.31340.056*
C150.7519 (4)0.27354 (18)0.11555 (13)0.0469 (6)
H150.74050.31140.08240.056*
C160.9520 (4)0.2754 (2)0.13855 (17)0.0641 (8)
H16A0.99070.33710.16170.096*
H16B1.02550.25360.09890.096*
H16C0.96870.23690.16980.096*
C170.6881 (5)0.1789 (2)0.07859 (17)0.0735 (10)
H17A0.70580.13910.10880.110*
H17B0.75870.15770.03810.110*
H17C0.55860.17900.06500.110*
N180.6186 (3)0.45126 (14)0.13554 (11)0.0433 (5)
C190.4644 (4)0.4686 (2)0.09364 (15)0.0543 (7)
H19A0.50980.49640.05850.065*
H19B0.38380.51170.12240.065*
C200.3550 (4)0.3842 (2)0.05932 (16)0.0628 (8)
H20A0.43350.34150.03010.094*
H20B0.25360.39920.03170.094*
H20C0.30690.35710.09390.094*
C210.7607 (4)0.5215 (2)0.15235 (15)0.0531 (7)
H21A0.82990.51760.19420.064*
H21B0.70350.58090.16140.064*
C220.8914 (5)0.5135 (2)0.09515 (18)0.0709 (9)
H22A0.94810.45480.08600.106*
H22B0.98600.56090.10850.106*
H22C0.82400.51970.05410.106*
C230.4226 (4)0.54056 (18)0.26072 (14)0.0485 (7)
H230.46350.56770.22400.058*
C240.2156 (5)0.5448 (2)0.2612 (2)0.0734 (10)
H24A0.17230.52170.29850.110*
H24B0.16240.50840.21790.110*
H24C0.17900.60720.26750.110*
C250.5106 (5)0.5954 (2)0.32779 (16)0.0707 (9)
H25A0.47730.56850.36450.106*
H25B0.46780.65700.33710.106*
H25C0.64340.59580.32480.106*
N260.2300 (3)0.0413 (2)0.49818 (15)0.0605 (7)
O270.2465 (4)0.12263 (18)0.48017 (13)0.0808 (7)
O280.1604 (3)0.00304 (18)0.55168 (12)0.0764 (7)
C300.0084 (3)0.05172 (17)0.27794 (13)0.0409 (6)
C310.0659 (4)0.03038 (17)0.28669 (13)0.0435 (6)
H310.13360.03120.32530.052*
C320.0293 (3)0.11158 (17)0.24173 (13)0.0412 (6)
C330.0694 (3)0.11000 (16)0.18411 (13)0.0394 (6)
C340.1346 (3)0.02828 (17)0.17470 (13)0.0400 (6)
C350.0955 (3)0.05126 (17)0.22143 (13)0.0421 (6)
H350.14000.10660.21500.050*
C360.0575 (4)0.13348 (18)0.32684 (13)0.0434 (6)
H360.11720.12610.36560.052*
C370.0280 (3)0.21747 (18)0.32317 (13)0.0430 (6)
H370.03670.22490.28550.052*
C380.0844 (3)0.29959 (18)0.37077 (13)0.0419 (6)
C390.0606 (4)0.38122 (17)0.35484 (14)0.0464 (6)
H390.00260.38260.31430.056*
C400.1185 (4)0.46049 (19)0.39597 (14)0.0509 (7)
H400.10080.51580.38430.061*
C410.2031 (4)0.45700 (18)0.45468 (14)0.0474 (7)
C420.2282 (4)0.3779 (2)0.47287 (15)0.0563 (8)
H420.28560.37740.51370.068*
C430.1692 (4)0.29890 (19)0.43136 (14)0.0513 (7)
H430.18590.24400.44370.062*
C440.0981 (4)0.19792 (18)0.25670 (15)0.0494 (7)
H440.06140.24910.21910.059*
C450.3050 (4)0.2008 (2)0.2578 (2)0.0739 (10)
H45A0.34640.25960.26230.111*
H45B0.35740.19060.21540.111*
H45C0.34450.15390.29630.111*
C460.0117 (5)0.2105 (2)0.32264 (17)0.0732 (10)
H46A0.03990.15940.36010.110*
H46B0.12060.21430.31900.110*
H46C0.06030.26590.33130.110*
N470.1061 (3)0.19036 (14)0.13296 (11)0.0426 (5)
C480.2394 (4)0.25017 (19)0.15094 (15)0.0494 (7)
H48A0.17510.30070.16270.059*
H48B0.31340.21730.19160.059*
C490.3639 (5)0.2868 (2)0.09384 (18)0.0682 (9)
H49A0.29370.32660.05580.102*
H49B0.46090.32040.10990.102*
H49C0.41780.23700.07880.102*
C500.0487 (4)0.23375 (19)0.08914 (15)0.0534 (7)
H50A0.13410.25860.11640.064*
H50B0.00480.28440.05350.064*
C510.1488 (4)0.1704 (2)0.05593 (16)0.0600 (8)
H51A0.19470.12080.09100.090*
H51B0.25120.20260.02720.090*
H51C0.06560.14670.02800.090*
C520.2523 (4)0.02585 (18)0.11595 (13)0.0454 (6)
H520.23370.08480.08160.054*
C530.4520 (4)0.0174 (2)0.13822 (17)0.0643 (8)
H53A0.47580.04010.17170.096*
H53B0.52560.02020.09880.096*
H53C0.48410.06650.15870.096*
C540.2021 (5)0.0470 (2)0.08046 (17)0.0675 (9)
H54A0.07250.04070.06630.101*
H54B0.27510.04100.04050.101*
H54C0.22640.10600.11180.101*
N550.2667 (4)0.54027 (19)0.49826 (14)0.0589 (7)
O560.3403 (3)0.53623 (16)0.55103 (12)0.0761 (7)
O570.2477 (4)0.60986 (16)0.48113 (13)0.0790 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0364 (13)0.0449 (15)0.0405 (13)0.0010 (11)0.0036 (11)0.0161 (11)
C20.0424 (14)0.0391 (14)0.0476 (15)0.0048 (11)0.0065 (12)0.0150 (12)
C30.0399 (14)0.0428 (15)0.0423 (14)0.0019 (11)0.0037 (11)0.0140 (12)
C40.0372 (13)0.0448 (14)0.0400 (13)0.0021 (11)0.0037 (11)0.0174 (11)
C50.0395 (14)0.0431 (14)0.0419 (14)0.0014 (11)0.0013 (11)0.0125 (11)
C60.0421 (14)0.0438 (15)0.0423 (14)0.0017 (11)0.0039 (11)0.0135 (12)
C70.0410 (14)0.0481 (16)0.0425 (14)0.0015 (11)0.0051 (11)0.0164 (12)
C80.0386 (14)0.0522 (17)0.0401 (13)0.0007 (12)0.0060 (11)0.0160 (12)
C90.0339 (13)0.0478 (15)0.0428 (14)0.0005 (11)0.0035 (11)0.0179 (12)
C100.0558 (17)0.0504 (16)0.0474 (16)0.0062 (13)0.0077 (13)0.0186 (13)
C110.0573 (18)0.068 (2)0.0470 (16)0.0048 (15)0.0106 (14)0.0234 (15)
C120.0405 (15)0.0644 (19)0.0469 (15)0.0022 (13)0.0023 (12)0.0313 (14)
C130.0504 (17)0.0525 (17)0.0565 (17)0.0022 (13)0.0057 (14)0.0238 (14)
C140.0472 (16)0.0493 (16)0.0504 (16)0.0068 (13)0.0090 (13)0.0222 (13)
C150.0517 (16)0.0474 (16)0.0460 (15)0.0019 (13)0.0136 (13)0.0181 (12)
C160.0511 (18)0.077 (2)0.0655 (19)0.0110 (16)0.0166 (15)0.0184 (17)
C170.088 (3)0.062 (2)0.063 (2)0.0143 (18)0.0276 (19)0.0017 (16)
N180.0454 (13)0.0452 (12)0.0456 (12)0.0052 (10)0.0013 (10)0.0233 (10)
C190.0585 (18)0.0606 (18)0.0492 (16)0.0001 (14)0.0021 (14)0.0251 (14)
C200.0538 (18)0.076 (2)0.0578 (18)0.0047 (16)0.0032 (15)0.0163 (16)
C210.0496 (16)0.0509 (17)0.0635 (18)0.0066 (13)0.0020 (14)0.0237 (14)
C220.067 (2)0.073 (2)0.083 (2)0.0051 (17)0.0207 (18)0.0356 (19)
C230.0504 (16)0.0475 (16)0.0509 (16)0.0029 (13)0.0074 (13)0.0178 (13)
C240.061 (2)0.061 (2)0.106 (3)0.0192 (17)0.0203 (19)0.032 (2)
C250.103 (3)0.0473 (18)0.0601 (19)0.0032 (18)0.0006 (19)0.0115 (15)
N260.0478 (15)0.081 (2)0.0655 (17)0.0073 (13)0.0017 (13)0.0430 (16)
O270.0948 (19)0.0746 (17)0.0894 (18)0.0072 (14)0.0134 (15)0.0504 (14)
O280.0732 (16)0.110 (2)0.0594 (14)0.0038 (14)0.0148 (12)0.0438 (14)
C300.0378 (14)0.0434 (15)0.0426 (14)0.0004 (11)0.0001 (11)0.0133 (12)
C310.0418 (14)0.0456 (15)0.0462 (15)0.0020 (12)0.0076 (12)0.0166 (12)
C320.0387 (14)0.0416 (15)0.0467 (14)0.0006 (11)0.0051 (11)0.0172 (12)
C330.0390 (14)0.0374 (14)0.0419 (14)0.0012 (11)0.0042 (11)0.0097 (11)
C340.0373 (14)0.0423 (15)0.0410 (14)0.0009 (11)0.0021 (11)0.0119 (11)
C350.0405 (14)0.0417 (15)0.0468 (15)0.0015 (11)0.0031 (12)0.0162 (12)
C360.0415 (14)0.0464 (16)0.0428 (14)0.0024 (12)0.0048 (11)0.0117 (12)
C370.0394 (14)0.0477 (16)0.0422 (14)0.0038 (12)0.0027 (11)0.0113 (12)
C380.0353 (13)0.0469 (15)0.0427 (14)0.0005 (11)0.0007 (11)0.0105 (12)
C390.0483 (16)0.0409 (15)0.0484 (15)0.0030 (12)0.0057 (13)0.0079 (12)
C400.0507 (17)0.0450 (16)0.0543 (17)0.0005 (13)0.0041 (14)0.0074 (13)
C410.0443 (15)0.0466 (16)0.0439 (15)0.0055 (12)0.0016 (12)0.0023 (12)
C420.0598 (19)0.0605 (19)0.0441 (16)0.0028 (15)0.0105 (14)0.0036 (14)
C430.0587 (18)0.0492 (17)0.0461 (15)0.0032 (14)0.0076 (13)0.0119 (13)
C440.0496 (16)0.0440 (16)0.0580 (17)0.0004 (12)0.0095 (13)0.0182 (13)
C450.0555 (19)0.063 (2)0.111 (3)0.0070 (16)0.0199 (19)0.034 (2)
C460.101 (3)0.059 (2)0.067 (2)0.0040 (19)0.001 (2)0.0289 (17)
N470.0440 (12)0.0370 (12)0.0449 (12)0.0012 (9)0.0009 (10)0.0076 (9)
C480.0472 (16)0.0462 (16)0.0569 (17)0.0052 (13)0.0036 (13)0.0166 (13)
C490.067 (2)0.061 (2)0.079 (2)0.0191 (17)0.0183 (18)0.0189 (17)
C500.0536 (17)0.0487 (16)0.0535 (16)0.0061 (13)0.0026 (13)0.0060 (13)
C510.0525 (18)0.064 (2)0.0614 (18)0.0012 (15)0.0079 (15)0.0133 (15)
C520.0513 (16)0.0414 (15)0.0449 (14)0.0012 (12)0.0120 (12)0.0122 (12)
C530.0518 (18)0.078 (2)0.070 (2)0.0060 (16)0.0184 (16)0.0281 (17)
C540.074 (2)0.079 (2)0.0608 (19)0.0123 (18)0.0169 (17)0.0364 (17)
N550.0510 (15)0.0601 (18)0.0558 (16)0.0056 (13)0.0056 (12)0.0026 (13)
O560.0750 (16)0.0849 (17)0.0544 (13)0.0091 (13)0.0146 (12)0.0105 (12)
O570.0921 (18)0.0523 (14)0.0835 (17)0.0146 (13)0.0113 (14)0.0014 (13)
Geometric parameters (Å, º) top
C1—C61.389 (4)C30—C311.385 (4)
C1—C21.405 (3)C30—C351.406 (4)
C1—C71.458 (3)C30—C361.456 (4)
C2—C31.389 (4)C31—C321.389 (4)
C2—H20.9500C31—H310.9500
C3—C41.398 (3)C32—C331.411 (3)
C3—C151.523 (4)C32—C441.523 (4)
C4—C51.421 (3)C33—C341.402 (3)
C4—N181.434 (3)C33—N471.440 (3)
C5—C61.388 (4)C34—C351.391 (4)
C5—C231.515 (4)C34—C521.514 (3)
C6—H60.9500C35—H350.9500
C7—C81.333 (4)C36—C371.331 (4)
C7—H70.9500C36—H360.9500
C8—C91.463 (3)C37—C381.464 (4)
C8—H80.9500C37—H370.9500
C9—C141.384 (4)C38—C391.387 (4)
C9—C101.402 (4)C38—C431.408 (4)
C10—C111.382 (4)C39—C401.380 (4)
C10—H100.9500C39—H390.9500
C11—C121.375 (4)C40—C411.384 (4)
C11—H110.9500C40—H400.9500
C12—C131.384 (4)C41—C421.374 (4)
C12—N261.460 (4)C41—N551.459 (4)
C13—C141.380 (4)C42—C431.382 (4)
C13—H130.9500C42—H420.9500
C14—H140.9500C43—H430.9500
C15—C171.520 (4)C44—C461.519 (4)
C15—C161.522 (4)C44—C451.522 (4)
C15—H151.0000C44—H441.0000
C16—H16A0.9800C45—H45A0.9800
C16—H16B0.9800C45—H45B0.9800
C16—H16C0.9800C45—H45C0.9800
C17—H17A0.9800C46—H46A0.9800
C17—H17B0.9800C46—H46B0.9800
C17—H17C0.9800C46—H46C0.9800
N18—C191.458 (3)N47—C481.452 (3)
N18—C211.460 (3)N47—C501.459 (3)
C19—C201.514 (4)C48—C491.510 (4)
C19—H19A0.9900C48—H48A0.9900
C19—H19B0.9900C48—H48B0.9900
C20—H20A0.9800C49—H49A0.9800
C20—H20B0.9800C49—H49B0.9800
C20—H20C0.9800C49—H49C0.9800
C21—C221.523 (4)C50—C511.504 (4)
C21—H21A0.9900C50—H50A0.9900
C21—H21B0.9900C50—H50B0.9900
C22—H22A0.9800C51—H51A0.9800
C22—H22B0.9800C51—H51B0.9800
C22—H22C0.9800C51—H51C0.9800
C23—C241.523 (4)C52—C531.511 (4)
C23—C251.525 (4)C52—C541.522 (4)
C23—H231.0000C52—H521.0000
C24—H24A0.9800C53—H53A0.9800
C24—H24B0.9800C53—H53B0.9800
C24—H24C0.9800C53—H53C0.9800
C25—H25A0.9800C54—H54A0.9800
C25—H25B0.9800C54—H54B0.9800
C25—H25C0.9800C54—H54C0.9800
N26—O271.223 (3)N55—O571.217 (3)
N26—O281.236 (3)N55—O561.239 (3)
C6—C1—C2117.4 (2)C31—C30—C35117.5 (2)
C6—C1—C7119.1 (2)C31—C30—C36119.1 (2)
C2—C1—C7123.5 (2)C35—C30—C36123.4 (2)
C3—C2—C1121.6 (2)C30—C31—C32123.1 (2)
C3—C2—H2119.2C30—C31—H31118.5
C1—C2—H2119.2C32—C31—H31118.5
C2—C3—C4119.7 (2)C31—C32—C33118.3 (2)
C2—C3—C15119.4 (2)C31—C32—C44118.6 (2)
C4—C3—C15120.9 (2)C33—C32—C44123.1 (2)
C3—C4—C5120.1 (2)C34—C33—C32120.2 (2)
C3—C4—N18118.1 (2)C34—C33—N47117.5 (2)
C5—C4—N18121.8 (2)C32—C33—N47122.3 (2)
C6—C5—C4117.9 (2)C35—C34—C33119.4 (2)
C6—C5—C23118.8 (2)C35—C34—C52119.7 (2)
C4—C5—C23123.3 (2)C33—C34—C52120.9 (2)
C5—C6—C1123.3 (2)C34—C35—C30121.5 (2)
C5—C6—H6118.4C34—C35—H35119.2
C1—C6—H6118.4C30—C35—H35119.2
C8—C7—C1126.6 (2)C37—C36—C30127.1 (2)
C8—C7—H7116.7C37—C36—H36116.4
C1—C7—H7116.7C30—C36—H36116.4
C7—C8—C9126.7 (2)C36—C37—C38127.2 (2)
C7—C8—H8116.6C36—C37—H37116.4
C9—C8—H8116.6C38—C37—H37116.4
C14—C9—C10117.9 (2)C39—C38—C43118.2 (2)
C14—C9—C8119.2 (2)C39—C38—C37119.3 (2)
C10—C9—C8122.9 (2)C43—C38—C37122.5 (2)
C11—C10—C9120.8 (3)C40—C39—C38122.1 (3)
C11—C10—H10119.6C40—C39—H39118.9
C9—C10—H10119.6C38—C39—H39118.9
C12—C11—C10119.0 (3)C39—C40—C41118.0 (3)
C12—C11—H11120.5C39—C40—H40121.0
C10—C11—H11120.5C41—C40—H40121.0
C11—C12—C13122.2 (2)C42—C41—C40121.9 (2)
C11—C12—N26119.4 (3)C42—C41—N55119.5 (3)
C13—C12—N26118.5 (3)C40—C41—N55118.5 (3)
C14—C13—C12117.7 (3)C41—C42—C43119.5 (3)
C14—C13—H13121.2C41—C42—H42120.2
C12—C13—H13121.2C43—C42—H42120.2
C13—C14—C9122.4 (3)C42—C43—C38120.2 (3)
C13—C14—H14118.8C42—C43—H43119.9
C9—C14—H14118.8C38—C43—H43119.9
C17—C15—C16110.8 (3)C46—C44—C45111.0 (3)
C17—C15—C3113.3 (2)C46—C44—C32111.4 (2)
C16—C15—C3110.2 (2)C45—C44—C32111.2 (2)
C17—C15—H15107.4C46—C44—H44107.7
C16—C15—H15107.4C45—C44—H44107.7
C3—C15—H15107.4C32—C44—H44107.7
C15—C16—H16A109.5C44—C45—H45A109.5
C15—C16—H16B109.5C44—C45—H45B109.5
H16A—C16—H16B109.5H45A—C45—H45B109.5
C15—C16—H16C109.5C44—C45—H45C109.5
H16A—C16—H16C109.5H45A—C45—H45C109.5
H16B—C16—H16C109.5H45B—C45—H45C109.5
C15—C17—H17A109.5C44—C46—H46A109.5
C15—C17—H17B109.5C44—C46—H46B109.5
H17A—C17—H17B109.5H46A—C46—H46B109.5
C15—C17—H17C109.5C44—C46—H46C109.5
H17A—C17—H17C109.5H46A—C46—H46C109.5
H17B—C17—H17C109.5H46B—C46—H46C109.5
C4—N18—C19116.9 (2)C33—N47—C48117.2 (2)
C4—N18—C21117.8 (2)C33—N47—C50116.5 (2)
C19—N18—C21115.3 (2)C48—N47—C50115.8 (2)
N18—C19—C20112.6 (2)N47—C48—C49112.1 (2)
N18—C19—H19A109.1N47—C48—H48A109.2
C20—C19—H19A109.1C49—C48—H48A109.2
N18—C19—H19B109.1N47—C48—H48B109.2
C20—C19—H19B109.1C49—C48—H48B109.2
H19A—C19—H19B107.8H48A—C48—H48B107.9
C19—C20—H20A109.5C48—C49—H49A109.5
C19—C20—H20B109.5C48—C49—H49B109.5
H20A—C20—H20B109.5H49A—C49—H49B109.5
C19—C20—H20C109.5C48—C49—H49C109.5
H20A—C20—H20C109.5H49A—C49—H49C109.5
H20B—C20—H20C109.5H49B—C49—H49C109.5
N18—C21—C22111.7 (3)N47—C50—C51112.6 (2)
N18—C21—H21A109.3N47—C50—H50A109.1
C22—C21—H21A109.3C51—C50—H50A109.1
N18—C21—H21B109.3N47—C50—H50B109.1
C22—C21—H21B109.3C51—C50—H50B109.1
H21A—C21—H21B107.9H50A—C50—H50B107.8
C21—C22—H22A109.5C50—C51—H51A109.5
C21—C22—H22B109.5C50—C51—H51B109.5
H22A—C22—H22B109.5H51A—C51—H51B109.5
C21—C22—H22C109.5C50—C51—H51C109.5
H22A—C22—H22C109.5H51A—C51—H51C109.5
H22B—C22—H22C109.5H51B—C51—H51C109.5
C5—C23—C24110.9 (2)C53—C52—C34111.0 (2)
C5—C23—C25111.5 (2)C53—C52—C54110.3 (3)
C24—C23—C25111.1 (3)C34—C52—C54113.8 (2)
C5—C23—H23107.7C53—C52—H52107.1
C24—C23—H23107.7C34—C52—H52107.1
C25—C23—H23107.7C54—C52—H52107.1
C23—C24—H24A109.5C52—C53—H53A109.5
C23—C24—H24B109.5C52—C53—H53B109.5
H24A—C24—H24B109.5H53A—C53—H53B109.5
C23—C24—H24C109.5C52—C53—H53C109.5
H24A—C24—H24C109.5H53A—C53—H53C109.5
H24B—C24—H24C109.5H53B—C53—H53C109.5
C23—C25—H25A109.5C52—C54—H54A109.5
C23—C25—H25B109.5C52—C54—H54B109.5
H25A—C25—H25B109.5H54A—C54—H54B109.5
C23—C25—H25C109.5C52—C54—H54C109.5
H25A—C25—H25C109.5H54A—C54—H54C109.5
H25B—C25—H25C109.5H54B—C54—H54C109.5
O27—N26—O28123.1 (3)O57—N55—O56123.0 (3)
O27—N26—C12118.9 (3)O57—N55—C41119.2 (3)
O28—N26—C12118.0 (3)O56—N55—C41117.8 (3)
C6—C1—C2—C31.1 (4)C35—C30—C31—C321.5 (4)
C7—C1—C2—C3178.2 (3)C36—C30—C31—C32178.4 (3)
C1—C2—C3—C40.3 (4)C30—C31—C32—C330.8 (4)
C1—C2—C3—C15177.9 (2)C30—C31—C32—C44179.5 (2)
C2—C3—C4—C52.1 (4)C31—C32—C33—C342.7 (4)
C15—C3—C4—C5176.1 (2)C44—C32—C33—C34177.6 (2)
C2—C3—C4—N18176.8 (2)C31—C32—C33—N47176.9 (2)
C15—C3—C4—N185.0 (4)C44—C32—C33—N472.8 (4)
C3—C4—C5—C62.3 (4)C32—C33—C34—C352.2 (4)
N18—C4—C5—C6176.5 (2)N47—C33—C34—C35177.3 (2)
C3—C4—C5—C23177.5 (2)C32—C33—C34—C52175.5 (2)
N18—C4—C5—C233.7 (4)N47—C33—C34—C524.9 (4)
C4—C5—C6—C10.9 (4)C33—C34—C35—C300.1 (4)
C23—C5—C6—C1179.0 (2)C52—C34—C35—C30177.9 (2)
C2—C1—C6—C50.8 (4)C31—C30—C35—C342.0 (4)
C7—C1—C6—C5178.5 (3)C36—C30—C35—C34177.9 (2)
C6—C1—C7—C8175.8 (3)C31—C30—C36—C37173.6 (3)
C2—C1—C7—C83.6 (4)C35—C30—C36—C376.3 (4)
C1—C7—C8—C9177.8 (3)C30—C36—C37—C38177.1 (3)
C7—C8—C9—C14171.6 (3)C36—C37—C38—C39172.5 (3)
C7—C8—C9—C106.4 (4)C36—C37—C38—C434.8 (4)
C14—C9—C10—C110.6 (4)C43—C38—C39—C400.5 (4)
C8—C9—C10—C11177.4 (3)C37—C38—C39—C40176.9 (2)
C9—C10—C11—C120.0 (4)C38—C39—C40—C410.2 (4)
C10—C11—C12—C130.7 (4)C39—C40—C41—C420.8 (4)
C10—C11—C12—N26179.2 (3)C39—C40—C41—N55179.4 (2)
C11—C12—C13—C140.7 (4)C40—C41—C42—C430.6 (5)
N26—C12—C13—C14179.1 (3)N55—C41—C42—C43179.5 (3)
C12—C13—C14—C90.0 (4)C41—C42—C43—C380.1 (4)
C10—C9—C14—C130.6 (4)C39—C38—C43—C420.7 (4)
C8—C9—C14—C13177.5 (3)C37—C38—C43—C42176.7 (3)
C2—C3—C15—C1746.7 (4)C31—C32—C44—C4663.0 (3)
C4—C3—C15—C17135.1 (3)C33—C32—C44—C46117.4 (3)
C2—C3—C15—C1678.1 (3)C31—C32—C44—C4561.4 (3)
C4—C3—C15—C16100.1 (3)C33—C32—C44—C45118.3 (3)
C3—C4—N18—C19109.1 (3)C34—C33—N47—C48108.3 (3)
C5—C4—N18—C1969.7 (3)C32—C33—N47—C4872.1 (3)
C3—C4—N18—C21106.9 (3)C34—C33—N47—C50108.3 (3)
C5—C4—N18—C2174.3 (3)C32—C33—N47—C5071.3 (3)
C4—N18—C19—C2053.8 (3)C33—N47—C48—C49138.5 (3)
C21—N18—C19—C20161.4 (2)C50—N47—C48—C4977.8 (3)
C4—N18—C21—C22133.2 (3)C33—N47—C50—C5153.3 (3)
C19—N18—C21—C2282.3 (3)C48—N47—C50—C51162.7 (2)
C6—C5—C23—C2462.7 (3)C35—C34—C52—C5380.0 (3)
C4—C5—C23—C24117.5 (3)C33—C34—C52—C5397.7 (3)
C6—C5—C23—C2561.6 (3)C35—C34—C52—C5445.1 (4)
C4—C5—C23—C25118.2 (3)C33—C34—C52—C54137.1 (3)
C11—C12—N26—O27178.4 (3)C42—C41—N55—O57178.4 (3)
C13—C12—N26—O271.5 (4)C40—C41—N55—O571.7 (4)
C11—C12—N26—O281.4 (4)C42—C41—N55—O560.7 (4)
C13—C12—N26—O28178.8 (3)C40—C41—N55—O56179.2 (3)

Experimental details

Crystal data
Chemical formulaC24H32N2O2
Mr380.52
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)7.3477 (7), 15.4143 (14), 20.3747 (19)
α, β, γ (°)104.642 (8), 92.414 (8), 90.793 (7)
V3)2230.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.60 × 0.10 × 0.05
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21656, 10640, 3887
Rint0.086
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.174, 0.79
No. of reflections10640
No. of parameters518
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2011), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaumann, W., Deckers, H., Loosen, K. D. & Petzke, F. (1977). Ber. Bunsen Ges. Phys. Chem. 81, 799–804.  CrossRef CAS Google Scholar
First citationDekhtyar, M. & Rettig, W. (2007). J. Phys. Chem. A, 111, 2035–2039.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDetert, H. & Sugiono, E. (2005). J. Lumin. 112, 372–376.  Web of Science CrossRef CAS Google Scholar
First citationFischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeier, H., Gerold, J., Kolshorn, H. & Muehling, B. (2004). Chem. Eur. J. 10, 360–370.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37–41.  Web of Science CrossRef CAS Google Scholar
First citationPfeiffer, P., Braude, S., Kleber, J., Marcon, G. & Wittkop, P. (1915). Ber. Dtsch Chem. Ges. 48, 1777–1809.  CrossRef CAS Google Scholar
First citationSchmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1–7.  Web of Science CrossRef Google Scholar
First citationSchmitt, V., Moschel, S. & Detert, H. (2013). Eur. J. Org. Chem. 25, 5655–5669.  Web of Science CSD CrossRef Google Scholar
First citationSchollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1384–o1385.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWink, C. & Detert, H. (2013). J. Phys. Org. Chem. 26, 137–143.  CrossRef Google Scholar
First citationWink, C., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o3336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZucchero, A. J., Tolosa, J., Tolbert, L. M. & Bunz, U. H. F. (2009). Chem. Eur. J. 15, 13075–13081.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1785-o1786
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds