organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[2-(4-Fluoro-2-nitro­styr­yl)-1-phenyl­sulfonyl-1H-indol-3-yl]propan-1-one

aResearch Scholar (Chemistry), Bharathiyar University, Coimbatore 641 046, Tamilnadu, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

(Received 10 November 2013; accepted 11 November 2013; online 16 November 2013)

In the title compound, C25H19FN2O5S, the substituted phenyl ring makes a dihedral angle of 12.26 (9)° with the indole ring system. The nitro group is twisted at an angle of 26.92 (8)° out of the plane of the ring to which it is attached. The mol­ecular structure is stabilized by weak C—H⋯O hydrogen bonds. In the crystal, weak C—H⋯O, C—H⋯F and ππ [centroid–centroid distance = 3.6645 (11) Å] inter­actions link the mol­ecules, forming a three-dimensional network.

Related literature

For the biological activity of indole derivatives, see: Pomarnacka & Kozlarska-Kedra (2003[Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Il Farmaco, 58, 423-429.]); Srivastava et al. (2011[Srivastava, Anupam & Pandeya, S. N. (2011). JCPR, 1, 1-17.]). For related structures, see: Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o749.], 2010[Chakkaravarthi, G., Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2010). Acta Cryst. E66, o2957.]). For details of the configuration at the S atom, see: Bassindale (1984[Bassindale, A. (1984). In The Third Dimension in Organic Chemistry. New York: John Wiley and Sons.]). For details of N-atom hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C25H19FN2O5S

  • Mr = 478.48

  • Triclinic, [P \overline 1]

  • a = 8.2615 (3) Å

  • b = 10.7624 (5) Å

  • c = 13.2432 (6) Å

  • α = 68.606 (2)°

  • β = 80.554 (3)°

  • γ = 81.012 (2)°

  • V = 1075.53 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.961

  • 27388 measured reflections

  • 8185 independent reflections

  • 5506 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.176

  • S = 1.03

  • 8185 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.93 2.33 2.913 (3) 120
C11—H11⋯O3 0.93 2.40 2.905 (3) 114
C16—H16A⋯F1i 0.97 2.54 3.192 (2) 124
C22—H22⋯O4ii 0.93 2.52 3.438 (2) 170
Symmetry codes: (i) -x+1, -y-1, -z+2; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indole derivatives are known to exhibit antimicrobial, antibiotic, analgesic, anticancer and anti-HIV (Pomarnacka & Kozlarska-Kedra, 2003; Srivastava et al., 2011) activities. In continuation of our studies on indole derivatives, we determined the crystal structure of the title compound (I). The geometric parameters of (I) (Fig. 1) are agree well with the reported structures (Chakkaravarthi et al., 2008; 2010).

Due to Thorpe-Ignold effect (Bassindale, 1984), bond angles around atom S1 show significant deviation from ideal tetrahedral value, with significant deviations in angles O1—S1—O2 [120.42 (8)°] and N1—S1—C1 [104.66 (7)°]. The phenyl ring (C1—C6) makes the dihedral angle of 85.05 (8)° with the indole ring system. The phenyl ring (C1—C6) and the benzene ring (C20—C25) are inclined at an angle of 12.26 (9)°. The nitro group is twisted at an angle of 26.92 (8)° with the attached benzene ring (C20—C25). The sum of the bond angles around N1 (358.26°) indicates the sp2 hybridization of N1 atom (Beddoes et al., 1986).

The molecular structure is stabilized by weak intramolecular C—H···O hydrogen bonds (Table 1). The crystal structure exhibit weak intermolecular C—H···O, C—H···F (Table 1 & Fig. 2) and π···π [Cg4···Cg4i = 3.6645 (11) Å; (i) 1 - x, -1 - y, 2 - z; Cg4 is the centroid of the ring (C20—C25)] interactions.

Related literature top

For the biological activity of indole derivatives, see: Pomarnacka & Kozlarska-Kedra (2003); Srivastava et al. (2011). For related structures, see: Chakkaravarthi et al. (2008, 2010). For details of the configuration at the S atom, see: Bassindale (1984). For details of N-atom hybridization, see: Beddoes et al. (1986).

Experimental top

A solution of 1-(2-(bromomethyl)-1-(phenylsulfonyl)-1H-indol-3-yl) propan-1-one (5 g, 12.31 mmol) and triphenylphosphine (3.5 g, 13.54 mmol) in dry THF (100 ml) was refluxed for 6 h. After consumption of the starting material, the solvent was removed under vacuo and the solid was washed with diethyl ether to give the phosphonium salt. Then, the mixture of phosphonium salt (8 g, 11.97 mmol), 4-fluoro-2-nitrobenzaldehyde (2.24 g, 13.17 mmol) and K2CO3 (3.30 g, 23.95 mmol) in DCM (70 ml) was stirred at room temperature for 22 h. After completion of the reaction (monitored by TLC), it was diluted using DCM (30 ml), washed with water (2 x 100 ml) and dried (Na2SO4). Removal of solvent in vacuo followed by trituration of the crude product with MeOH (20 ml) afforded the title compound suitable for X-ray diffraction quality.

Refinement top

The H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) (or) Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, view onto the ac plane. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involving hydrogen bonding have been omitted.
(E)-1-[2-(4-Fluoro-2-nitrostyryl)-1-phenylsulfonyl-1H-indol-3-yl]propan-1-one top
Crystal data top
C25H19FN2O5SZ = 2
Mr = 478.48F(000) = 496
Triclinic, P1Dx = 1.477 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2615 (3) ÅCell parameters from 5619 reflections
b = 10.7624 (5) Åθ = 2.1–31.1°
c = 13.2432 (6) ŵ = 0.20 mm1
α = 68.606 (2)°T = 295 K
β = 80.554 (3)°Block, colourless
γ = 81.012 (2)°0.30 × 0.24 × 0.20 mm
V = 1075.53 (8) Å3
Data collection top
Bruker APEXII
diffractometer
8185 independent reflections
Radiation source: fine-focus sealed tube5506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 35.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.942, Tmax = 0.961k = 1617
27388 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.089P)2 + 0.2703P]
where P = (Fo2 + 2Fc2)/3
8185 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C25H19FN2O5Sγ = 81.012 (2)°
Mr = 478.48V = 1075.53 (8) Å3
Triclinic, P1Z = 2
a = 8.2615 (3) ÅMo Kα radiation
b = 10.7624 (5) ŵ = 0.20 mm1
c = 13.2432 (6) ÅT = 295 K
α = 68.606 (2)°0.30 × 0.24 × 0.20 mm
β = 80.554 (3)°
Data collection top
Bruker APEXII
diffractometer
8185 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5506 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.961Rint = 0.028
27388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.03Δρmax = 0.96 e Å3
8185 reflectionsΔρmin = 0.61 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05337 (18)0.17906 (15)0.76350 (12)0.0387 (3)
C20.0663 (2)0.06833 (18)0.85866 (14)0.0476 (4)
H20.02750.02030.89010.057*
C30.2214 (2)0.0306 (2)0.90598 (16)0.0563 (4)
H30.23240.04300.97020.068*
C40.3602 (2)0.1021 (2)0.85825 (16)0.0540 (4)
H40.46410.07620.89070.065*
C50.3457 (2)0.2109 (2)0.76326 (16)0.0548 (4)
H50.43970.25760.73140.066*
C60.1920 (2)0.25156 (19)0.71465 (14)0.0489 (4)
H60.18170.32570.65070.059*
C70.1475 (2)0.19323 (17)0.50807 (12)0.0439 (3)
C80.0691 (3)0.3166 (2)0.44803 (15)0.0596 (5)
H80.03850.38510.47650.072*
C90.0389 (3)0.3323 (2)0.34425 (16)0.0668 (6)
H90.01300.41350.30200.080*
C100.0836 (3)0.2308 (2)0.30181 (15)0.0637 (5)
H100.06270.24570.23120.076*
C110.1583 (2)0.1080 (2)0.36119 (13)0.0544 (4)
H110.18580.03970.33220.065*
C120.1919 (2)0.08841 (17)0.46722 (12)0.0429 (3)
C130.27195 (19)0.02364 (15)0.54893 (12)0.0403 (3)
C140.27322 (18)0.01380 (14)0.63737 (11)0.0367 (3)
C150.3524 (3)0.14616 (18)0.52664 (14)0.0522 (4)
C160.4209 (3)0.26746 (18)0.61156 (15)0.0563 (4)
H16A0.33650.29570.67300.068*
H16B0.51190.24490.63730.068*
C170.4816 (4)0.3835 (2)0.5708 (2)0.0767 (7)
H17A0.38960.41370.55370.115*
H17B0.53450.45580.62650.115*
H17C0.55890.35420.50650.115*
C180.34816 (19)0.05675 (15)0.73895 (11)0.0380 (3)
H180.43650.02200.75100.046*
C190.29602 (19)0.16804 (15)0.81477 (11)0.0380 (3)
H190.20110.19760.80590.046*
C200.37971 (18)0.24690 (14)0.91153 (11)0.0360 (3)
C210.5492 (2)0.24341 (16)0.90850 (14)0.0454 (3)
H210.60530.18740.84570.054*
C220.6361 (2)0.31934 (18)0.99463 (15)0.0510 (4)
H220.74780.31250.99130.061*
C230.5542 (2)0.40558 (17)1.08570 (15)0.0511 (4)
C240.3899 (2)0.41643 (16)1.09468 (13)0.0462 (4)
H240.33700.47601.15690.055*
C250.30441 (19)0.33571 (15)1.00810 (11)0.0384 (3)
N10.20107 (17)0.14790 (13)0.61298 (10)0.0410 (3)
N20.12683 (19)0.34714 (16)1.02366 (11)0.0489 (3)
O10.12824 (18)0.36656 (12)0.64011 (11)0.0580 (3)
O20.25410 (15)0.17470 (13)0.78405 (10)0.0492 (3)
O30.3708 (3)0.1422 (2)0.43278 (14)0.1065 (8)
O40.03576 (17)0.25160 (16)0.97436 (13)0.0684 (4)
O50.0783 (2)0.45267 (19)1.08539 (15)0.0913 (6)
S10.14288 (5)0.22764 (4)0.70332 (3)0.04104 (11)
F10.64046 (18)0.48260 (14)1.16881 (11)0.0778 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (7)0.0433 (7)0.0372 (7)0.0005 (5)0.0030 (5)0.0194 (6)
C20.0446 (8)0.0492 (9)0.0453 (8)0.0023 (6)0.0044 (6)0.0135 (7)
C30.0536 (10)0.0562 (10)0.0553 (10)0.0114 (8)0.0045 (8)0.0171 (8)
C40.0426 (8)0.0676 (11)0.0620 (11)0.0103 (8)0.0031 (7)0.0366 (9)
C50.0401 (8)0.0756 (12)0.0585 (10)0.0042 (8)0.0096 (7)0.0372 (10)
C60.0465 (9)0.0570 (10)0.0430 (8)0.0034 (7)0.0073 (6)0.0199 (7)
C70.0439 (8)0.0475 (8)0.0315 (6)0.0027 (6)0.0015 (6)0.0055 (6)
C80.0646 (11)0.0569 (11)0.0416 (9)0.0094 (9)0.0054 (8)0.0053 (8)
C90.0628 (12)0.0732 (13)0.0416 (9)0.0056 (10)0.0100 (8)0.0033 (9)
C100.0587 (11)0.0875 (15)0.0335 (8)0.0111 (10)0.0098 (7)0.0047 (9)
C110.0584 (10)0.0704 (12)0.0337 (7)0.0154 (9)0.0069 (7)0.0131 (7)
C120.0430 (8)0.0509 (8)0.0304 (6)0.0113 (6)0.0013 (5)0.0078 (6)
C130.0456 (8)0.0412 (7)0.0322 (6)0.0095 (6)0.0010 (5)0.0100 (5)
C140.0390 (7)0.0370 (7)0.0303 (6)0.0049 (5)0.0004 (5)0.0082 (5)
C150.0694 (11)0.0485 (9)0.0438 (8)0.0094 (8)0.0045 (8)0.0216 (7)
C160.0739 (12)0.0455 (9)0.0468 (9)0.0002 (8)0.0042 (8)0.0202 (7)
C170.1053 (19)0.0522 (11)0.0682 (13)0.0006 (11)0.0154 (13)0.0298 (10)
C180.0422 (7)0.0379 (7)0.0326 (6)0.0020 (5)0.0038 (5)0.0118 (5)
C190.0397 (7)0.0407 (7)0.0315 (6)0.0033 (5)0.0026 (5)0.0110 (5)
C200.0412 (7)0.0340 (6)0.0318 (6)0.0024 (5)0.0033 (5)0.0116 (5)
C210.0423 (8)0.0421 (8)0.0453 (8)0.0035 (6)0.0041 (6)0.0085 (6)
C220.0444 (8)0.0480 (9)0.0570 (10)0.0009 (7)0.0135 (7)0.0127 (7)
C230.0628 (11)0.0431 (8)0.0458 (8)0.0028 (7)0.0217 (8)0.0105 (7)
C240.0606 (10)0.0419 (8)0.0334 (7)0.0055 (7)0.0074 (6)0.0089 (6)
C250.0460 (8)0.0367 (7)0.0322 (6)0.0055 (5)0.0031 (5)0.0119 (5)
N10.0473 (7)0.0399 (6)0.0302 (5)0.0019 (5)0.0018 (5)0.0093 (5)
N20.0490 (8)0.0547 (8)0.0382 (7)0.0129 (6)0.0003 (6)0.0096 (6)
O10.0655 (8)0.0389 (6)0.0634 (8)0.0044 (5)0.0000 (6)0.0142 (6)
O20.0431 (6)0.0580 (7)0.0523 (7)0.0025 (5)0.0092 (5)0.0258 (6)
O30.187 (2)0.0818 (12)0.0574 (9)0.0227 (13)0.0319 (12)0.0396 (9)
O40.0455 (7)0.0704 (9)0.0690 (9)0.0035 (6)0.0025 (6)0.0031 (7)
O50.0707 (10)0.0820 (11)0.0877 (12)0.0339 (9)0.0065 (9)0.0192 (9)
S10.0421 (2)0.03958 (19)0.0412 (2)0.00283 (14)0.00230 (14)0.01553 (15)
F10.0838 (9)0.0747 (8)0.0621 (7)0.0007 (7)0.0385 (7)0.0009 (6)
Geometric parameters (Å, º) top
C1—C21.385 (2)C15—O31.213 (2)
C1—C61.391 (2)C15—C161.482 (3)
C1—S11.7532 (16)C16—C171.520 (3)
C2—C31.383 (3)C16—H16A0.9700
C2—H20.9300C16—H16B0.9700
C3—C41.383 (3)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.374 (3)C17—H17C0.9600
C4—H40.9300C18—C191.330 (2)
C5—C61.385 (3)C18—H180.9300
C5—H50.9300C19—C201.4678 (19)
C6—H60.9300C19—H190.9300
C7—C81.394 (2)C20—C211.401 (2)
C7—C121.397 (2)C20—C251.403 (2)
C7—N11.4155 (19)C21—C221.375 (2)
C8—C91.382 (3)C21—H210.9300
C8—H80.9300C22—C231.373 (3)
C9—C101.379 (3)C22—H220.9300
C9—H90.9300C23—F11.3465 (19)
C10—C111.375 (3)C23—C241.363 (3)
C10—H100.9300C24—C251.384 (2)
C11—C121.410 (2)C24—H240.9300
C11—H110.9300C25—N21.466 (2)
C12—C131.448 (2)N1—S11.6824 (13)
C13—C141.373 (2)N2—O51.215 (2)
C13—C151.488 (2)N2—O41.216 (2)
C14—N11.4131 (19)O1—S11.4193 (13)
C14—C181.467 (2)O2—S11.4235 (13)
C2—C1—C6121.56 (16)C17—C16—H16A109.0
C2—C1—S1118.92 (12)C15—C16—H16B109.0
C6—C1—S1119.52 (13)C17—C16—H16B109.0
C3—C2—C1118.70 (16)H16A—C16—H16B107.8
C3—C2—H2120.7C16—C17—H17A109.5
C1—C2—H2120.7C16—C17—H17B109.5
C2—C3—C4120.28 (18)H17A—C17—H17B109.5
C2—C3—H3119.9C16—C17—H17C109.5
C4—C3—H3119.9H17A—C17—H17C109.5
C5—C4—C3120.48 (17)H17B—C17—H17C109.5
C5—C4—H4119.8C19—C18—C14123.25 (14)
C3—C4—H4119.8C19—C18—H18118.4
C4—C5—C6120.46 (17)C14—C18—H18118.4
C4—C5—H5119.8C18—C19—C20123.78 (14)
C6—C5—H5119.8C18—C19—H19118.1
C5—C6—C1118.52 (17)C20—C19—H19118.1
C5—C6—H6120.7C21—C20—C25115.36 (14)
C1—C6—H6120.7C21—C20—C19119.86 (13)
C8—C7—C12122.28 (16)C25—C20—C19124.64 (14)
C8—C7—N1130.77 (17)C22—C21—C20122.68 (15)
C12—C7—N1106.93 (13)C22—C21—H21118.7
C9—C8—C7117.0 (2)C20—C21—H21118.7
C9—C8—H8121.5C23—C22—C21118.50 (17)
C7—C8—H8121.5C23—C22—H22120.8
C10—C9—C8121.67 (19)C21—C22—H22120.8
C10—C9—H9119.2F1—C23—C24119.04 (17)
C8—C9—H9119.2F1—C23—C22118.45 (17)
C11—C10—C9121.72 (18)C24—C23—C22122.51 (16)
C11—C10—H10119.1C23—C24—C25117.75 (15)
C9—C10—H10119.1C23—C24—H24121.1
C10—C11—C12118.23 (19)C25—C24—H24121.1
C10—C11—H11120.9C24—C25—C20123.15 (15)
C12—C11—H11120.9C24—C25—N2115.60 (14)
C7—C12—C11119.09 (16)C20—C25—N2121.24 (13)
C7—C12—C13108.19 (13)C14—N1—C7108.72 (12)
C11—C12—C13132.70 (17)C14—N1—S1125.70 (10)
C14—C13—C12107.60 (14)C7—N1—S1123.84 (11)
C14—C13—C15129.90 (15)O5—N2—O4123.33 (17)
C12—C13—C15122.08 (14)O5—N2—C25117.83 (16)
C13—C14—N1108.51 (13)O4—N2—C25118.84 (14)
C13—C14—C18130.55 (14)O1—S1—O2120.42 (8)
N1—C14—C18120.63 (13)O1—S1—N1105.64 (7)
O3—C15—C16119.04 (18)O2—S1—N1106.91 (7)
O3—C15—C13117.57 (18)O1—S1—C1109.25 (8)
C16—C15—C13123.24 (14)O2—S1—C1108.80 (7)
C15—C16—C17113.04 (17)N1—S1—C1104.66 (7)
C15—C16—H16A109.0
C6—C1—C2—C30.6 (3)C25—C20—C21—C221.3 (2)
S1—C1—C2—C3179.82 (14)C19—C20—C21—C22177.11 (15)
C1—C2—C3—C40.5 (3)C20—C21—C22—C232.4 (3)
C2—C3—C4—C50.2 (3)C21—C22—C23—F1178.20 (16)
C3—C4—C5—C60.7 (3)C21—C22—C23—C241.5 (3)
C4—C5—C6—C10.6 (3)F1—C23—C24—C25179.81 (15)
C2—C1—C6—C50.0 (2)C22—C23—C24—C250.5 (3)
S1—C1—C6—C5179.63 (13)C23—C24—C25—C201.7 (2)
C12—C7—C8—C91.0 (3)C23—C24—C25—N2177.55 (15)
N1—C7—C8—C9177.10 (18)C21—C20—C25—C240.8 (2)
C7—C8—C9—C100.2 (3)C19—C20—C25—C24174.77 (14)
C8—C9—C10—C111.0 (3)C21—C20—C25—N2178.40 (14)
C9—C10—C11—C121.3 (3)C19—C20—C25—N26.0 (2)
C8—C7—C12—C110.7 (3)C13—C14—N1—C72.37 (17)
N1—C7—C12—C11177.79 (14)C18—C14—N1—C7176.59 (13)
C8—C7—C12—C13179.31 (17)C13—C14—N1—S1167.73 (11)
N1—C7—C12—C130.79 (17)C18—C14—N1—S118.1 (2)
C10—C11—C12—C70.4 (3)C8—C7—N1—C14179.72 (18)
C10—C11—C12—C13177.72 (17)C12—C7—N1—C141.92 (17)
C7—C12—C13—C140.66 (17)C8—C7—N1—S114.0 (3)
C11—C12—C13—C14178.97 (17)C12—C7—N1—S1167.62 (11)
C7—C12—C13—C15172.65 (15)C24—C25—N2—O527.0 (2)
C11—C12—C13—C155.7 (3)C20—C25—N2—O5153.67 (18)
C12—C13—C14—N11.84 (16)C24—C25—N2—O4153.21 (16)
C15—C13—C14—N1170.76 (16)C20—C25—N2—O426.1 (2)
C12—C13—C14—C18175.29 (15)C14—N1—S1—O1161.77 (13)
C15—C13—C14—C182.7 (3)C7—N1—S1—O134.98 (15)
C14—C13—C15—O3161.0 (2)C14—N1—S1—O232.38 (15)
C12—C13—C15—O310.7 (3)C7—N1—S1—O2164.37 (13)
C14—C13—C15—C1614.4 (3)C14—N1—S1—C182.94 (14)
C12—C13—C15—C16173.90 (17)C7—N1—S1—C180.31 (14)
O3—C15—C16—C1710.1 (3)C2—C1—S1—O1154.93 (13)
C13—C15—C16—C17174.49 (19)C6—C1—S1—O125.46 (15)
C13—C14—C18—C1967.9 (2)C2—C1—S1—O221.66 (15)
N1—C14—C18—C19119.31 (17)C6—C1—S1—O2158.73 (12)
C14—C18—C19—C20173.75 (13)C2—C1—S1—N192.33 (13)
C18—C19—C20—C2126.3 (2)C6—C1—S1—N187.28 (13)
C18—C19—C20—C25158.25 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.332.913 (3)120
C11—H11···O30.932.402.905 (3)114
C16—H16A···F1i0.972.543.192 (2)124
C22—H22···O4ii0.932.523.438 (2)170
Symmetry codes: (i) x+1, y1, z+2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.332.913 (3)120
C11—H11···O30.932.402.905 (3)114
C16—H16A···F1i0.972.543.192 (2)124
C22—H22···O4ii0.932.523.438 (2)170
Symmetry codes: (i) x+1, y1, z+2; (ii) x+1, y, z.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBassindale, A. (1984). In The Third Dimension in Organic Chemistry. New York: John Wiley and Sons.  Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2010). Acta Cryst. E66, o2957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPomarnacka, E. & Kozlarska-Kedra, I. (2003). Il Farmaco, 58, 423–429.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, Anupam & Pandeya, S. N. (2011). JCPR, 1, 1–17.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds